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Abstract. Let A, B denote binary forms of order d, and let C2r−1 = (A, B)2r−1

be the sequence of their linear combinants for 1 ≤ r ≤ � d+1
2 �. It is known that C1, C3

together determine the pencil {A + λ B}λ∈P1 and hence indirectly the higher combinants
C2r−1. In this paper we exhibit explicit formulae for all r ≥ 3, which allow us to
recover C2r−1 from the knowledge of C1 and C3. The calculations make use of the
symbolic method in classical invariant theory, as well as the quantum theory of angular
momentum. Our theorem pertains to the plethysm representation ∧2Sd for the group
SL2. We give an example for the group SL3 to show that such a result may hold for
other categories of representations.

2000 Mathematics Subject Classification. 13A50, 22E70.

1. Introduction. This paper is a thematic sequel to [3] and [5]. The problem solved
here was originally posed in [5] (of which a précis is given below). All of the unexplained
notation and terminology used in this paper may be found in [3]. The reader is referred
to [6, 7, 11, 14] for foundational material in classical invariant theory and the symbolic
method. The basics of the representation theory of SL2 may be found in [8, Lecture 11]
and [17, Chapter 4].

1.1. Transvectants. The base field k will be of characteristic zero. Let Sd denote
the (d + 1)-dimensional irreducible representation of the group SL2 = SL(2, k). We
identify Sd with the space of (homogeneous) binary d-ics in the variables x = (x1, x2).

Given integers m, n ≥ 0 and 0 ≤ q ≤ min(m, n), there is an SL2-equivariant split
surjection (see [3, Section 1.5])

πq : Sm ⊗ Sn −→ Sm+n−2q. (1)

Given binary forms F ∈ Sm and G ∈ Sn, the image πq(F ⊗ G) is classically referred to
as the qth transvectant of F and G, denoted by (F, G)q. We have an explicit formula

(F, G)q = (m − q)! (n − q)!
m! n!

q∑
i=0

(−1)i
(

q
i

)
∂qF

∂xq−i
1 ∂xi

2

∂qG

∂xi
1 ∂xq−i

2

;
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however, it is seldom directly useful. For later use, let

ıq : Sm+n−2q −→ Sm ⊗ Sn (2)

denote the canonical inclusion, so that πq ◦ ıq is the identity map on Sm+n−2q.

1.2. Combinants. Now let A, B ∈ Sd denote two linearly independent forms.
There is an isomorphism of SL2-representations

∧2Sd =
� d+1

2 �⊕
r=1

S2d−4r+2, (3)

with projection morphisms pr : ∧2Sd −→ S2d−4r+2. The image pr(A ∧ B) equals the
transvectant (A, B)2r−1. For any scalar α, β, γ, δ, we have an invariance property

(α A + β B, γ A + δ B)2r−1 = (α δ − β γ ) (A, B)2r−1.

Hence, up to a scalar, the forms C2r−1 = (A, B)2r−1 depend only on the subspace
	A,B = Span {A, B}. In classical terminology (see [11, Section 250]), {C2r−1} are linear
combinants of the pencil {A + λ B}λ∈P1 .

Decomposition (3) implies that the pencil is completely determined by the sequence
of forms

C1, C3, . . . , C� d+1
2 �.

This claim can be sharpened. Recall that an arbitrary form F ∈ Sd belongs to 	A,B, if
and only if the Wronskian

W =
∣∣∣∣∣∣
Ax2

1
Ax1x2 Ax2

2

Bx2
1

Bx1x2 Bx2
2

Fx2
1

Fx1x2 Fx2
2

∣∣∣∣∣∣
is identically zero. A symbolic calculation shows that (see [5, Proposition 3.2])

1
(d2 − d)3

W = (C1, F)2 − d − 2
4d − 6

F C3.

Hence the condition F ∈ 	A,B is expressible only in terms of C1, C3 and F . It follows
that C1, C3 determine 	A,B, and hence they indirectly determine all the subsequent
combinants C5, C7, C9, etc. It is natural to enquire whether there exists a concrete
formula for C2r−1 in terms of C1 and C3. This problem was solved in [5, Section 5] for C5

and C7, using some ad hoc calculations; here we will give an inductive solution which
applies to all r ≥ 3.

EXAMPLE 1.1. Assume d = 7. We have an identity

C1 C5 = −21
2

(C1, C1)4 + 84
11

(C1, C3)2 + 735
484

C2
3 , (4)
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which expresses C5 in terms of C1, C3. Similarly, the identity

C1 C7 = − 28 (C1, C1)6 − 210
11

(C1, C3)4 + 8 (C1, C5)2

+ 1960
121

(C3, C3)2 + 35
11

C3 C5,

(5)

indirectly expresses C7 in terms of C1, C3. We will show that such formulae always exist
for all d and 3 ≤ r ≤ � d+1

2 �.

After completing our results, we discovered that a few such calculations had been
done by Shenton [15, p. 257ff.].

