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Abstract
Engineered system architectures leveraging collaboration among multiple actors across
organizational boundaries are envisioned to be more flexible, robust, or efficient
than independent alternatives but also carry significant downside risks from new
interdependencies added between constituents. This paper transitions the concept of risk
dominance from equilibrium selection in game theory to engineering design as a strategic
measure of collective stability for system of systems. A proposed method characterizes
system design as a bi-level problem with two or more asymmetric decision-makers. A
measure of risk dominance assesses strategic dynamics with respect to the stability of
joint or collaborative architectures relative to independent alternatives using a novel
linearization technique to approximate linear incentives among actors. An illustrative
example case for an asymmetric three-player design scenario shows how strategic risk
dominance can identify and mitigate architectures with unstable risk-reward dynamics.

Key words: game theory, value-driven design, systems engineering, system of systems,
collaborative design

1. Introduction
Collaboration across organizational boundaries in engineered systems presents
an important tradeoff during conceptual design. Distributed architectures where
multiple actors cooperate formutual benefit seek superior performance compared
to independent architectures. Potential improvement may derive from increased
flexibility (de Weck et al. 2004), robustness (Brown and Eremenko 2006), or
efficiency (Oates 2008). However, collaborative architectures also introduce new
interdependencies between constituent systems which can lead to degraded
performance or failure if not treated as a system of systems (Maier 1998).

Understanding and reasoning about the tradeoff between risk and reward
in collaborative system architectures remains a critical area of research. It
underlies ongoing challenges in managing inter-agency collaboration in joint
projects (National Research Council 2011) as well as new laws requiring
public agencies such as the National Oceanic and Atmospheric Administration
(NOAA) to consider purchasing data from commercial providers to supplement
government missions (United States of America 2017). Improved methods to
understand fundamental collaborative dynamics early in the conceptual design
and architecture selection phase could help avoid costly coordination failures.

Risk fundamentally deals with the interaction between probability and
consequence of alternative scenarios (Kaplan and Garrick 1981). In engineering
design, decision-makers routinely employ risk analysis methods to help choose
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among alternative design concepts (Lough et al. 2009). Traditional perspectives
on risk for engineered systems consider potential impacts of external factors
such as natural disasters or attacks and internal factors such as component
fatigue, failure, or error. However, collaborative systems exhibit an additional
source of uncertainty attributed to coordination failures among interacting
decision-makers. This strategic source of risk is not addressed by methods that
view engineering design as a centralized decision-making process.

This paper transitions the analytical concept of risk dominance from
equilibrium selection in game theory to engineering design to measure the
relative risk of coordination failures in collaborative systems at a level suitable for
conceptual trade studies. Risk dominance recognizes the fragility of joint decisions
and seeks to balance potential rewards with downside risk of coordination failure.
This paper contributes a method to formulate collective design problems as
a strategic design game and measure risk dominance. This paper provides a
rigorous treatment of risk dominance in engineering design with two or more
asymmetric players and overcomes barriers in transitioning fundamental theory
to application. Results of this work can be used to inform conceptual phase
architecture trades between collaborative and independent alternatives.

The remainder of this paper is organized as follows. Section 2 reviews
applications of economics and game theory in engineering design literature and
introduces the stag hunt game as the intellectual foundation for collaborative
systems. Section 3 proposes a method to formulate collective systems design
as strategic design games to assess strategic risk dominance with two or more
players. Section 4 introduces an application case to show how risk dominance can
identify and mitigate potential sources of coordination failure in an asymmetric
three-player design scenario. Finally, a conclusion summarizes contributions,
assumptions and limitations, and future work.

2. Background
2.1. Utility-based methods in systems design
This section builds on a line of literature dating to early works by Simon
(1959) that develop and apply economic methods for decision-making to a
broad class of problems including engineering design. From this perspective,
engineering design selects the alternative concept with highest value (under
expectation) measured using von Neumann–Morgenstern utility (Hazelrigg
1998). This approach is normative to organize and process individual preferences
to support decision-making rather than descriptive to explain why certain
decisions were made (Thurston 2001). Multi-criteria decision analysis methods
includingmulti-attribute utility theory, analytic hierarchy process, and others help
to formulate decisions for complex problems (Velasquez and Hester 2013).

Applyingmulti-criteria decision analysis to collective systems design problems
characteristically transforms each participating actor’s preferences into objective
functions, defining an optimization problem. Although arguments have been
made both against and in favor of this approach, most engineering design
literature does not address essential uncertainty resulting from interactive effects
between independent decision-makers. For instance, comparing engineering
design to a social choice problem and grounded on Arrow’s (1963) Impossibility
Theorem, Hazelrigg (1997) argues that an optimal solution can only be reached
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if all actors share the same utility function; otherwise, any attempt to maximize
aggregated individual gains is bound to result in ‘irrational’ outcomes – assuming
that a ‘rational’ design maximizes every designer’s expected utility. In contrast,
Scott and Antonsson (1999) state the purpose of engineering problems is to meet
requirements, not individuals’ wishes, and thus engineering design exists on a
continuum between single- and multi-actor problems and any disparity between
system requirements and decision-makers’ preferences should be made explicit.
However, in a collective systems design process with independent decision
authority, actors strategically retain information and, as a result, do not have full
knowledge about each other’s preferences.

Recent design research emphasizes value-centric or value-driven design
methods building on rational decision-making theory to maximize system value
rather than meeting requirements at minimum cost (Collopy and Hollingsworth
2011). A related class of methods for tradespace exploration enumerate a design
space and evaluate one or more design attributes to visualize a set of alternatives
(Ross et al. 2004). These approaches generally treat risk as uncertainty or variation
in value which can be analyzed with Monte Carlo sampling of a stochastic value
function (Walton andHastings 2004; O’Neill et al. 2010; Daniels and Paté-Cornell
2017). When applied to collective systems design, tradespace exploration results
in computationally intense calculations due to combinatorial factors of a large
design space coupled with interactive effects between actors. More importantly,
this type of risk should not be considered as an explicit attribute to be traded
during concept evaluation but only as uncertainty on other attributes (Abbas and
Cadenbach 2018). More focused analysis of strategic dynamics is necessary to
understand risk in collaborative systems.

2.2. Game-theoretic methods in systems design
In an attempt to reconcilemulti-criteria decision analysismethods and limitations
imposed from social choice applied to engineering design, Franssen and
Bucciarelli (2004) demonstrate how a game-theoretic approach to collective
systems design can help designers reach satisfactory outcomes without
disregarding the implications of conflicting actors’ preferences. Game theory
analyzes strategic decision-making among multiple interacting actors or players.
In the context of engineering design, the players are the design actors – cognizant
individuals, computational agents, design organizations, or indirect stakeholders
with undefined strategic interests (usually modeled as players from ‘nature’).
Individual utility functions, typically referred to as payoff functions, describe
the players’ preferences over the possible outcomes resulting from their actions.
Each player also has a set of complete contingent plans or sequences of actions,
i.e. strategies, from which to choose to maximize their expected gains depending
on how much information they have about the other players’ actions.

