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The present paper describes a numerical model of electron motions in the gas media. The respective 

software module is integrated into the copyright software designed for a numerical research of 

electron optic systems [1]. Experimental testing of the developed model is performed.   

 

There are the following tasks: design of ion sources with electron impact, study of the effect of 

residual gases on electron microscopes and spectrometers etc. Their solution consists in 

determination of spatial configurations and kinematic characteristics of electron beams spreading in 

the gas media. 

 

Mobility of electrons in plasma is higher in hundreds and even thousands times than mobility of ions. 

Therefore influence of external electromagnetic fields on physical processes occurring in plasma is 

determined and described by the motion of electrons. Specificity of the electron motion is generally 

set by processes of their collisions with gas molecules. 

 

Numerical methods of the macroparameter determination for a certain process according to known 

microparameters are based on the Monte-Carlo technique. This method consists in sampling of these 

microparameters and carrying out a great number of statistical tests. 

 

The length of an electron free path as an average distance passing by an electron between two 

successive collisions with gas molecules under the first approximation can be evaluated according to 

the following formula: 

𝜆0 =
4𝑘𝑇

π𝑃𝑑2
 (1) 

where P is the gas pressure, k is the Boltzmann’s constant, T is the gas temperature and d is the 

molecule diameter [2].  

 

More accurate models of collisions require taking into account dependence of a free path length on 

energy Е, λ𝐸 = λ(𝐸). According to the physical sense there is an inverse proportionality of an 

electron free path length to a total cross-section of scattering on gas molecules, i.e. 𝜆(𝐸)~1/𝑄(𝐸)  or 

𝜆(𝐸) = 𝑏/𝑄(𝐸) , where b is an unknown coefficient of proportionality. The current level of methods 

solving the tasks of quantum mechanics and experimental techniques allows reliably determining 

dependence Q(Е) for almost any gases [3] (see Figure 1 for N2 [4]). The mean free path length 𝜆0 

from Eq. (1) was obtained within the classical model for collisions of elastic balls and its value was 

sustained by experiments. Dependence Q(Е) is a result of the quantum-mechanical interaction of an 

electron with a molecule. Since applicability of the classical physics is always limited by narrow 

frames in the general quantum-mechanical conception then it is necessary to determine the frames of 

its applicability in our case. Quantum-mechanical effects of the electron-molecule interaction (e.g. 

Ramsauer effect) prevail under the energy below than 1-5 eV. If the energy is above 10 eV, 

ionization of most known atoms and molecules is carried out. So classical and semiclassical models 

of the “electron - neutral particle” collisions “work” well within the range 1 eV – 10 eV 

approximately and they allow determining dependence of the scattering cross-section from energy in 

this case 𝑄𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙(𝐸)~1 √𝐸⁄  [5]. All above mentioned facts allow evaluating an average value of 

energy �̅�  of such range for each gas and obtaining the formula to calculate an unknown coefficient 
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 𝜆(�̅�) ∙ 𝑄(�̅�) = 𝜆0 ∙ 𝑄(�̅�). In particular an average energy of the “classical” range is equal to 

�̅� ≈ 3 eV for nitrogen (Figure 1). The expression for b allows determining the desired dependence 

𝜆𝐸 = 𝜆(𝐸) = 𝜆0 ∙
𝑄(�̅�)

𝑄(𝐸)
 (2) 

For practice relationship Q(E) is to be approximated by the spline function.  

 

 
 

Figure 1. Recommended values of the total scattering cross section Q(E) of N2. 

  

For statistical sampling the length of a free path is considered as a random value distributed within 

the range (0,) with probability density 𝑓(𝜆) =
1

𝜆𝐸
exp (−

𝜆

𝜆𝐸
) [6]. The result of this is a formula of 

free path length simulation: 

𝜆 = 𝜆𝐸 ln 𝑟 (3) 

hereinafter r is a specific value of the number distributed uniformly within the interval [0,1] and 

obtained under the statistical sampling. 

 

Collisions of electrons with molecules can have elastic and inelastic characters. Under the elastic 

collision there is a change of the motion direction of interacted particles and their speeds. Change of 

momentum and kinetic energy is carried out but the intrinsic energy of particles remains unchanged. 

Under the intrinsic collision the intrinsic energy and molecule state are changed.  