2. Quadratic syzygies. Define a (quadratic) syzygy of weight 2r to be an identity∑
αi,j (C2i−1, C2j−1)2(r−i−j+1) = 0 (αi,j ∈ k) (6)

assumed to hold for all d-ics A, B. The sum is quantified over all pairs (i, j) such that

1 ≤ i ≤ j ≤ r, i + j ≤ r + 1. (7)

For instance, (4) and (5) are syzygies of weight 6 and 8 respectively. Notice that the
only term in (6) involving C2r−1 corresponds to (i, j) = (1, r). Now our main result is
the following:

THEOREM 2.1. For every 3 ≤ r ≤ � d+1
2 �, there exists a quadratic syzygy of weight 2r

such that α1,r �= 0.

We will, in fact, produce an explicit formula for the αi,j. Given this, one can rewrite
(6) as

C2r−1 = − 1
C1

∑ αi,j

α1,r
(C2i−1, C2j−1)2(r−i−j+1) = 0,

which recovers C2r−1 from C1, . . . , C2r−3. Notice that C1 is (up to a scalar) the Jacobian
of A, B; in particular it is non-zero if {A, B} are linearly independent.

By a classical theorem of Gordan, the algebra of all combinants of a pencil is
finitely generated. However, a specific set of generators is known in only a few cases
(see [10, 12, 13, 18]). Our main theorem is not directly comparable to these results,
since we allow not only polynomial but also rational transvectant expressions in the
combinants.

2.1. An outline of the proof. The following proposition (proved in [5, Section 5])
reinterprets a syzygy as an SL2-equivariant morphism.

PROPOSITION 2.2. The vector space of syzygies of weight 2r is isomorphic to
HomSL2 (S4(d−r),∧4Sd).

In Section 2.5 we will construct a specific morphism

ζ : S4(d−r) −→ ∧4Sd
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and then calculate the corresponding syzygy coefficients. This calculation will be done
twice: first by classical symbolic methods and second by recasting the coefficient as a
9-j symbol in the sense of the quantum theory of angular momentum.

It would be of interest to know whether an analogue of Theorem 2.1 holds for
other categories of representations. In Section 4 we give such an example for the group
SL3.

2.2. The Plücker imbedding. We informally sketch the idea behind Proposi-
tion 2.2. Consider the Plücker imbedding

G(2, Sd) ↪→ P(∧2Sd),

with image X and ideal sheaf IX . The short exact sequence of SL2-representations

0 → H0(IX (2)) → H0(OP(2)) → H0(OX (2)) → 0

can be naturally identified with

0 → ∧4Sd
ı→ S2(∧2Sd)

q→ �(2,2)(Sd) → 0.

Here �(2,2) denotes the Schur functor associated to the partition (2, 2) (see [8,
Lecture 6]). The coefficients of each C2i−1 can be seen as k-linear combinations
of homogeneous coordinates on P(∧2Sd) (see [2, Example 5.3]). Now consider an
arbitrary expression of the form

E =
∑

αi,j (C2i−1, C2j−1)2(r−i−j+1) (αi,j ∈ k).

It may be seen as defining a morphism

S4(d−r)
φE−→ H0(OP(2)), F −→ (F, E)4(d−r).

Indeed, note that the transvectant (F, E)4(d−r) does not involve the x-variables. For a
fixed F , it is a homogeneous quadratic expression in the Plücker coordinates and as such
gives a global section ofOP(2). Now E is a syzygy exactly when this section is identically
zero when restricted to X , i.e. iff q ◦ φE = 0. This is equivalent to the condition
that φE factor through ker q. Conversely, a non-zero map S4(d−r)

φ−→ ∧4Sd defines
an irreducible sub-representation of H0(IX (2)), which translates into a quadratic
syzygy Eφ . �

2.3. Syzygy coefficients. This interpretation allows to read off the individual
coefficients in a syzygy. Let E = 0 denote a quadratic syzygy of weight 2r, and fix a
pair of integers (i, j) satisfying

1 ≤ i, j ≤ r, i + j ≤ r + 1.
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(Notice that we have not imposed the condition i ≤ j.) Consider the sequence of
morphisms

S4(d−r)
φE−→ ∧4Sd

ı−→ S2(∧2Sd)
β1−→ ∧2Sd ⊗ ∧2Sd

β2−→ S2d−4i+2 ⊗ S2d−4j+2
β3−→ S4(d−r).

(8)

Here β1 is the natural inclusion map v · w −→ 1
2 (v ⊗ w + w ⊗ v); β2 is the tensor

product of projections p2i−1 ⊗ p2j−1; and β3 is the transvectant map π2(r−i−j+1). By
Schur’s lemma, the composite endomorphism

β3 ◦ β2 ◦ β1 ◦ ı ◦ φE : S4(d−r) −→ S4(d−r)

must be the multiplication by a constant, say θi,j. Then, up to a global constant,

E =
∑

θi,j (C2i−1, C2j−1)2(r−i−j+1). (9)

2.4. Symbolic description of the βi. In this section we will describe βi using the
classical symbolic calculus. Our notation follows [3] and [11]; in particular, the boldface
letters x, y, t, etc. stand for pairs of binary variables, and

(x y) = x1 y2 − y1 x2, ft = f1t1 + f2t2, etc.

