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Some group laws equivalent to the
commutative law

J. M. Gandhi

In this paper we prove the Theorem: A group satisfying the law

(l) [£> y] = [", V, w] , where u, V, W are the entries from

the set {x, x~ , y, y~ } is always abelian. Earlier a few

cases of this theorem were proved by Gupta. It is also proved

x2
that a group satisfying the law [x, y] = [x, y, x] is always

abelian.

1. Introduction

The purpose of the present paper is to prove the following:

THEOREM 1. A group G satisfying the law

(1.1) [x, y] = [u, v, w]

where u, v and w are entries from the set {x, x , y, y } , is

always abelian.

Earlier a few cases of Theorem 1 were proved by Gupta [/].

We remark that using Theorem 1, it can be proved that a group G

satisfying the law [x, y] = [u, V, w, s] where u, V, W, z are entries

from the set {x, x~ , y, y~ } implies that the group is abelian in

certain cases. A few special cases were discussed by Gupta [!]• Because

of the complexity we do not discuss this problem which the author has

solved only partially.
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Rejecting the cases when u = v or u = V~ which trivially imply

abelianness, we have 32 other possible combinations for (l.l). We shall

group them into three different categories. The first category is when

the right hand side of (l.l) is of the form [u, w, w"1] or \u, w, u"1] .

There are sixteen possible cases for this category. The second category

consists of eight expressions of the form [x, y] = [u, W, x] , u, W \ x~

or [x, y] = [u, W, y] , u, w \y . The remaining eight cases are to be

discussed separately. They are:

[x, y] = [a:"1, y, x~ ] , [x, y'1, y"1] , [aT1, y~ , x'1] , (y'1, x~X, z/"1] ,
-l-i i—1y J and \y , x, y/ » x , x ~\, \y, x , x~ ] , \x , y~ , y~ ] and \y~ x y ~ ]

The first two cases were discussed by Gupta [7]. Separate proofs are given

for the remaining cases. A few cases of categories 1 and 2 were also

proved by Gupta but our general method will show how they can otherwise

easily be proved.

We also prove

THEOREM 2. A group G satisfying the law [x, y] = [x, y, x] is

always abelian.

2. Notations and identities

For two elements x and y in a group G , we define or = y xy .

The commutator of x and y is defined as

[x, y] = x~ y~ xy

and for n > 2 , a left normed commutator of weight n is defined

inductively as {xx, x2 x^\ = \\x\, x2, •••, x
n_^\> x

n\ • W e s h a l l

u s e t h e f o l l o w i n g i d e n t i t i e s w h i c h c a n b e e a s i l y p r o v e d ( s e e a l s o H a l l

[ 2 ] ) .

(2.1) [x, y] = [*, y-XYy = [sT1, y~\~X ,

( 2 . 2 ) [x, yz] = [ x , z][x, yf ,
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(2 .3) [xy, z] = [x, z]y[y, z] ,

(2.it) [M, W, U " 1 ] = [w, u]\w~X, w] ,

(2 .5) [u, w, u'1] = [w, u][w, u'1] .

In what follows z = [x, y] .

3. Proofs of the Theorems

Let

3 = [M, W, W~ ]

= [w, M] \W~ , u]

by (2.1*). Take the inverse to get

z'1 = [M, W" 1 ]^, U]

= [w"1, M, u]

by (2.5). Interchanging x and j / , we have

2 = \u , W, u] .

Hence a law of the form z = [M, W, W~ ] implies a law of the form

z = \u , w, vi\ . For example

z = \y, x, x 2 implies z = Q/ , x, y] •

By the same method we can prove the converse, i.e., a law z = [u , w, u]

implies the law z = [w, w, w~ ] . Hence out of sixteen cases of the first

category we have to discuss only eight cases of the form \u, w, W ~^ •

Numerous proofs can be given for these eight cases. We outline the method

"by considering a few examples.

Let

(3.1) 3 = \y, x, af1]

= [*, J/J&T1, y] (use (2.1*)).
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Hence [x~ , y\ = 1 or [x, y] = 1 .

Similarly we can prove

(3.2)" z = \y, x~ , x] implies 2 = 1 .

Let

(3.3) s = [if1, x, x"1] .

Then

(3.U) z = [x, J / - 1 ] ^ " 1 , i/] .

Put y~ for i/ and solve for [x, y] to get

(3.5) [x, y] = [x, y-1}^* x'1] •

From (3-1*) and (3-5) we have

(3.6) [x, y] = Oy"1, x] .

In (3.^) put x = x and j / = j / and solve for [x, y] to get

(3.7) [x, y] = fr, x " 1 ] ^ 1 , j / " 1 ] .

Take the inverses of (3.1*), (3.5) and (3-7) and interchange x and y to

get

(3.8) z = [x"1, i f 1 ] ^ 1 , 1/] ;

(3.9) z = GT1, x}\x-X, y] ;

(3.10) 2 = [x"1, y " 1 ] ^ " 1 , xj .

(3.6) and (3.10) gives us

[x"1, z/"1] = 1 or [x, y] = 1 .

We also note that (3.8) and (3.9) implies

(3.11) [x, y] = []/, x"1]

while (3.6) and (3.11) imply

(3.12) [x, y] = [of1, iT1] •
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Using (3.11) and (3.12), we find that (3.3) also implies

z = [af1, y-1, y]

and

z = [u x'1 xl

and a large number of these equivalences can be obtained. Using the above

method a large number of proofs can be given for the cases of the first

category.