 

Probability of the elastic collision is Pe(E)=Qe(E)/Q(E), probability of the inelastic collision 

Pi(E)=Qi(E)/Q(E)=[1-Qe(E)]/Q(E), because the total scattering cross section Q is equal to the 

amount of cross sections of elastic Qe and inelastic Qi interactions: Q=Qe+Qi. Usage of known 

dependences of scattering cross sections for each specific gas allows sampling the character of the 

collision of an electron and molecule according to  

Collisions =








1 

0 

e

e

rP,inelastic

Pr,elastic
 (4) 
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In particular the dependences Q(E) (Figure 1) and Qе(E) recommended in paper [4] allow plotting 

Pe(E)=Qe(E)/Q(E) (Figure 2) and implementing the algorithm (4) for collisions of an electron with 

nitrogen molecules. 

 

 
 

Figure 2. Diagram of the dependence Ре(Е) and pattern of the simulation of elastic and inelastic 

collisions of an electron with N2 molecules. 

 

Under the elastic interactions the scattering of electrons is carried out without loss of their energy at 

various angles.  Differential scattering cross sections (DCS) of electrons with different energy on 

nitrogen molecules are researched in papers [7,8]. The analysis of mentioned data allows carrying 

out piece-smooth patch of the probability density function f() of the scattering angles  under the 

elastic collisions of electrons in this case (Figure 3). The more accurate approximation is possible 

only under the greater volume of theoretical and experimental materials.  

 

 
Figure 3. Diagram of the probability density of scattering angles. 

 

The analytical expression for function f() will have the following form: 






















.),(
bc

c

,,
ba

a

')(f

18090180
90

900
90

 (5) 

The data described in papers [7,8] allows evaluating the relative dependence of parameters a and с 

on energy Е of the electron falling upon a molecule N2: a(E)/b=E/3, c(E)/b=4-0.4E. The same 

dependences we can get to other molecules easily. 

 

Scattering angles can be statistically simulated as discrete quantities, e.g. quantities present at the 

interval of 1, according to the following described (standard) pattern. 
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Parameter b is considered to be equal to 1. Parameters а and с are calculated for each energy value. 

Value Δ'i is calculated for each angle i=i, i=0.179 according to expression (5).  It shall be assumed 

that Δ'i=0 for higher energy in the area of angles [90
0
, 180

0
] if Δ'i<0. These assumptions correspond 

to the known fact about decrease of the inverse scattering in proportion to the electron energy 

increasing. Then normalized quantities (relative values) Δi= Δ'i / Δ'Σ are calculated where 

 

179

0
i'' . Coordinates of points are calculated as 



 
i

i

ii

0

1 , i=0…179, while 0=0 . It should 

be noted that 180=1. 

 

It is obvious that scattering probability at the angle i  is proportional to the length of a segment Δi. 

Determination of the scattering angle i in each test is carried out according to the condition ξi 

≤r<ξi+1 , i=0..179. On the presumption that a scattering angle  is uniformly distributed within the 

range [ i ,  i+1 ]=1º, its final value can be calculated as =i +r. 

 

Under the inelastic collision an electron transfers a part of its energy to a molecule and changes 

direction of the original motion. Available testing data [8,9] related to the research of angle 

dependences of elastic and inelastic collisions can conclude a practical coincidence of angle 

distributions in the first approximation under the elastic and inelastic interactions of electrons with 

molecules. That is why the above mentioned technique of simulation of the electron scattering angle 

under the elastic collision can be applicable to inelastic interactions. 

 

Since an electron under the inelastic interaction with a molecule can transfer a part of its energy in 

order to initiate rotational transitions (up to tenths of eV), vibrational-rotational transitions (from 

tenths of eV up to several units of eV), electron-vibrational-rotational transitions (above several units 

of eV), for ionization (above 10 eV), then it is reasonable to consider a loss of any part of initial 

electron energy as equally probable under such interaction in the first approximation, or in the 

following form:  

𝐸𝑖 = 𝐸 − 𝒓𝑅 = 𝐸(1 − 𝒓) = 𝐸𝒓  

where Ei – electron energy after an inelastic interaction. 

 

Under the preset components of the electron speed vx, vy and vz, determining the current direction of 

the electron speed and defined value of the scattering angle  (under elastic and inelastic 

interactions) by means of analytical geometry, directional cosines determining a new direction of the 

electron motion after scattering can be calculated. It is necessary to introduce an orthogonal basis of 

vectors  �⃗� , 𝑞 , 𝑝 , where a vector �⃗�  is codirectional with the electron speed 𝑣 = 𝑣𝑥𝑖 + 𝑣𝑦𝑗 + 𝑣𝑧�⃗�  before 

the collision and determined by directional cosines cos 𝛼 =
𝑣𝑥

𝑣
, cos 𝛽 =

𝑣𝑦

𝑣
, cos 𝛾 =

𝑣𝑧

𝑣
, where a speed 

module is the following 𝑣 = √𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2. The parameter mincos=min[|cos α|,|cos β|,|cos γ|] is 

determined as follows. 