Cayley’s Omega operator is defined to be

�x y = ∂2

∂x1 ∂y2
− ∂2

∂y1 ∂x2
.

Let

h(m, n; q) = (m + n − 2q + 1)!
(m + n − q + 1)! q !

.

The rationale for introducing this factor is explained in [3, Section 1.6].
We will realise S2(∧2Sd) as the space of quadri-homogeneous forms Q(x, y, z, w)

of order d in each variable, satisfying the conditions

Q(x, y, z, w) = − Q(y, x, z, w) = − Q(x, y, w, z) = Q(z, w, x, y).

Inside this space, the image of ı is identified with the set of alternating forms, i.e. those
Q for which

Q(x, y, z, w) = sign(σ ) Q(xσ , yσ , zσ , wσ ),

for every permutation σ of the four letters.
Now realise S2d−4i+2 ⊗ S2d−4j+2 as the space of bi-homogeneous forms of

respective orders (2d − 4i + 2, 2d − 4j + 2) in u, v. Then β2 ◦ β1 maps Q to

h(d, d; 2i − 1) h(d, d; 2j − 1)
[
�2i−1

x y �2j−1
z w Q

]
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followed by the substitutions {x, y → u}, {z, w → v}. Notice that, given the two pairs
of operations

�x y, {x, y → u}, �z w, {z, w → v},

any operation from the first pair commutes from any operation from the second.
Finally realise S4(d−r) as order 4(d − r) forms in t; then β3 maps R(u, v) to

h(2d − 4i + 2, 2d − 4j + 2; 2r − 2i − 2j + 2)
[
�2r−2i−2j+2

u v R(u, v)
]
,

followed by the substitutions {u, v → t}.

2.5. The definition of ζ . Now define ζ : S4(d−r) −→ S2(∧2Sd) to be the morphism
which sends f 4(d−r)

t to the form

F = (x y) (z w)2r−1 f d−1
x f d−1

y f d−2r+1
z f d−2r+1

w

− (x z) (y w)2r−1 f d−1
x f d−1

z f d−2r+1
y f d−2r+1

w

+ (x w) (y z)2r−1 f d−1
x f d−1

w f d−2r+1
y f d−2r+1

z

− (y w) (x z)2r−1 f d−1
y f d−1

w f d−2r+1
x f d−2r+1

z

+ (z w) (x y)2r−1 f d−1
z f d−1

w f d−2r+1
x f d−2r+1

y

− (z y) (x w)2r−1 f d−1
z f d−1

y f d−2r+1
x f d−2r+1

w .

By construction, F is alternating in all four variables; hence ζ factors through ∧4Sd .
The rationale behind this choice of ζ will be explained in Section 3.1.

2.6. The first calculation. Let us write (using the obvious notation)

F = T (xy, zw) − T (xz, yw) + · · · − T (zy, xw).

We should like to gauge the effect of the morphism β3 ◦ β2 ◦ β1 on each summand in
F . The next two lemmata allow us to ‘cancel’ an �x y against an (x y).

LEMMA 2.3. Let G denote an arbitrary bi-homogeneous form of orders p, q in x, y
respectively.

(a) For every m ≥ 1,

�x y (x y)m G = m (p + q + m + 1) (x y)m−1 G + (x y)m �x y G.

(b) For every � ≥ 1,

��
x y (x y)G = � (p + q − � + 3) ��−1

x y G + (x y) ��
x y G.
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Proof. By straightforward differentiation,

�x y (x y)G = 2G +
(

x1
∂G
∂x1

+ x2
∂G
∂x2

)
+

(
y1

∂G
∂y1

+ y2
∂G
∂y2

)

+ (x1 y2 − x2 y1)
(

∂2G
∂x1 ∂y2

− ∂2G
∂x2 ∂y1

)
= (p + q + 2)G + (x y) �x y G.

Now part (a) follows by an easy induction on m and (b) by one on �. �
LEMMA 2.4. With G as above and �, m ≥ 0,

[
��

x y (x y)m G
]

x,y→u =
{

μ(p, q; �, m)
[
��−m

x y G
]

x,y→u if � ≥ m,

0 otherwise,

where

μ(p, q; �, m) = � !
(� − m)!

(p + q − � + 2m + 1)!
(p + q − � + m + 1)!

. (10)

Proof. Using part (a) of the previous lemma for the connecting step, one shows by
induction on � that

��
x y (x y)m G ≡

{
μ(p, q; �, m) ��−m

x y G if 0 ≤ � − m ≤ min(p, q),

0 otherwise,

where ≡ stands for congruence modulo (x y). The result follows, because terms
involving (x y) vanish after the substitution x, y → u. �

As a consequence, the term T (zw, xy) is annihilated by the operation �2i−1
x y

followed by {x, y → u}, unless i = r (and hence necessarily j = 1). In the latter case,

β2 ◦ β1 (T (zw, xy)) = h(d, d, 2r − 1) h(d, d, 1)
[
�2r−1

x y �z w ◦ T (zw, xy)
]
{x,y→u},{z,w→v}

evaluates to

f 2d−4r+2
u f 2d−2

v (11)

because

h(d, d, 2r − 1) h(d, d, 1) μ(d − 2r + 1, d − 2r + 1, 2r − 1, 2r − 1)

×μ(d − 1, d − 1, 1, 1) = 1.