Game-theoretical approaches to engineering design frequently do not provide
enough details about what aspects of the problem equate to ‘strategies’ and what
other elements constitute the strategic setting of collective action or ‘game’ to be
studied. An existing body of work applies game theory to engineering design by
equating design alternatives to strategy spaces (Vincent 1983; Lewis and Mistree
1997; Briceño 2008; Wernz and Deshmukh 2010). In these works, the strategy
set is composed of continuous functions linked to the functional attributes of
the system and game-theoretical methods inform design decision-making at a
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Table 1. Stag hunt game with ui =
2
3

Player 1 Player 2 Strategy (s2)

Strategy (s1) Hare (φ2) Stag (ψ2)

Hare (φ1)
2

2
3

0

Stag (ψ1)
0

3
4

4

low level of abstraction. Normative methods evaluate and select design decisions
based on idealistic scenarios of cooperative or non-cooperative strategic equilibria
(Papageorgiou et al. 2016).

The majority of contributions to engineering design literature grounded in
game-theoretic methods search for stable design sets under strong assumptions
of rationality – namely Nash equilibria – as solutions to the multi-actor design
problem. To improve outcomes designated by Nash equilibria, some works
develop methods to further explore the strategy space beyond rational reaction
strategy sets (Gurnani and Lewis 2008; Herrmann 2010). Other works explore
subgame perfect equilibria as solution concepts to game-theoretical models of
engineering design (Bhatia et al. 2016; Kang et al. 2016). Finding equilibria is
computationally intense and sensitive to the strategy space definition, thus the
number of design alternatives to be assessed should be kept at a minimum
to allow for the best use of classical game-theoretical methods. Moreover, the
existence of more than one equilibrium still leaves selection of a ‘best’ option in
the air and rekindles the debate about what an optimal solution means from an
rational/objective perspective.

2.3. Stag hunt game and risk dominance
In contrast to existing works applying game theory to engineering design which
conflate design and strategy decisions for general problems, this paper adopts
a simple strategic context to evaluate dynamics for a specific class of problems
related to collective systems design. Analysis of risk dominance, a concept from
equilibrium selection literature, provides insights about the relationships between
interacting design actors and the relative stability of collaborative systems.

The stag hunt is a canonical game theory problem that models fundamental
challenges in collective decision-making (Skryms 2004). It follows the narrative of
two hunters deciding between two alternatives to either hunt stag or hare. A stag
hunt provides a desirable reward but requires joint participation of both hunters
(i.e. a single stag hunter goes home hungry). A hare hunt yields a modest reward
and can either be performed alone or jointly. Depending on the particular game,
an independent hare hunt may be more or less rewarding than a joint hare hunt;
however, both cases must be preferred to a failed stag hunt and less desirable than
a successful stag hunt.

Table 1 shows a normal form payoff matrix for an example symmetric two-
player stag hunt game with payoffs of 2 for a joint hare hunt, 3 for an individual
hare hunt, 4 for a successful stag hunt, and 0 for a failed stag hunt. Rather than

4/28

https://doi.org/10.1017/dsj.2019.23 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2019.23


Figure 1. The expected value of strategies for player i as a function of p j , the
probability that player j chooses ψ j for the example game in Table 1.

absolute wealth or resource quantities (e.g. amount of food), this paper treats
payoff values as von Neumann–Morgenstern utilities that already account for
behavioral factors such as loss aversion and diminishing sensitivity within each
strategic context (Arrow 1971; Tversky and Kahneman 1992).

The strategy space Si = {φi , ψi } denotes the hare and stag strategies,
respectively, for player i . Inspection of selected strategy sets for two players
(s1, s2) shows both φ = (φ1, φ2) and ψ = (ψ1, ψ2) are Nash equilibria because
neither player has unilateral incentive to deviate away from these points. From an
equilibrium perspective both stag and hare strategies are stable; however, there are
clear differences in risk and reward.

Harsanyi and Selten (1988) develop theory for equilibrium selection in bipolar
games based on the concept of risk dominance. Similar to how some equilibria
exhibit payoff dominance (i.e. the stag equilibrium ψ yields higher payoffs), risk
dominance is a desirable feature that captures resistance to losses.

In specific games such as the stag hunt with two strategies and two Nash
equilibria (bipolar games), further analysis compares alternative strategies from
a rational (expected value maximization) perspective. Figure 1 visualizes the
expected value for player i as a function of the probability that player j chooses
strategy ψ j (i.e. p j = Pr{s j = ψ j }). For low values of p j the hare strategy
φi provides the highest expected value. Similarly, for high values of p j the stag
strategyψi provides the highest expected value. However, the two lines intersect at
a point 0 < ui < 1whichmeasures theminimumprobability of player j choosing
strategy ψ j for it to be rational for player i to choose strategy ψi .

A closed-form expression in Eq. (1) computes ui for any two-player bipolar
game for a given payoff function V .

ui (φ, ψ) =
Vi (φi , φ j )− Vi (ψi , φ j )(

Vi (φi , φ j )− Vi (ψi , φ j )
)
−
(
Vi (ψi , ψ j )− Vi (φi , ψ j )

) . (1)

For the example in Table 1, u1 = u2 = 2/3. In other words, the expected
value-maximizing decision for either player is to choose a stag hunt if and only
if they estimate a better than two-in-three chance that their partner chooses a stag
hunt.
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Table 2. Stag hunt game with ui = 0.2

Player 1 Player 2 Strategy (s2)

Strat. (s1) Hare (φ2) Stag (ψ2)

Hare (φ1)
2

2
3

0

Stag (ψ1)
0

3
11

11

Table 3. Stag hunt game with ui = 0.8

Player 1 Player 2 Strategy (s2)

Strat. (s1) Hare (φ2) Stag (ψ2)

Hare (φ1)
2

2
3

−2

Stag (ψ1)
−2

3
4

4

Variations on the stag hunt game produce different values of ui . For example,
Table 2 shows an alternative game for a scenario with a ‘trophy’ stag which
increases the upside payoff from 4 to 11, lowering the threshold for economic
collaboration to ui = 0.2. Alternatively, Table 3 shows a scenario with an ‘injury’
incurred from a solitary stag hunt which decreases the downside payoff from
0 to −2, raising the threshold for economic collaboration to ui = 0.8. These
scenarios show that the structure of the payoff function influences perception of
collaboration and is central to the concept of risk dominance.

In the literature, ui is called the normalized deviation loss because its
mathematical expression resembles a loss associated with deviating away from
the equilibrium φ in the numerator normalized by the total losses associated
with deviating away both equilibria in the denominator. Counter-intuitively, large
deviation losses insulate a decision. The example in Table 2 shows the deviation
loss from 11 to 3 promotes the stag strategy while the example in Table 3 shows
the large deviation loss from 2 to−2 promotes the hare strategy.

Selten (1995) proposes a quantitative metric to measure risk dominance for
bipolar games with linear incentives called the weighted average log measure
(WALM) of risk dominance (see Appendix A for details). Linear incentives
assume each player’s payoff can be expressed as a linear combination of whether
other players participate in the collective strategy and is further addressed in
Appendix B. Equation (2) defines the WALM of risk dominance for an n-player
game,where ui are normalized deviation losses andwi are influenceweights based
on an influence matrix A which measures player interdependence (Selten 1995).

R(φ, ψ) ≡
n∑

i=1

wi (A) ln
ui

1− ui
. (2)

This expression maps bipolar games to a real-number scale that measures the
risk dominance of the collective strategy ψ relative to the independent strategy
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Figure 2. WALM of risk dominance is the logit function of the normalized deviation
loss ui for symmetric games with n = 2 players.

φ. For the objective case with no knowledge of other players’ actions (equivalent
to p j = 0.5), R > 0 indicates φ is risk dominant while R < 0 indicates ψ is
risk dominant. In all other cases with partial information leading to a probability
distribution f (p j ), R provides a relative measure of risk dominance.