 

If mincos=|cosα|, then the vector 𝑝  has components 

px=0, 



22 coscos

cos


yp , 




22 coscos

cos


zp . 

If mincos=|cos β|, then



22 coscos

cos


xp , py=0, 




22 coscos

cos


zp . 

If mincos=|cos γ|, then



22 coscos

cos


xp , 




22 coscos

cos


yp , pz=0. 
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Components of the vector 𝑞  can be calculated according to the sequence of below mentioned 

formulas. First it is necessary to determine absolute values of components  coscos0 yzx ppq 

 coscosx0 zy ppq  ,  coscos0 xyz ppq  . Then normalized values
q

q
q x

x
0 ,

q

q
q

y

y

0
 , 

q

q
q z

z
0  are evaluated where a length of the defined vector is 2

0

2

0

2

0 zyx qqqq  . 

 

The scattering angle φ is an angle between vectors 𝑣  and �⃗� . The angle θ specifies orientation of the 

speed vector �⃗�  in space and it is simulated as a random value distributed uniformly in the range 

[0,2π], i.е. θ = r2π. 

 

As a result new directional cosines cos α𝑢, cos β𝑢, cos γ𝑢 (after scattering of the electron at the 

angle φ) are determined according to expressions  

 

  sincossincoscoscos 0 xx qp  ,   sincossincoscoscos 0 yy qp  , 

  sincossincoscoscos 0 zz qp  , cos α𝑢 =
cos𝛼0

𝑠
, cos β𝑢 =

cosβ0

𝑠
, cos γ𝑢 =

cosγ0

𝑠
,  

where 
0

2

0

2

0

2 coscoscos  s . 

 

Directional cosines help to find speed components after the electron scattering: 

𝑢𝑥 = √
2𝐸

𝑚
cos 𝛼𝑢, 𝑢𝑦 = √

2𝐸

𝑚
cos 𝛽𝑢, 𝑢𝑧 = √

2𝐸

𝑚
cos 𝛾𝑢, (7) 

where Е is the electron energy after the collision that is equal to energy of the falling electron under 

the elastic collision and less than this energy under the inelastic collision (E=Ei), m – electron mass. 

 

The pressure (Р), gas temperature (Т) and gas-kinetic molecule diameter (d) are set to make 

calculations of the electron motion under the conditions of interactions. A mean length of a free path 

0 is determined according to Eq. (1) in the gas-kinetic approximation and a process of the trajectory 

simulation is started. 

 

Calculation of each segment of the trajectory starts with determination of the electron free path 

length value λЕ according to the current value of its kinetic energy Е according to Eq. (2) and 

statistical sampling of the specified free path length value λ in the present test in Eq. (3). Then 

differential equations of electron motions are numerically integrated in the electromagnetic field. 

Within the calculation under the equality of the trajectory segment length to the free path length λ the 

collision of an electron with a molecule is considered as happened. Then according to condition (4) 

character of the collision is determined, elastic or inelastic. For elastic collisions the scattering angle 

 (ref. [5]) and the electron speed components according to the final formula (7) are also determined 

after interaction with a molecule. For inelastic collisions the scattering angle  (ref. [5]), energy Ei 

(ref. [6]) and speed components �⃗�  (ref. [7]) of the electron are determined after interaction with a 

molecule. Then calculations are repeated for the following trajectory segment also.  

 

The qualitative check of the above mentioned model adequacy has been carried out on the 

experimental mockup consisting of a vacuum diode with a planar cathode and anode. Researches 

have shown that under letting-to-air consisting of nitrogen in 80%, initial (in vacuum) current was 

reduced approximately in four times. Calculations according to the mentioned technique also provide 

such order related to the relative decrease of a number of emitted electrons under their motions.  
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Figure 4 demonstrates a results of trajectory analysis of the electron optical system under vacuum (1) 

and under nitrogen pressure of P = 5 Pa (2). Trajectories are performed in the cylindrical (a) and 

Cartesian (b) coordinate systems. The accelerating voltage is 100 V. The initial electron energy is 1 

eV.  

 
 

Figure 4. Example of the electron motion in vacuum (1) and nitrogen atmosphere Р = 5 Pa (2). 

 

As a conclusion we note that this paper has developed a numerical model of electron motions in the 

gas media and the qualitative experimental testing of its adequacy for nitrogen has been carried out 

[10]. 
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