Then β3 carries (11) into f 4(d−r)
t . By the same argument, T (xy, zw) goes to f 4(d−r)

t if
(i, j) = (1, r) and zero otherwise.

This disposes of two of the summands in F ; the rest of them will need more work.
As an interlude, we will consider a preparatory example which illustrates the operation
of �xy on a symbolic product involving x, y (cf. [9, Section 3.2.5]).
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EXAMPLE 2.5. Let

E = (x z)7 (y w)2 fx g4
x f 5

y .

First we follow the calculation of �xy E. The idea, in brief, is to pair an x-factor with
a y-factor and contract them against each other. The following diagram shows all the
types of x and y factors in E and the possible pairings between them:

(x z) fx gx

(y w) fy

�
�

�
���

�����������

�
�

�
���

����������	

�
�

�
�

��









�

(1) (2)
(3) (4) (5)

(6)

The equality �xy [(x u)(y v)] = (u v) gives our basic rule: contracting (x u) against
(y v) gives (u v). For instance, contraction along arrow (1) gives (z w). Introducing
a phantom letter f̃ = (−f2, f1), we can write fx = (x f̃), and hence contraction along
arrow (3) gives (f̃ w) = − fw. Contraction along arrow (4) gives (f f ) = 0. Now �xy E
is a sum of terms (quantified over all choices of contractions), where in each term the
contracted factors are replaced by their result. Thus, �xy E =

14 (z w) (x z)6 (y w) fx g4
x f 5

y︸ ︷︷ ︸
from arrow (1)

+ 35 fz (x z)6 (y w)2 fx g4
x f 4

y︸ ︷︷ ︸
from arrow (2)

+ · · · , etc.

To calculate �2
xy E we must sum over all possible two-step sequences of

contractions, taking account of available multiplicities. For instance, the sequences
of arrows

(1)(4), (2)(2), (3)(5)

are allowed, but (3)(3) is not since there is only one fx available. This gives �2
xy E =

840 f 2
z (x z)5 (y w)2 fx g4

x f 3
y︸ ︷︷ ︸

from (2)(2)

− 120 (g f ) gw (x z)7 (y w) fx g2
x f 4

y︸ ︷︷ ︸
from (5)(6)

+ · · · , etc.

If we treat the seven (x z) factors as notionally distinct, a sequence of two from them can
be chosen in 7!/5! ways and similarly for f 5

y . This gives the first coefficient as 7!
5!

5!
3! =

840. Similarly, the second coefficient is 4!
2! × 2 × 5. Notice that the sequence (6)(5)

will give an additional term identical to the one coming from (5)(6).

2.7. We will now follow the evaluation of β3 ◦ β2 ◦ β1 ◦ T (xw, yz).
As a first step we have to remove (2i − 1) factors each of type x, y from T (xw, yz).

The available factors are respectively

(x w) f d−1
x and (y z)2r−1 f d−2r+1

y .
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There are three choices:

(i) (x w) f 2i−2
x and (y z)2i−2 fy;

(ii) (x w) f 2i−2
x and (y z)2i−1;

(iii) f 2i−1
x and (y z)2i−1.

(12)

The possibilities are limited by the following constraint: since fy can only be paired
with (x w), no more than one copy of fy can be chosen, and hence at least 2i − 2 copies
of (y z) must be chosen.

After contraction and the substitution {x, y → u}, choice (i) leads to the expression

cI (u z)2r−2i+1 f 2d−2r−2i+1
u f d−2r+2i−1

z f d
w . (13)

Here (and subsequently) cI , cI ′ , etc. stand for some rational constants which will be
determined later. Now we must remove (2j − 1) factors each of type z, w from (13).
The choice is forced, namely

(i’) (u z)2j−1 and f 2j−1
w .

After contraction and {z, w → v}, we get an expression

− cI cI ′ (u v)2r−2i−2j+2 f 2d−2r−2i+2j
u f 2d−2r+2i−2j

v . (14)

(The negative sign arises because contracting (u z) against fw gives −fu.) Now β3 will
convert (14) into

− cI cI ′ f 4(d−r)
t (15)

as a consequence of Lemma 2.4.

2.8. Choice (ii) in (12) leads to the expression

− cII (z w) (u z)2r−2i f 2d−2r−2i+2
u f d−1

w f d−2r+2i−1
z︸ ︷︷ ︸

G

,

on which we have to operate on by �
2j−1
z w . Using part (b) of Lemma 2.3,

�2j−1
z w (z w)G = (2j − 1)(2d − 2j + 2) �2j−2

z w G + (z w) �2j−1
z w G.