WALMrisk dominance can be simplified for gameswith n = 2 players because
weights are defined as w1 = w2 = 1/2. Furthermore, payoff symmetry with
u1 = u2 = ui further reduces the expression to Eq. (3) which is simply the logit
function of ui visualized in Figure 2.

R(φ, ψ) = ln
ui

1− ui
= ln

(
Vi (φi , φ j )− Vi (ψi , φ j )

Vi (ψi , ψ j )− Vi (φi , ψ j )

)
. (3)

The stag hunt games in Tables 1–3 have R1 = ln 2 ≈ 0.69, R2 = ln 0.25 ≈ −1.39,
and R3 = ln 4 ≈ 1.39. In Table 2, R2 < 0 indicates the collective strategyψ is risk
dominant. In Table 1 and Table 3, R3 > R1 > 0 indicates the independent strategy
φ is risk dominant and more strongly so in Table 3 compared to Table 1. Risk
dominance is normative for strategy selection in non-cooperative cases; however,
in other cases it is only a relative measure of strategic dynamics across games.

While direct analysis of individual incentives in Figure 1 provides an intuitive
explanation of strategic dynamics in two-player bipolar games, the more general
formulation for WALM of risk dominance detailed in Appendix A handles
asymmetric games with n > 2 players where players may express different or
conflicting normalized deviation losses and pairwise interactions.

3. Risk dominance for collaborative systems
This section develops amethod to convert a collective system design problem into
a strategic design game to formulate and measure risk dominance.

3.1. Strategic design games
Game theory is a strategic analysismethod thatworks at a high level of abstraction.
In the context of engineering design, strategic decision-making best corresponds
to architecture selection in conceptual design rather than more detailed design
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Table 4. Stag hunt design utilities

Design Strategic Context

di φi , φ j φi , ψ j ψi , φ j ψi , ψ j

Atlatl 0 0 0 4
Bow 1 1 1.5 3.5
Club 1 1 0 2
Dog 2 3 0 0

Table 5. Stag hunt game with ui = 0.5

Player 1 Player 2 (s2, d2)

(s1, d1) φ2,Dog ψ2,Bow

φ1,Dog
2

2
3

1.5

ψ1,Bow
1.5

3
3.5

3.5

decisions in preliminary design. This section defines the concept of a strategic
design game as a multi-actor value model for engineering decision-making to
permit strategic analysis (Grogan et al. 2018).

A strategic design game distinguishes between two levels of decisions: strategy
decisions si ∈ Si govern collective behavior among players and design decisions
di ∈ Di specify system configurations. A corresponding multi-actor value
function [V s1,...,sn

i (d1, . . . , dn)] for n players in Eq. (4) maps design and strategy
decisions to values (utilities) for each player.

V :
n∏

i=1

Di × Si → Rn . (4)

While the design spaces Di may be large or unbounded and unique to each
player, the strategy spaceSi = {φi , ψi } is limited to twooptions: choosing between
independent (φi ) or collective (ψi ) action. Within each strategy space, design
decisions are evaluated based on the context of the governing strategy.

To illustrate this concept, reconsider the stag hunt game from Table 1 with
design variables to choose the hunting weapon from the symmetric design space
D = {Atlatl,Bow,Club,Dog}. A multi-actor value model in Table 4 evaluates
each design alternative in possible strategic contexts. Within fixed equilibrium
contexts the best hare-hunting design is Dog with utility 2 and the best stag-
hunting design is Atlatl with utility 4. However, as previously investigated in
Table 1, this combination requires a probability greater than ui = 2/3 to pursue a
stag hunt. In caseswith unreliable partners, the stag-hunting designBow inTable 5
may be more desirable because it only requires a probability greater than ui = 0.5
to pursue a stag hunt, although it only provides utility 3.5 if successful.
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Table 6. Strategic design game for three players

s2 = φ s2 = ψ s2 = φ s2 = ψ

s1 = φ

Vφ

1

Vφ

2

Vφ

3

Vφ

1

V ψ

2 (d2)

Vφ

3

Vφ

1

Vφ

2

V ψ

3 (d3)

Vφ

1

V ψ

2 (d2, d3)

V ψ

3 (d2, d3)

s1 = ψ

V ψ

1 (d1)

Vφ

2

Vφ

3

V ψ

1 (d1, d2)

V ψ

2 (d1, d2)

Vφ

3

V ψ

1 (d1, d3)

Vφ

2

V ψ

3 (d1, d3)

V ψ

1 (d1, d2, d3)

V ψ

2 (d1, d2, d3)

V ψ

3 (d1, d2, d3)

s3 = φ s3 = ψ

Applied to engineering design, the independent strategy φi corresponds
to systems designed and operated with few external dependencies. The
collective strategy ψi represents potential performance gains from collaborative
systems having numerous interdependencies which operate at risk of degraded
performance due to coordination failures. The resulting strategic design game
resembles a binary game with zero, one, or two pure strategy Nash equilibria.
Games with zero equilibria have no stable strategy sets, limiting the use of
normative analysis. Games with one equilibrium exhibit a dominant strategy
and do not benefit from further analysis. Therefore, only cases with two equilibria
(i.e. bipolar games) benefit from and are valid to measure risk dominance.

More detailed analysis of a strategic design game benefits from two simplifying
assumptions in Eq. (5) and shown in Table 6 for a normal form strategic design
game with n = 3 players.

V s1,...,sn
i (d1, . . . , dn) =

V φ
i (di ) if si = φi

Vψ
i (dk : sk = ψk) otherwise.

(5)

These assumptions limit interaction effects between participants inside and
outside a collective strategy and are not strictly required for analysis but help to
communicate the method and results using simplified notation.

The first simplification approximates the multi-actor value function by a
single-actor value function V φ

i when player i chooses an independent strategy
φi . This assumes no strong interaction effects between independent players and
others and allows local design optimization in Eq. (6).

Vφi = max
d∈Di

V φ
i (d). (6)

The second simplification aggregates all candidate designs for players participating
in a collective strategy ψ including player i . For the special case where no other
players select the collective strategy (i.e. s j = φ j ∀ j 6= i), a single-actor value
function Vψ

i (di ) replaces the multi-actor one. This formulation emphasizes
interaction effects among participants in a collective strategy but assumes no
strong interaction effects with players outside.

3.2. Strategic risk dominance
This section uses the strategic design game concept to explain and measure risk
dominance in collaborative systems design. Risk dominance is only meaningful
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in bipolar games which requires a specific ordering of value quantities such that
Vψ

i (d1, . . . , dn) > Vφi > Vψ
i (di ) ∀i . This is a reasonable requirement because it

represents the cases of most interest where the collaborative system has a higher
upside potential but also downside risk to an independent alternative.

As introduced in Section 2.3 and detailed in Appendix A, risk dominance
first depends on normalized deviation losses. Equation (7) shows the normalized
deviation loss for player i by substituting the strategic design game notation into
Eq. (1).

ui =
Vφi − Vψ

i (di )(
Vφi − Vψ

i (di )
)
+

(
Vψ

i (d1, . . . , dn)− Vφi
)

=
Vφi − Vψ

i (di )

Vψ
i (d1, . . . , dn)− Vψ

i (di )
. (7)

The simplest form of strategic risk dominance assumes symmetric design
spaces and utility functions for all players. Symmetry yields equal weighting
factors wi , producing the risk dominance measure in Eq. (8) as a function of the
collaborative design d (note: all value subscripts dropped due to symmetry).