Let us then discuss the cases for category 2.

Let

z = [y, x, x] ,

changing x into x and conjugating by x , we get

r-1 -ix = r ^-1 x-l-,x

or

[y, x] = jx, [y, af^J .

Taking the inverse we get

Hence

(3.13) z = [y, x, x] implies z = \y, x , x] .

Similarly we can prove

(3.1*0 z = [x, y, x] implies z = Jx" , y, x] ;

(3.15) z = [x, y ' 1 , x] implies z = [x"1, y ' 1 , x] ;

(3.16) z = \jf , x, x~] implies z = \ij~ , x~ , x~] .

Now le t us consider

2 = [y, x, y]

or
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[»» J/] = Q/"1, x, y] .

Hence

(3.17) 3 = [j/, a:, 1/] implies z = Q/"1, a:, y] .

Similarly we can prove that

(3.18) z = \x~X, y, y] implies g = [aT1, y"1, jf] ;

(3.19) 2 = 0 / , x"1, y] implies z = [y"1, x"1, y] ;

(3.20) z = [x, y, y] implies z = [x, y'1, y] .

Since the derived laws in (3.13) to (3.20) belong to category 1 , in

all these cases the original laws imply that the group is atelian.

Before discussing the last category, we shall illustrate how some of

the laws discussed before could have also been proved by the following

method. Let

(3.21) z = O , y] = [x, y, x]

= [z, x] = [z, x, z] = [z, z] = 1 .

Let

2 = [y, x, y] ;

a = [a"1, y\ = [a"1, y. a" 1 ]' 1

= [*, a'1]"1 = 1 .

4.

As mentioned before we have to supply separate proofs for separate

cases for the last category.

Let

(U.I) a = [af1, y-1, x"1] .

Expanding and rearranging we get
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(h.2) 3 = yx\y, x'^i/'V 1 .

Take the inverse of C».2) and interchange x and y to get

C*.3) 3 = yx\y~ , x]y x

(It.2) and (It.3) give

(It.l) and (h.k) imply

(U-5) [x, y] = [x, 2/, x] .

Now (it.5) belongs to the second category and hence Ct.l) implies

z = l .

In the same way we can prove that

(U.6) s = {j/"1, x~ , z/"1] implies [x, y] = 1 .

Let

(U.T) 3 = 0/"1, x"1, of1] .

Then

(U.8) 3 = Qc-1, i / - 1 ] ^ 1 , x " 1 ] * " 1 .

Take the inverse and interchange x and y to get

In (it.8) change a; into x~ and i/ into j/ and solve for z to get

(fc.10) 3 = [x"1, i T 1 ] ^ , 2/f •

(It.8) and (U.10) give

1 -J T~^- T
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from (1».T).

Gupta [/] proved that (it.11) implies an abelian group. Hence (k.J)

implies that the group is abelian. Before proceeding we shall prove

Theorem 2. Let

(U.12) lx, yfZ = [x, y, x] .

Hence

(U.13) z[z, x2] = [ 2 ) x] .

From (4.12) we ge t

[ s , a:] = [z, x, g]

= [z[z, x2], a] (use (U.13))

= [z, x2, z] (use (2.3)}

= [2, x 2 ] 2 2 (use (It.12)).

Therefore

[z, x] = [z, x2]

and 3 = 1 follows from (It. 13).

Consider

(U.lU) [x, y] = [a"1, J T 1 , J/"1] ,

or

We deduce that

[y, x]~y = G/"1, ^ I Q / . x"1] (use (2.It)) .

Taking the inverse we have

(U.i5) [*, y]y = [a"1, ylC*"1, i/"1] •

Now (U.llt) can be written as

[x, y] = &-1, ̂ [x- 1, r 1?" 1 •

Change x into x~ , j/ into j/~ and solve for [x, yr to get
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(h.16) [x, y] = [x , *,] [of1,

From (U.15) and (*t.l6) we have

[ x , y] = [af1 , y-]

Hence for (l».lU) we have

\x~\ y] = [x, y~\

or

i.e. , a law z = \x~ , y~ , y~ ] implies a law s = [a:, y~ , y~ ~] . But

since z = [x, y~ , y~ ] implies abelianness (see [/]) therefore (1+. 1̂4-)

implies atelianness.

Let

i.e. ,

C*.19) a = [*, J / " 1 ] ^ " 1 , x ] y ~ .

Take the inverse of (1(.19) and interchange a; and y to get

(*.2O) 3 = 0, a"1]* [x"1, y] .

In (U.19) change z/ into j/~ and solve for z .

C*.2l) s = [x, i/- 1 ]^, y]* .

From (U.19) and (It.21) we have

u, j,]̂  = or1, x ] * " 1 .

Thus

and
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-2
\y X , x, y ] = \y~X, x]y (use (U.l8)).

Put y = x and x = y to get

(U.22) [x, y f = [x, y, x] .

Using Theorem 2, the required result follows.

Lastly let us consider

(U.23) z = \y, x~X, x'1]

or

-1
(k.2k) z = \x , y] [y, x ~f

In (U.2U) change x into x and solve for [x, y]

(U.25) 3 = [af1, y][x, yf .

(k.2k) and (U.25) g i v e

-1 x " 1 a;
(U.26) Q/» a ] = [ ^ > y ] -
Take the inverse and interchange x and y to get

or, using (U.23), we get

(U.27) [a;, j/]2' = [x, y, y] .

But (U.27) implies that the group is abelian (see [/]), hence the required

result follows.
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