After the substitution {z, w → v}, the second term goes away. In evaluating �
2j−2
z w G,

we have a forced choice

(ii’) (u z)2j−2 and f 2j−2
w ,

leading to

− (2d − 2j + 2)(2j − 1) cII cII ′ f 4(d−r)
t . (16)
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2.9. Choice (iii) (which is only possible if 2i ≤ d), leads to

−cIII (uw) (uz)2r−2i f 2d−2r−2i+1
u f d−1

w f d−2r+2i
z .

When applying �
2j−1
z w , it further bifurcates into the two choices:

(iii’) (u z)2j−2 fz and (u w) f 2j−2
w ,

(iii”) (u z)2j−1 and f 2j−1
w ,

which are dealt with similarly. In fact (iii’) can arise only if

2j ≤ d and r ≥ i + j. (17)

Altogether we arrive at the expression

β3 ◦ β2 ◦ β1 ◦ T (xw, yz) = h(d, d; 2i − 1) h(d, d; 2j − 1)

× (−cI cI ′ − (2d − 2j + 2)(2j − 1) cII cII ′ − cIII cIII ′ + cIII cIII ′′) f 4(d−r)
t .

Using the recipe of Example 2.5, we get the constants

cI = (2i − 1) (d − 2r + 1)
(d − 1)!

(d − 2i + 1)!
(2r − 1)!

(2r − 2i + 1)!
,

cI ′ = (2r − 2i + 1)! d!
(2r − 2i − 2j + 2)! (d − 2j + 1)!

,

cII = (2i − 1) (d − 1)! (2r − 1)!
(d − 2i + 1)! (2r − 2i)!

,

cII ′ = (2r − 2i)! (d − 1)!
(2r − 2i − 2j + 2)! (d − 2j + 1)!

,

cIII = (d − 1)! (2r − 1)!
(d − 2i)! (2r − 2i)!

,

cIII ′ = (2j − 1) (d − 2r + 2i) (2r − 2i)! (d − 1)!
(2r − 2i − 2j + 2)! (d − 2j + 1)!

,

cIII ′′ = (2r − 2i)! (d − 1)!
(2r − 2i − 2j + 1)! (d − 2j)!

.

If 2i ≤ d fails, then cIII is zero by definition. Likewise, if the conditions in (17) are not
satisfied, then cIII ′′ is understood to be zero. Recall that the prevailing hypotheses are

3 ≤ r ≤ d + 1
2

, 1 ≤ i, j ≤ r and i + j ≤ r + 1.

Therefore, any of extra conditions 2i ≤ d, 2j ≤ d and i + j ≤ r can only fail if
respectively d − 2i + 1, d − 2j + 1 and r − i − j + 1 vanish. Hence, the following
expressions for cIII and cIII ′′ hold unconditionally:

cIII = (d − 2i + 1) (d − 1)! (2r − 1)!
(d − 2i + 1)! (2r − 2i)!

, (18)

cIII ′′ = (d − 2j + 1) (2r − 2i − 2j + 2) (2r − 2i)! (d − 1)!
(2r − 2i − 2j + 2)! (d − 2j + 1)!

. (19)
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Due to the symmetry in the situation, the rest of the terms

− T (xz, yw), − T (yw, xz), − T (zy, xw)

give identical evaluations. After some simplification, we arrive at the following formula:

2.10. Formula for θi,j. Define δi,j to be 1 if i = j and 0 otherwise. Let

N1 = (2d i + 2d j − d r − 2i2 − 2j2 − 2d + 3i + 3j − 2)

× d! (d − 1)! (2r − 1)! (2d − 4i + 3)! (2d − 4j + 3)!,

N2 = (2i − 1)! (2j − 1)! (d − 2i + 1)! (d − 2j + 1)!

× (2d − 2i + 2)! (2d − 2j + 2)! (2r − 2i − 2j + 2)!;

then

θi,j =
(

δi,1 δj,r + δi,r δj,1 − 8
N1

N2

)
. (20)

Evidently θi,j = θj,i. Therefore, in expression (9) one can combine the terms (i, j) and
(j, i). Let εi,j = 2 if i �= j and 1 if i = j. Now let αi,j = εi,j θi,j. We have finally arrived at
the required syzygy

Eζ :
∑
(i,j)

αi,j (C2i−1, C2j−1)2(r−i−j+1) = 0, (21)

where the sum is quantified over all pairs (i, j) such that

1 ≤ i ≤ j ≤ r, i + j ≤ r + 1.

The reader may check that for d = 7, r = 3, the syzygy becomes

10 (C1, C1)4 − 80
11

(C1, C3)2 − 175
121

C2
3 + 20

21
C1 C5 = 0,

which is the same as (4). We have (successfully) tested formula (20) in MAPLE on several
examples.

2.11. Second calculation. In fact, formula (20) was first arrived at by a different
path, namely by interpreting θi,j as (in essence) a 9-j symbol in the sense of the quantum
theory of angular momentum (see [3, Section 7]).