Rψ (d) = ln
(

Vφ − Vψ (d)
Vψ (d, . . . , d)− Vφ

)
. (8)

Symmetric risk dominance requires three function evaluations to quantify the
upside value of a successful collective strategy Vψ (d, . . . , d), downside value of a
failed collective strategy Vψ (d), and the value of the independent alternative Vφ .

More general forms of strategic risk dominance assume asymmetric design
spaces or utility functions. As detailed in Appendix A, influence elements ai j
measure the dependence between players i and j . Equation (9) shows the
influence elements ai j between players i and j , assuming linear incentives, by
substituting the notation for strategic design games into Eq. (27).

ai j =

(
Vφi − Vψ

i (di )
)
−

(
Vφi − Vψ

i (di , d j )
)

(
Vφi − Vψ

i (di )
)
+

(
Vψ

i (d1, . . . , dn)− Vφi
)

=
Vψ

i (di , d j )− Vψ
i (di )

Vψ
i (d1, . . . , dn)− Vψ

i (di )
. (9)

Linear incentives enforce a constraint that all row sums total one, i.e.
∑

j 6=i ai j =

1∀ i . In cases with nonlinear incentives for n = 3 players, as in Table 6, Eq. (10)
expresses linearized influence elements āi j between players i and j by substituting
strategic design game notation into Eq. (2) (see Appendix B for details).

āi j =
1
2

(
1+ ai j − aik

)
=

1
2

(
1+

Vψ
i (di , d j )− Vψ

i (di , dk)

Vψ
i (d1, d2, d3)− Vψ

i (di )

)
. (10)

After computing elements of the influencematrix A using linear incentives ai j
or the linear approximation āi j , subsequent analysis finds weighting factorswi to
measure player importance. As detailed in Appendix A, weighting factors are the
eigenvector corresponding to the unit eigenvalue of the influence matrix A.
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The risk dominance measure in Eq. (11) computes the WALM in Eq. (2) as a
function of collaborative designs (d1, . . . , dn).

Rψ (d1, . . . , dn) =

n∑
i=1

wi (A) ln

(
Vφi − Vψ

i (di )

Vψ
i (d1, . . . , dn)− Vφi

)
. (11)

In general, asymmetric risk dominance requires 1 +
∑n

k=1
(n

k

)
= 2n multi-actor

value function evaluations to consider all possible combinations of players joining
the collective strategy (required to compute āi j terms) plus the independent
alternative.While not burdensome for small games, this combinatorial factor may
limit the use of similar methods for large games with many decision-makers.

3.3. Assumptions and limitations
This work includes several key assumptions and limitations which must be
discussed. First, measuring risk dominance assumes a strategic decision-making
process structured as a bipolar game. The strategic design game is an abstraction
of the design process where, in reality, lower-level design and higher-level strategy
decisions are coupled and iterative. Results from this work thus provide a baseline
result whichmust be considered in the context of a specific design problem.While
a limiting constraint, bipolar games are interesting cases to study because they
present a fundamental tradeoff between risk and reward.

Second, this work represents an analytical and rational/objective method to
measure strategic risk dominance which is both a significant limitation and a
significant strength. The strategic-level analysis only aims to maximize expected
value – although utility functions to compute payoff values can incorporate
risk attitudes. No subjective information is required to determine or assess the
likelihood of other players’ actions nor are there any elements of cooperative game
theory to enforce contracts or share or divide benefits (although R is closely related
to theNash product and āi j terms resemble Shapley value). If additional subjective
information were available, a more thorough analysis leveraging Bayesian games
could be performed, as pioneered by Harsanyi (1967). In light of this limitation,
relative values of theWALM risk dominance measure (e.g. during an architecture
trade study) are more important than absolute values.

Third, the existing equilibrium selection theory imposes a few restrictions
on the types of problems modeled. As discussed in Appendix A, it assumes
linear incentives which are unlikely to hold in most engineering applications
due to economies of scale; however, the linear approximation methods and error
analysis introduced mitigate some of this concern. Developing utility functions
to quantify payoff values while accommodating behavioral factors such as risk
attitudes remains a practical challenge which is out of the scope of this paper.

Two other notational limitations can be relaxed for further analysis. The risk
metric in Eq. (11) only assesses one set of collaborative architectures (d1, . . . , dn)
under one collective strategy (ψ) relative to the independent baseline. However,
as a real number, R can compare multiple design candidates relative to the
same independent baseline (e.g. Rψ (d1, . . . , dn) vs. Rψ (d ′1, . . . , d ′n)) to guide
the design search process. Similarly, R can compare multiple collective strategy
candidates for a fixed set of federated alternatives (e.g. Rψ (d1, . . . , dn) vs.
Rψ ′(d1, . . . , dn)) to guide the strategy formulation process.
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Figure 3. Initial ground station and satellite locations in a two-dimensional space
numbered by player for (a) baseline, (b) scenario A, and (c) scenario B. Dotted lines
indicate SGL or ISL for the initial conditions.

4. Illustrative application case
4.1. Multi-actor value model and design scenarios
This section develops an application case based on a stylized model of federated
Earth-observing space systems paired with an existing simulation model. Orbital
Federates Simulation – Python (OFSPY) (Grogan 2019) acts as a multi-actor
value function by mapping design and strategy sets (inputs) to net present value
earned by each player over a simulated system lifetime (outputs). The model
includes stochastic features to capture operational uncertainty such that results
must be sampled using Monte Carlo methods. While many model details are
clearly fictional, the underlying model was developed to have structural and
process isomorphic features to help understand strategic player behavior for space
systems (Grogan and de Weck 2015).

This application case only evaluates how to model collaborative design
scenarios as a strategic design game and compute measures of risk dominance.
The implementation details of the multi-actor value model are outside the scope
of this paper; however, Appendix C provides more details for replication.

The design scenario considers n = 3 players who operate space systems
to collect and downlink data to satisfy demands and earn revenue. Figure 3
illustrates designs selected from a large combinatorial design space for a baseline
(independent) strategic context and two federated alternatives. The independent
case includes small standalone observing spacecraft for players 2 and 3 who
specialize in synthetic aperture radar (SAR) and visual light (VIS) sensors,
respectively. Player 1 does not participate in the baseline system. Federated designs
consider an opportunistic data exchange policy with a fixed price for inter-satellite
link (ISL) and space-to-ground (SGL) services among players. Federated scenario
A includes participation by player 1 with a data relay spacecraft and SGL receiver
and ISL adoption among all three players. Federated scenario B eliminates the ISL
technology option and establishes an independent observing spacecraft for player
1 with the SGL receiver.

Table 7 shows the expected net present value for each strategic context using a
discount rate of 2% per turn evaluated using 1000 seeded runs of the multi-actor
value function. For clarity in presentation, players are assumed to be risk neutral
such that expected net present value is equivalent to utility; however, alternative
assumptions of risk attitudes would modify the resulting payoff values following a
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Table 7. Orbital federates design scenarios

Baseline: Independent
(φ)

Scenario A: Federated
(ψ)

Scenario B: Federated
(ψ)

P. 1 d1: None. d1A: Satellite with ISL and
open SGL. Ground
station with open SGL.

d1B : Satellite with SAR
sensor and open SGL.
Ground station with
open SGL.

Vφ

1 = 0 V ψ

1 (d1A) = −1100
V ψ

1 (d1A, d2A) = −572
V ψ

1 (d1A, d3A) = −652
V ψ

1 (d1A, d2A, d3A) = 100

V ψ

1 (d1B) = −104
V ψ

1 (d1B, d2B) = 83
V ψ

1 (d1B, d3B) = 33
V ψ

1 (d1B, d2B, d3B) = 271
P. 2 d2: Satellite with SAR

sensor and proprietary
SGL. Ground station with
proprietary SGL.

d2A: Satellite with SAR
sensor, ISL, and
proprietary and open
SGLs. Ground station
with proprietary SGL.

d2B : Satellite with SAR
sensor and proprietary
and open SGLs. Ground
station with proprietary
SGL.

Vφ

2 = −39 V ψ

2 (d2A) = −389
V ψ

2 (d1A, d2A) = 440
V ψ

2 (d2A, d3A) = −255
V ψ

2 (d1A, d2A, d3A) = 536

V ψ

2 (d2B) = −288
V ψ

2 (d1B, d2B) = 141
V ψ

2 (d2B, d3B) = −288
V ψ

2 (d1B, d2B, d3B) = 150
P. 3 d3: Satellite with VIS

sensor and proprietary
SGL. Ground station with
proprietary SGL.

d3A: Satellite with VIS
sensor, ISL, and
proprietary and open
SGLs. Ground station
with proprietary SGL.

d3B : Satellite with VIS
sensor and proprietary
and open SGLs. Ground
station with proprietary
SGL.

Vφ

3 = 30 V ψ

3 (d3A) = −320
V ψ

3 (d1A, d3A) = 386
V ψ

3 (d2A, d3A) = −158
V ψ

3 (d1A, d2A, d3A) = 639

V ψ

3 (d3B) = −220
V ψ

3 (d1B, d3B) = 391
V ψ

3 (d2B, d3B) = −161
V ψ

3 (d1B, d2B, d3B) = 378

Table 8. Strategic design game for scenario A

s2 = φ s2 = ψ s2 = φ s2 = ψ

s1 = φ

0
−39

30

0
−389

30

0
−39
−320

0
−255

−158

s1 = ψ

−1100
−39

30

−572
440

30

−652
−39

386

100
536

639
s3 = φ s3 = ψ

nonlinear utility curve. In practice, sensitivity analyses may help understand how
unknown behavioral quantities such as risk attitudes influence results.

4.2. Risk dominance analysis of scenario A
Table 8 populates a strategic design game for federated scenario A which
constitutes a bipolar game with asymmetric players. Using Eq. (7), the normalized
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deviation losses are

u =

u1

u2

u3

 =
0.917

0.378
0.365

 . (12)

Using Eq. (10), the linearized influence matrix is

A =

 0 ā12 ā13

ā21 0 ā23

ā31 ā32 0

 =
 0 0.533 0.467

0.876 0 0.124
0.784 0.216 0

 . (13)

Incentive function linearization error analysis using Eq. (9) shows small errors for
all three players: ε = [0.047, 0.010, 0.024].

Eigenvector analysis of the transposed influence matrix Aᵀ yields the
eigenvector (rescaled to unit norm)

w(A) =

w1(A)

w2(A)

w3(A)

 =
0.455

0.296
0.249

 (14)

corresponding to the unit eigenvalue. Computing WALM as

Rψ (d1A, d2A, d3A) =

3∑
i=1

wi (A) ln
ui

1− ui
= 0.805 (15)

shows the independent strategy φ to be risk dominant.
Normalized deviation losses show the independent strategy is preferred for

player 1 in all but high probabilities of collaboration (u1 = 0.917) because of large
downside losses incurred if no other players choose the collective strategy. This
risk fundamentally arises because player 1 has no independent source of revenue
to recover the high cost of the federated design. However, the collective strategy
has a lower threshold of collaboration for players 2 and 3 (u2 = 0.378, u3 =

0.365) because large upside gains realized from shared data services overcome
the additional cost of larger spacecraft and extra modules.

Weighting factors identify player 1 as themost influential (w1 = 0.455) which
can be explained by their central role in both providing shared ISL relay and
SGL downlink services via the spacecraft and ground station, respectively. Smaller
but similar weights for players 2 and 3 (w2 = 0.296, w3 = 0.249) reflect their
similarity in operational mission.

Given player 1’s aversion to the collective strategy and strong influence, the
independent strategy is risk dominant in this design scenario. In particular,
the collective strategy is prone to failure due to disengagement by player 1. A
visualization of value surfaces in Figure 4 emphasizes the disparity betweenplayers
1 compared to 2 and 3 with respect to overall stability of the collective strategy.

4.3. Risk dominance analysis of scenario B
Table 9 populates a strategic design game for the federated scenario B which
constitutes a bipolar game with asymmetric players. Using Eq. (7), the normalized
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Figure 4. Value surfaces for independent strategy φi versus collective strategy ψi

under federated scenario A. The independent strategy φ is more dominant for player
1 while the collective strategy ψ is more dominant for players 2 and 3.

Table 9. Strategic design game for scenario B

s2 = φ s2 = ψ s2 = φ s2 = ψ

s1 = φ

0
−39

30

0
−288

30

0
−39
−220

0
−288

−161

s1 = ψ

−104
−39

30

83
141

30

33
−39

391

271
150

378
s3 = φ s3 = ψ

deviation losses are

u =

u1

u2

u3

 =
0.277

0.568
0.418

 . (16)

Using in Eq. (10), the linearized influence matrix is

A =

 0 ā12 ā13

ā21 0 ā23

ā31 ā32 0

 =
 0 0.566 0.434

0.990 0 0.010
0.962 0.038 0

 . (17)
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Incentive function linearization error analysis using Eq. (9) shows small errors for
all three players: ε = [0.034, 0.005, 0.030].

Eigenvector analysis of the transposed influence matrix Aᵀ yields the
eigenvector (rescaled to unit norm)

w(A) =

w1(A)

w2(A)

w3(A)

 =
0.494

0.288
0.217

 (18)

corresponding to the unit eigenvalue. Computing WALM as

Rψ (d1B, d2B, d3B) =

3∑
i=1

wi (A) ln
ui

1− ui
= −0.466 (19)

shows the collective strategy ψ is risk dominant.
Normalized deviation losses show the collective strategy is preferred for player

1 for a wide range of probabilities of collaboration (u1 = 0.277). The threshold
for collaboration is higher for players 2 and 3 (u2 = 0.568, u3 = 0.418) compared
to scenario A. The goal of reducing upfront costs and providing an independent
source of revenue successfully changed the strategic risk posture of player 1.
However, the loss of ISL relay services and associated revenue disincentivize the
collective strategy for players 2 and 3.

Weighting factors still identify player 1 as the most influential (w1 = 0.494)
and more influential compared to scenario A. Player 1 retains a key role in
providing downlink services and, without ISL services among players 2 and 3,
takes an even stronger role because other players lack the relay components to
interact with each other directly. Players 2 and 3 retain similar weights (w2 =

0.288, w3 = 0.217) though both are less influential than in scenario A.
Combining these factors, the collective strategy is risk dominant in this design

scenario. This result indicates scenario B has preferable strategic dynamics to
scenario A at the cost of slightly lower value. Notably, in the event that player
2 disengages, players 1 and 3 still enjoy moderate returns from the collective
strategy. A visualization of value surfaces in Figure 5 shows a clear difference for
player 1 compared to scenario A in Figure 4.