We pick up the thread at the beginning of Section 2.5. The trajectory f 4(d−r)
t −→

T (xw, yz) followed by β3 ◦ β2 ◦ β1 is described by the sequence of morphisms

S4(d−r) −→ S2d−2 ⊗ S2d−4r+2 −→ (Sd ⊗ Sd) ⊗ (Sd ⊗ Sd) −→
(Sd ⊗ Sd) ⊗ (Sd ⊗ Sd) −→ S2d−4i+2 ⊗ S2d−4j+2 −→ S4(d−r).

Here the first two maps are natural injections; the last two are natural projections; and
the one in the middle is the shuffling map,

(v1 ⊗ v2) ⊗ (v3 ⊗ v4) −→ (v1 ⊗ v4) ⊗ (v2 ⊗ v3).
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By Schur’s lemma, the total composite must a multiple of the identity map IdS4(d−r) . Up
to an easily calculated factor (see [3, Section 7.9]), this multiple is the 9-j symbol,

B =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d
2

d
2

d − 2i + 1

d
2

d
2

d − 2j + 1

d − 1 d − 2r + 1 2d − 2r

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Now interchange rows 1 and 2 of B; then interchange rows 1 and 3 of the new array;
and finally interchange columns 2 and 3. This gives an equivalent array,

B′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d − 1 2d − 2r d − 2r + 1

d
2

d − 2i + 1
d
2

d
2

d − 2j + 1
d
2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (22)

Finally apply the Ališauskas–Jucys triple sum formula (see [3, Section 7.10]) to B′.
In the notation used there, the set � of triples of indices which appear in the sum is
contained in

{ (d − 2r + 1, 2j − 1, 0), (d − 2r + 1, 2j − 2, 0), (d − 2r, 2j − 1, 0) } ,

which reduces the sum to at most three easily manageable terms. The triple (d − 2r + 1,

2j − 1, 0) appears in the sum unless i = r = d+1
2 . The triple (d − 2r + 1, 2j − 2, 0)

always appears. Finally (d − 2r, 2j − 1, 0) appears unless r = d+1
2 . One can remove

the case discussion using the same trick which led to the unconditional formulae (18)
and (19). After a little simplification, once again we get formula (20).

3. Positivity.

3.1. Operator norms. The next proposition will conclude the proof of
Theorem 2.1.

PROPOSITION 3.1. The coefficient α1,r is non-zero and in fact strictly positive.

Proof. We will extensively use the material in [3, Section 7]. If u : E1 −→ E2 denotes
a linear map between Hilbert spaces, then u∗ : E2 −→ E1 denotes its adjoint. Recall that
the Hilbert–Schmidt norm of u is defined to be

‖u‖HS =
√

trace (u∗ ◦ u).

For a composite E1
u−→ E2

v−→ E3, we have (v ◦ u)∗ = u∗ ◦ v∗.
In the notation of [3, Section 7], we write H m

2
for Sm, which carries a natural

structure of a finite-dimensional Hilbert space. We will view ζ as a map from H2(d−r) to
(H d

2
)⊗4 via the natural inclusion ∧4 H d

2
↪→ (H d

2
)⊗4. Similarly, we view β1 as originating
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from (H d
2
)⊗4 via the natural surjection,

(
H d

2

)⊗4 −→ S2
( ∧2 H d

2

)
,

z1 ⊗ z2 ⊗ z3 ⊗ z4 −→ (z1 ∧ z2) · (z3 ∧ z4).

Henceforth, throughout the proof, the symbol � will stand for some strictly
positive constant which need not be specified. Recall that we have defined maps
πPHY, ıPHY such that

πPHY
m
2 , n

2 , 1
2 (m+n−2q) =� πq, ıPHY

m
2 , n

2 , 1
2 (m+n−2q) =� ıq,

in the notation of (1) and (2); moreover πPHY = (ıPHY)∗. We will show that

� α1,r = ‖ζ‖2
HS. (23)

First, observe that α1,1 = 2 (r − 2)(2r − 1) �= 0; hence the map ζ is not identically zero
(if the reader was not already so persuaded). If (as,t) denotes the matrix representing ζ

with respect to some orthonormal bases, then

trace (ζ ∗ ◦ ζ ) =
∑
s,t

|as,t|2 > 0;

hence it only remains to show (23) to complete the proof of the proposition.
Now specialise to i = 1, j = r, and let ψ = β3 ◦ β2 ◦ β1 ◦ ζ . By definition, α1,r =

2 θ1,r, where ψ = θ1,r IdS4(d−r) , and hence

θ1,r = trace(ψ)
4(d − r) + 1

.

Notice that, up to a positive multiplicative constant, the map f 4(d−r)
t −→ T (xy, zw) is

the sequence

H2(d−r) −→ Hd−1 ⊗ Hd−2r+1 −→ (
H d

2
⊗ H d

2

) ⊗ (
H d

2
⊗ H d

2

)
,

where the first map is ıPHY
j12j34J , and the second is ıPHY

j1j2j12
⊗ ıPHY

j3j4j34
, with

j12 = d − 1, j34 = d − 2r + 1, J = 2(d − r) and

j1 = j2 = j3 = j4 = d
2
.