4.4. Comparative analysis of results
This case illustrates how high-value (but also high-risk) designs emerge from
optimization-oriented activities and how analysis of risk dominance has the
potential to mitigate strategic instabilities by selecting more conservative
alternatives. If successful, scenario A provides superior value for all three players
by taking advantage of new technology and operational concepts. However,
focusing on maximizing upside potential can yield unstable design solutions
more susceptible to coordination failures. Player 1 experiences a significantly
higher threshold for collaboration than others under scenario A and is most likely
to disengage from a collective strategy.

Scenario B reduces the level of technological ambition and establishes
an independent value source for all players. While its potential payoffs are
smaller than A, scenario B exhibits superior strategic stability and is robust
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Figure 5. Value surfaces for independent strategy φi versus collective strategy ψi

under federated scenario B. The independent strategy φ is dominant for player 2
while the collective strategy ψ is dominant for players 1 and 3.

to disengagement by player 2, the most likely to disengage from a collective
strategy. These results echo Maier’s principles for system-of-systems architecting
emphasizing stable intermediate forms and ensuring cooperating among all actors
(Maier 1998). Risk dominance helps assess designs for a balance between value
maximization if successful and risk minimization for coordination failures.

Although not considered in this analysis for clarity in presentation,
incorporating risk attitudes would influence the absolute (but not relative)
interpretation of risk dominance across scenarios A and B. For example, an
exponential utility function of the form U (c) = (1 − e−αc)/α for consumption
level c, equivalent to expected net present value in this example, assumes constant
risk aversion for α > 0 (Arrow 1971). Applying this transformation to the payoff
values in Table 7 penalizes the high-value (but uncertain) collaborative outcomes
and increases risk dominance measures across both scenarios. More detailed
analysis would benefit from specific knowledge about risk attitudes on behalf of
individual players.

Alternative probabilistic analysis methods may evaluate expected value and
variance under uncertain strategy selections. For example, defining pi as the
probability player i deviates from φ to ψ , the value function Vi is

Vi (pi , p j , pk)= Vφi (1− pi )+ Vψ
i (di )pi (1− p j )(1− pk)

+ Vψ
i (di , dk)pi (1− p j )pk + Vψ

i (di , d j )pi p j (1− pk)

+ Vψ
i (di , d j , dk)pi p j pk . (20)
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Table 10. Comparative analysis of expected value and variance

Scenario A Scenario B

E [Vi ] Var(Vi ) E [Vi ] Var(Vi )

Player 1 −278 169,252 35 10,278
Player 2 22 87,432 −55 23,755
Player 3 83 79,084 64 42,679

Assuming pi are independent and identically distributedwith pi ∼ uniform(0, 1),
Table 10 reports expected value E [Vi ] and variance Var(Vi ) for scenarios A and
B. The analysis concurs that player 1 in scenario A and player 2 in scenario B
observe negative expected value and scenario B overall decreases variance for all
players. However, this analysis: 1) does not provide any tradeoff between expected
value and variance, 2) only provides a relative comparison between the two cases
without a scalar quantitative metric of stability, and 3) does not provide further
insights for the interdependency or influence between or among players.

5. Discussion and conclusion
Understanding of both the upside potential and downside risk associated with
coordination failures are critical to assess sources of strategic risk in collaborative
systems. As demonstrated in the application case, the concepts of strategic design
games and measures of risk dominance can influence concept selection in early
design activities by identifying unfavorable strategic dynamics and shifting the
design focus to include economic stability in addition to economic efficiency.

The core contributions of this paper establish: 1) a method to formulate and
measure strategic risk dominance for collaborative engineered systems with two
or more asymmetric players and 2) a linear approximation to incentives required
for problems with more than two players. This work extends prior work onmulti-
actor value functions (Grogan et al. 2018) and transfers fundamental economic
theory to the domain of systems engineering to study issues of strategic risk
dominance in multi-actor systems.

Building on equilibrium selection literature and WALM as a quantitative
metric to assess risk dominance provide a solid foundation for strategic design
games. The relative simplicity of the proposedmethod permits analysis of strategic
dynamics during conceptual design, allowing systems engineers to identify, avoid,
or rework high-value joint architectures that carry unfavorable strategic dynamics.
This perspective may help avoid costly development programs with structural
problems leading to schedule and cost growth and, ultimately, cancelation.
However, there remain several key assumptions regarding linearized incentive
structures and information availability discussed in Section 3.3 which limit more
detailed analysis of strategic dynamics in engineering design.

Future work follows two directions. First, additional theoretical work
to incorporate concepts from Bayesian games would help bring subjective
information into context-specific design problems. Second, additional practical
or applied work is required to further validate the proposed method in a realistic
system context by developing a multi-actor value function, enumerating and
evaluating candidate architectures to identify those with desirable strategic
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dynamics, and contextualize results by selectively forming and dissolving
coalitions.
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Appendix A. Detailed WALM formulation
This section summarizes key results from Selten (1995) to formulate and explain
theweighted average logmeasure (WALM) of risk dominance. It does not produce
any new results but introduces some more convenient notation and insights.
Please refer to the original article for axioms and proofs.

Binary games have a strategy spacewith two alternativesSi = {φi , ψi }. Bipolar
games are a subclass of binary games with two Nash equilibria defined by shared
strategies among all players φ = (φ1, . . . , φn) and ψ = (ψ1, . . . , ψn). Note
that, for example, φ denotes the strategy set and φi denotes the strategy selected
by player i . Notation with negative subscripts on strategy sets denotes non-
participation, for example, φ−1 = (ψ1, φ2, . . . , φn). Without loss of generality,
this section labels strategy sets such that ψ is payoff dominant as the collective
strategy.

For greater generality,WALMof risk dominance is defined in terms of a biform
that describes the essential dynamics of a game rather than the direct payoff or
utility function. The biform is given by a vector of normalized deviation losses
u = u(φ, ψ) = [ui (φ, ψ)] and an influence matrix A = A(φ, ψ) =

[
ai j (φ, ψ)

]
capturing interdependencies between players.1 Together, these factors attribute
potential losses to global and local deviations from a baseline strategy.

The most intuitive explanation of risk dominance starts by formulating an
incentive function Di for player i to choose φi over ψi . Player i prefers φi for
Di > 0 and prefers ψi for Di < 0. An expected value expression expanded in
Eq. (21) describes the incentive function from a global perspective as a function
of p, the probability that all other players choose ψ .

Di (p)∝ E [Vi |φi ]− E [Vi |ψi ]
=
[
Vi (φ)(1− p)+ Vi (ψ−i )p

]
−
[
Vi (φ−i )(1− p)+ Vi (ψ)p

]
= Vi (φ)− Vi (φ−i )−

[
Vi (φ)− Vi (φ−i )+ Vi (ψ)− Vi (ψ−i )

]
p. (A 1)

Equation (22) defines deviation loss L i as a function of a strategy set ξ ∈
{φ,ψ} up to a constant of proportionality.

L i (ξ) ∝ Vi (ξ)− Vi (ξ−i ). (A 2)
1 Functional arguments (φ,ψ) denoting equilibrium strategy labels will occasionally be omitted in
this section for conciseness in presentation.
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Figure 6. The normalized deviation loss in bipolar games marks the intersection
between strategy-specific value functions shown here for player i as a function of
p, the probability that all others deviate from φ to ψ .

The deviation loss captures sensitivity to deviating away from a stable strategy set
through one’s own actions; however, for the purpose of this formulation consider
it an algebraic expression only. The normalized deviation loss ui in Eq. (23)
transforms L i to a unit scale.

ui (φ, ψ) =
L i (φ)

L i (φ)+ L i (ψ)
. (A 3)

Returning to the global incentive function, Eq. (24) normalizes both sides and
substitutes expressions for L i and ui to achieve a simplified incentive function.

Di (p) =
L i (φ)− [L i (φ)+ L i (ψ)] p

L i (φ)+ L i (ψ)
= ui − p. (A 4)

In other words, player i prefers φi for Di > 0 ⇐⇒ p < ui and prefers ψi for
Di < 0 ⇐⇒ p > ui . The normalized deviation loss ui (also referred to as the
diagonal probability πi in literature) marks the intersection between the lines in
Figure 6 where Di (ui ) = 0 (i.e. player i is indifferent about which strategy to
select).

A more detailed incentive function can be written from a local perspective
specific to each players’ strategy to capture interaction effects and interdepen-
dencies. An expected value expression expanded in Eq. (25) for a game with n = 3
players describes the incentive function as a function of p j and pk , the probability
that players i and j choose ψi and ψk , respectively.

Di (p j , pk) ∝ E [Vi |φi ]− E [Vi |ψi ]

=


Vi (φ)(1− p j )(1− pk)

+Vi (φ− j )p j (1− pk)

+Vi (φ−k)(1− p j )pk

+Vi (ψ−i )p j pk

−


Vi (φ−i )(1− p j )(1− pk)

+Vi (φ−i j )p j (1− pk)

+Vi (φ−ik)(1− p j )pk

+Vi (ψ)p j pk


=
[
Vi (φ)− Vi (φ−i )

]
−

[
Vi (φ)− Vi (φ−i )

+Vi (φ−i j )− Vi (φ− j )

]
p j
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−

[
Vi (φ)− Vi (φ−i )

+Vi (φ−ik)− Vi (φ−k)

]
pk −


Vi (ψ)− Vi (ψ−i )

−Vi (φ)+ Vi (φ−i )

+Vi (φ− j )− Vi (φ−i j )

+Vi (φ−k)− Vi (φ−ik)

 p j pk . (A 5)

Equation (26) defines pairwise deviation loss L i j as a function of a strategy set
ξ ∈ {φ,ψ} up to a constant of proportionality.

L i j (ξ) ∝ Vi (ξ− j )− Vi (ξ−i j ). (A 6)

Similar to deviation loss, pairwise deviation loss captures sensitivity to deviating
away from a stable strategy set through pairwise actions but for the purpose of
this formulation consider it an algebraic expression only. Influence elements ai j
in Eq. (27) normalize pairwise deviation losses L i j to a common scale with ui .

ai j (φ, ψ) =
L i (φ)− L i j (φ)

L i (φ)+ L i (ψ)
. (A 7)

Returning to the local incentive function, normalizing both sides yields the
simplified form in Eq. (28).

Di (p j , pk)=
1

L i (φ)+ L i (ψ)

×

[
L i (φ)−

(
L i (φ)− L i j (φ)

)
p j − (L i (φ)− L ik(φ)) pk

−
(

L i (ψ)− L i (φ)+ L i j (φ)+ L ik(φ)
)

p j pk

]
= ui − ai j p j − aik pk −

(
1− ai j − aik

)
p j pk . (A 8)

Under the assumption of linear incentives, 1−ai j−aik = 0 such that D = u−Ap
which is the general result applicable to games with any number of players.

Finally, influence weights measure the overall importance of one player on
others’ stability. Weights w = [wi (A)] are defined implicitly by properties in
Eq. (29) based on the influence matrix A =

[
ai j
]
.

w(A) = Aᵀw(A),
n∑

i=1

wi (A) = 1. (A 9)

Weights are interpreted as the eigenvector (rescaled to unit norm) of Aᵀ

corresponding to the unit eigenvalue, guaranteed to exist by the assumption of
linear incentives which forces the row sum of A to unity for all rows. Note that
weights are equivalent to the limiting stochastic distribution for theMarkov chain
with state transition probabilities ai j .

Appendix B. Approximation to linear incentives
Selten’s work focuses on games with linear incentives which allow pairwise
interactions to be quantified without third party effects (e.g. the effect of player
j on player i is not a function of player k). This simplifying assumption, similar
to a first order approximation, greatly reduces complexity for a narrow class of
problems but cannot directly represent increasing or decreasing returns to scale
(i.e. network effects) common in engineering applications. Furthermore, linear
incentives is a critical assumption to find weighting factors which require a unit
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Figure 7. Value surfaces for player i as a function of player j ’s and k’s probability
of choosing ψ j and ψk (p j and pk). Linear incentives produce planar value surfaces
while nonlinear incentives produce non-planar (curved) surfaces representing third
party effects.

eigenvalue of the influence matrix A. Although there may be extensions of the
influence matrix A to higher dimensions (e.g. tensors), there is currently no such
existing theory. Thus, this section introduces a novel linear approximation for
greater applicability to design problems with nonlinear incentives.

Linear incentives can be visualized as planar value surfaces in Figure 7 for a
game with n = 3 players as a function of p j and pk , the probability players j and
k choose strategyψ over φ, respectively. The incentive function Di (p j , pk) is the
difference between the two planes. The intersection between the two planes (black
line) traces the indifference curve where player i does not prefer either strategy,
similar to ui for n = 2 players. Games with nonlinear incentives visualized in
Figure 7 for an exaggerated case include interaction terms with third parties and
yield non-planar value surfaces and nonlinear indifference curves.

Consider the simplest possible game with nonlinear incentives with n = 3
players and incentive function in Eq. (28). Linear incentives require ai j + aik = 1
to eliminate the interaction term between p j and pk . A linearized incentive
function in Eq. (1) proposes modified ai j terms such that

∑n
j=1 āi j = 1 ∀ i to

satisfy the linear incentives condition.

Di (p j , pk) ≈ ui − āi j p j − āik pk . (B 1)

Preserving influence elements as a coefficient for the effect of player j ’s probability
of choosing ψ j on player i ’s incentive to choose φi (specifically, −∂Di/∂p j ),
Eq. (2) defines the linearized influence element ā j i as the expected value of the
partial derivative of the incentive function with respect to p j .

āi j ≡ E
[
−
∂Di

∂p j

]
= E

[
ai j +

(
1− ai j − aik

)
pk
]

= ai j +

∫ 1

0

(
1− ai j − aik

)
pk dpk

=
1
2

(
1+ ai j − aik

)
. (B 2)

For more general games with n > 3 players, linearizing incentive functions
using this approximation becomes a combinatorial problem based on Ki j , the
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Figure 8. Incentive function Di (p j , pk) for player i as a function of p j and pk for
(a) nonlinear and (b) linearized cases with (c) difference δi (p j , pk) and mean error
εi = 0.125.

power set P of third parties (i.e. set of all subsets of players except i and j and
including the empty set) in Eq. (3) with cardinality |Ki j | in Eq. (4) given by the
binomial theorem.

Ki j = P({1, . . . , n} \ {i, j}) (B 3)

|Ki j | =

n−2∑
k=0

(
n − 2

k

)
= 2n−2. (B 4)

Revised notation in Eq. (5) defines combinatorial deviation losses between player
i and a set of players k as a function of a strategy set ξ ∈ {φ,ψ} up to a constant
of proportionality.