If we compose this with the alternation map

A :
(
H d

2

)⊗4 −→ (
H d

2

)⊗4
,

z1 ⊗ z2 ⊗ z3 ⊗ z4 −→ 1
4!

∑
σ∈S4

sign(σ ) zσ (1) ⊗ zσ (2) ⊗ zσ (3) ⊗ zσ (4),

the net effect (up to a constant) is ζ : f 4(d−r)
t −→ F . In other words,

ζ =� A ◦
(

ıPHY
j1j2j12

⊗ ıPHY
j3j4j34

)
◦ ıPHY

j12j34J .
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Now observe that β3 ◦ β2 ◦ β1 is (up to a constant) the sequence of maps:(
H d

2
⊗ H d

2

) ⊗ (
H d

2
⊗ H d

2

) −→ Hd−1 ⊗ Hd−2r+1 −→ H2(d−r),

where the first map is πPHY
j1j2j12

⊗ πPHY
j3j4j34

, and the second is πPHY
j12j34J . Since the maps ıPHY

and πPHY (with identical subscripts) are mutually adjoint and A is a self-adjoint
idempotent,

ψ =� ζ ∗ ◦ ζ,

and the claim follows. �
Indeed, it was this argument which led us to the correct guess for F . One strategy

to ensure that α1,r does not vanish is to make it appear as the Hilbert–Schmidt norm
of a non-zero operator. This prompted us to take the adjoint of β3 ◦ β2 ◦ β1, which
determines the first term in F and hence all the rest.

3.2. An elementary proof of Proposition 3.1. The result of Proposition 3.1 amounts
to the inequality

4 (dr − 2r2 + 3r − 1) × (d − 1)! (2d − 4r + 3)!
(d − 2r + 1)! (2d − 2r + 2)!

< 1 (24)

in the range r ≥ 3, d ≥ 2r − 1.
We include an elementary proof of this inequality. Let �(r, d) denote the left-hand

side of (24). First,

�(r, 2r − 1) = 2
r

< 1.

Let us write

�(r, d + 1)
�(r, d)

= N
D

,

where

N = d (d r + 4 r − 2 r2 − 1) (2d − 4r + 5),

D = (d r − 2 r2 + 3 r − 1) (2d − 2r + 3) (d − r + 2).

Now observe that

D − N = (r − 1) (r − 2) (2r − 1) (d − 2r + 3) > 0;

hence �(r, d + 1) < �(r, d). This completes the proof. �
Unfortunately this proof gives no insight into why the inequality should be true.

It seems especially fortuitous that D − N should admit such a tidy factorisation. For
reasons already stated, we prefer the earlier argument.

The Hilbert–Schmidt idea also guided the construction of the closed form syzygy
in [3, Section 2.14]; it can be used to provide an alternate proof of Lemma 2.3 therein.
In [1] and [16, Proposition 5] one may find similar instances, where the non-vanishing
of an algebraic expression produced by a tensorial construction is the key ingredient
in a geometric result.
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3.3. SL2-equivariant Plücker equations. There are many quadratic syzygies
between the combinants C1, C3, . . . , besides those given in Section 2.10; e.g. for d = 5,
we have an isomorphism

∧4 S5 � S8 ⊕ S4 ⊕ S0;

hence there exists one such syzygy for each of the weights 6, 8, 10. Using symbolic
calculations (as in [11, Chapter 5]), they are seen to be

15 (C1, C1)4 − 60
7

(C1, C3)2 − 225
98

C2
3 + C1 C5 = 0,

6 (C1, C1)6 + 45
7

(C1, C3)4 − 150
49

(C3, C3)2 − C3 C5 = 0,

15
2

(C1, C1)8 + 75
14

(C3, C3)4 − C2
5 = 0.

Only the first of these is given by formula (21). This leads to the following natural
problem: for an arbitrary d, classify all the quadratic syzygies between the {C2i−1}. This
is tantamount to writing the Plücker equations for the Grassmannian G(2, Sd) in
SL2-equivariant form.

Recall that we have a sequence of isomorphisms,

∧4 Sd � S4(Sd−3) � Sd−3(S4).

An explicit description of the first isomorphism is given in [2, Section 2.5]. The second
is usually called Hermite reciprocity (see [17, Corollary 4.2.9]). It follows that quadratic
syzygies between the {C2i−1} are in bijection with covariants of degree d − 3 of a generic
binary quartic.

4. A ternary example. Our main theorem leads to the analogous problem for
SLN-representations. To wit, let V denote an N-dimensional vector space, and write
�λ for the Schur module �λ V (see [8, Lecture 6]). Assume that we are given a plethysm
decomposition of Schur modules,

∧2 �λ �
⊕

ν

(�ν ⊗ k
Mν ). (25)

A general formula for Mν in terms of Yamanouchi domino tableaux may be found
in [4].