L ik(ξ) ∝ Vi (ξ−k)− Vi (ξ−ik). (B 5)

Note that this expression simplifies to previously established forms of L i{}(ξ) =

L i (ξ) in Eq. (22) for k = {} and L i{ j}(ξ) = L i j (ξ) in Eq. (26) for k = { j}. Using
this notation, Eq. (6) states a conjecture for linearized influence elements.

āi j (φ, ψ) =
1
|Ki j |

∑
k∈Ki j

L ik(φ)+ L ik(ψ)

L i (φ)+ L i (ψ)
. (B 6)

While proof of this conjecture is not available, the result above has been manually
verified for n = 3 (see Eq. (2) recognizing that L i j (φ) = −L ik(ψ)) and n = 4
cases.

Linearizing influence elements introduces errors into the risk dominance
analysis. Errormanifests as differences between the incentive function Di (p j , pk)

and its linearized form in Eq. (7) for games with n = 3 players.

δi (p j , pk)= Di (p j , pk)−
(
ui − āi j p j − āik pk

)
=
(
āi j − ai j

)
p j + (āik − aik) pk −

(
1− ai j − aik

)
p j pk

=
(
1− ai j − aik

) ( p j

2
+

pk

2
+ p j pk

)
. (B 7)

For example, Figure 8 visualizes contours of player i ’s incentive function for a
notional symmetric n = 3 game with value function
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Vi (ξ) =



0 if ξ = φ−i

2 if ξ ∈ {ψ−k, ψ− j }

3 if ξ ∈ {φ, φ− j , φ−k, ψ−i }

8 if ξ = ψ

, (B 8)

influence elements ai j = 0.25, and linearized influence elements āi j = 0.5 for
(a) initially (highly) nonlinear incentives, (b) linearized incentives following the
recommended method, and (c) the subsequent absolute difference δi .

Equation (9) derives a simple error metric εi for cases with n = 3 players that
measures the average absolute difference in incentive value.

εi =

∫ 1

0

∫ 1

0

∣∣δi (p j , pk)
∣∣ dp j dpk

=
∣∣1− ai j − aik

∣∣ ∫ 1

0

∫ 1

0

∣∣∣ p j

2
+

pk

2
+ p j pk

∣∣∣ dp j dpk

=

∣∣1− ai j − aik
∣∣

4
. (B 9)

Note that Di (p j , pk) ∈ [ui − 1, ui ] so εi can be roughly interpreted as percent
error. For the example in Figure 8, εi = 0.125 which is a relatively high value
indicating potential errors in interpreting results, especially in regions with high
estimates of one partner’s probability of collaboration but low estimates for the
other.

Appendix C. Application case data
Data for the application case was generated using the publicly available
distribution of Orbital Federates Simulation – Python (OFSPY) (Grogan 2019).
This software simulation computes cash flows obtained from an initial space
systems design in a version of the multi-player game Orbital Federates. The
software program contains a command line interface (CLI) to run specific design
scenarios. Automated operational policies based onmixed integer linear programs
determine how to use available space systems to observe, store, transmit, and
downlink data to complete contracts and earn revenue each turn.

The spatial context is reduced to two dimensions with six sectors (1–6) and
layers representing the surface (SUR), low Earth orbit (LEO), and medium Earth
orbit (MEO) shown in Figure 9. Satellites move clockwise between orbital sectors
each turnwhile ground stations remain fixed at the surface. Space-to-ground links
(SGLs) require a satellite to be in the same sector as a ground station for data
transfer. Inter-satellite links (ISLs) require satellites to be in adjacent sectors for
data transfer. Proprietary links only permit data transfer within a player’s assets
while open links permit data transfer between players as paid services.

Designs evaluated under the independent strategy follow the CLI template:
ofs.py -d 24 -p 3 -i 0 -s <SEED> -o d6,a,1 -f n <DESIGN>
where -d 24 indicates a game with 24 turns, -p 3 indicates three players, -i
0 indicates no initial cash constraints, -s <SEED> indicates the random number
generator seed (integer), -o d6,a,1 indicates to use a dynamic operations
policy with a six turn horizon using an automatically computed opportunity cost
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Figure 9. The Orbital Federates context includes six sectors with surface (SUR), low
Earth orbit (LEO) andmediumEarth orbit (MEO) layers. Satellite and ground station
elements transfer data using space-to-ground (SGL) and inter-satellite (ISL) links.

for storage and a nominal penalty of 1 for ISLs, -f n indicates no federation
operations policy, and<DESIGN> is the design specification.

The baseline scenario considers the design specification:

(i) 2.SmallSat@MEO6,SAR,pSGL 2.GroundSta@SUR1,pSGL
(ii) 3.SmallSat@MEO4,VIS,pSGL 3.GroundSta@SUR5,pSGL

Player 1 has no elements. Player 2 has a small satellite initially inMEO sector 6
with a synthetic aperture radar (SAR) and proprietary SGL (pSGL) and a ground
station at surface sector 1 with a pSGL. Player 3 has a small satellite initially in
MEO sector 4 with a visual light sensor (VIS) and pSGL and a ground station at
surface sector 5 with a pSGL.

Designs evaluated under the collective strategy follow the CLI template:
ofs.py -d 24 -p 3 -i 0 -s <SEED> -o d6,a,1 -f x100,100,6,a,1
<DESIGN> where -f x100,100,6,a,1 indicates to use an opportunistic
federation operations policy with fixed prices of 100 for SGL and ISL, a six turn
horizon, an automatically computed opportunity cost for storage, and a nominal
penalty of 1 for ISLs.

Scenario A considers the design specification:

(i) 1.SmallSat@MEO5,oISL,oSGL 1.GroundSta@SUR3,oSGL
(ii) 2.MediumSat@MEO6,SAR,oISL,pSGL,oSGL 2.GroundSta@SUR1,pSGL
(iii) 3.MediumSat@MEO4,VIS,oISL,pSGL,oSGL 3.GroundSta@SUR5,pSGL

Player 1 has a small satellite in MEO sector 5 with an open ISL (oISL) and an
open SGL (oSGL) and a ground station at surface sector 3 with oSGL. Player 2
has a medium satellite in MEO sector 6 with SAR, oISL, pSGL, and oSGL and a
ground station at surface sector 1 with pSGL. Player 3 has a medium satellite in
MEO sector 4 with VIS, oISL, pSGL, and OSGL and a ground station at surface
sector 5 with pSGL.

Scenario B considers the design specification:

(i) 1.SmallSat@MEO5,SAR,oSGL 1.GroundSta@SUR3,oSGL
(ii) 2.MediumSat@MEO6,SAR,pSGL,oSGL 2.GroundSta@SUR1,pSGL
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(iii) 3.MediumSat@MEO4,VIS,pSGL,oSGL 3.GroundSta@SUR5,pSGL

Player 1 has a small satellite inMEO sector 5 with SAR and oSGL and a ground
station at surface sector 3 with oSGL. Players 2 and 3 are identical to Scenario A
except removing the oISL modules.

Note that scenario A relies on close proximity between players to enable ISLs.
The above design strings were modified in cases with only partial participation in
the federation: MEO5 is replaced by MEO3 if only players 1 and 3 join a federation
and MEO4 is replaced by MEO5 if only players 2 and 3 join a federation. Outputs
reported in Table 7 compute net present values using a discount rate of 2% (per
turn) averaged over the first 1000 seeds (from 0 to 999).
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