Let C = {C(i)
ν : 1 ≤ i ≤ Mν} denote the associated linear combinants of a pencil

of tensors in �λ. It is a natural problem to find a sub-collection of C which determines
the rest of them. We will now exhibit such an example in the ternary case. The symbolic
formalism used below is explained in [3, Section 4].

4.1. A pencil of (3, 1)-tensors. Assume N = 3 and λ = (3, 1). We have a
decomposition

∧2 �(3,1) � �(5) ⊕ �(5,3) ⊕ �(4,1) ⊕ �(3,2) ⊕ �(1,1)︸ ︷︷ ︸
E

,
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with projection morphisms fλ : ∧2 �(3,1) → �λ. Let

A = (a b u) a2
x, B = (c d u) c2

x

denote two ‘generic’ forms in �(3,1), and write Cλ = fλ(A ∧ B). Then we have symbolic
formulae

C(5) = (a b d) a2
x c3

x,

C(5,3) = (a b u) (a c u) (a d u) c2
x,

C(4,1) = (a b d)(a c u) ax c2
x − 5 (a b c)(a d u) ax c2

x,

C(3,2) = (a b d) (a c u)2 cx + (a b c) (a c u) (a d u) cx,

C(1,1) = (a b c) (a c d) (a c u).

There is an exact sequence of SL3-representations,

0 → ∧4 �(3,1)︸ ︷︷ ︸
Q

→ �(2)(∧2 �(3,1)) → �(2,2)(�(3,1)) → 0,

and, as in the binary case, the irreducible sub-representations of Q correspond to the
quadratic syzygies between the Cλ.

PROPOSITION 4.1. Either of the combinants C(3,2) and C(1,1) can be recovered from the
set {C(5), C(5,3), C(4,1)}.

The result follows from an explicit calculation involving plethysms and projection
maps. Taking our cue from the binary case, we look for sub-representations
corresponding to (5, 0) + (3, 2) = (8, 2). Decomposing1 Q and �2(E) into irreducible
summands, we found that they respectively contain 2 and 7 copies of �(8,2). The latter
come from tensor products of the summands in E taken two at a time; e.g. the morphism

�(5) ⊗ �(5,3) −→ �(8,2)

is given by the formula

a5
x ⊗ (c d u)3 c2

x → (a c d) (a d u)2 a2
x c4

x.

Let us write 〈C(5), C(5,3)〉 for the image of C(5) ⊗ C(5,3) via this morphism. Once all the
seven maps have been written down symbolically, it only remains to solve a system
of linear equations to find the two-dimensional space of syzygies; this was done in
MAPLE. One conveniently chosen syzygy is the following:

C(5) C(3,2) = 1
7680

〈C(5), C(5)〉 + 1
92160

〈C(5), C(5,3)〉 − 1
5760

〈C(5), C(4,1)〉

− 1
204800

〈C(5,3), C(5,3)〉 − 1
51200

〈C(5,3), C(4,1)〉.
(26)

This gives a formula for C(3,2) in terms of C(5), C(5,3), C(4,1).

1The full decompositions are very lengthy, and it seems needless to list them here. All plethysm decomposition
throughout this example were calculated using the ‘SF’ (symmetric functions) package for MAPLE written
by John Stembridge.
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There are respectively 3 and 9 copies of �(6,1) in Q and �2(E), and the
corresponding syzygies are found similarly. The syzygy

C(5) C(1,1) = 1
25920

〈C(5), C(5,3)〉 − 1
1728

〈C(5), C(4,1)〉 − 1
864

〈C(5), C(3,2)〉

− 11
69120

〈C(5,3), C(4,1)〉 − 5
13824

〈C(5,3), C(3,2)〉 − 1
4320

〈C(4,1), C(3,2)〉
(27)

shows that C(1,1) can be recovered from the rest of the combinants.

4.2. Symbolic descriptions. For the record, we state the symbolic expressions
which were used to define the maps above. In formula (26), they are respectively

�(5) ⊗ �(5) � (a c u)2 a3
x c3

x,

�(5) ⊗ �(5,3) � (a c d) (a d u)2 a2
x c4

x,

�(5) ⊗ �(4,1) � (a c u) (a d u) a3
x c3

x,

�(5,3) ⊗ �(5,3) � (a b d)2 (a b u) (a d u) ax c5
x,

�(5,3) ⊗ �(4,1) � (a b d) (a b u)2 a2
x c4

x,

where the target of each map is �(8,2). In (27), they are respectively

�(5) ⊗ �(5,3) � (a c d)2 (a d u) a2
x c3

x,

�(5) ⊗ �(4,1) � (a c d) (a c u) a3
x c2

x,

�(5) ⊗ �(3,2) � (a c d)(a d u) a3
x c2

x,

�(5,3) ⊗ �(4,1) � (a b c) (a b d) (a b u) a2
x c3

x,

�(5,3) ⊗ �(3,2) � (a b d)2 (a b u) a2
x c3

x,

�(4,1) ⊗ �(3,2) � (a b d) (a d u) a2
x c3

x,

with target �(6,1).
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