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UNIFORM APPROXIMATION BY POLYNOMIALS 
WITH VARIABLE EXPONENTS 

PETER B. BORWEIN 

Introduction. We examine questions related to approximating functions 
by sums of the form 

n 

(1) 2 ajX8i al,8l real. 

We focus on approximations to functions given by the integral transfor
mation 

/
oo 

0 *'rfy(0 
where y is a positive measure. Approximations to this class of functions 
(Laplace transforms in the variable — lnx) are particularly well behaved 
(see Theorem 1). Questions concerning existence, uniqueness and 
characterization of such approximations have been thoroughly examined 
in the equivalent setting of exponential sum approximations (see [3], [4], 
[6] and [9]). Less well studied is the order of convergence of the 
approximation. This is the problem we address. Part of the motivation for 
using sums of the form (1), which we shall call Gaussian sums, stems from 
the observation that all analytic functions with Taylor series expansion 
having positive coefficients are of the form (2). Thus, we may ask the 
apparently natural question of how well ex may be approximated by 
Gaussian sums. We have called these approximations "Gaussian" because 
of the close connection to Gaussian quadrature (see Section 4). 

The first section of the paper collects together the necessary characteri
zations of best approximants. We then derive a number of theorems that 
compare Gaussian approximations to polynomial approximations and to 
other Gaussian approximations. For example: iff and g are transforms of 
type (2) associated with positive measures y and /? respectively and if ft — 
y is also a positive measure then the best Gaussian approximation to fis 
better than the best Gaussian approximation to g of comparable order. We 
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also show that Gaussian approximations to functions of the form 
/o xldy(t) are very much better than polynominal approximations, that 
such approximations to 1 4- x + . . . + xn are considerably better while 
little improvement is to be expected in approximating functions like ex. 

1. Notation. Let Hn be the real algebraic polynomials of degree at most 
n. Let <&„ be the set 

\ 2 J cijX l\ah 8j real \. 

For a continuous function/let 

(1) E„(f:[a,b]) = inf \\f-pn\\[aM 

pntlln 

and for a = 0 let 
(2) Gn(f:[a9b]) = inf \\f- gn\\[aM 

where || • | | ^ ] denotes the supremum norm on [a, b]. When we talk about 
best approximations they will always be in this norm. The polynomial 
attaining the infimum in (1) will be denoted by p* = p*(f: [a, b]). If the 
infimum is attained in (2) by an element of % then that element will be 
denoted by g* = g*(/ : [a, b]). The class % is not closed, for example: 

r xS~l 1 hm —-— = In x 
8^0 0 

and we cannot in general expect g* to exist (see [9], pp. 42-46). 
The class of functions most amenable to approximation from &n is the 

class of functions / given by the transformation 

/

oo /*oo 

o ^rfy(0, J0 ^y(/)<oo 
where y is a non-negative measure. We will represent the class by T. 

We will say t h a t / — g has an alternant of length m on [a, b] i f / — g 
achieves its maximum modulus on [a, b] at m + 1 points a ^ T\ < 
r2 < . . . < rm +1 ^ b and if 

sign(/(T/) - g(Tz)) = - sign(/(r / + 1) - g(T / + i)) . 

2. Existence and characterization. The first theorem guarantees the 
existence and uniqueness of best approximations from % to functions 
in L. 
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THEOREM 1. Let f be an element ofY — % defined on [a, 1], 0 < a 
< b. 

(a) There exists a unique best approximation g* E <&n to f on [a, 1]. 
(b)f — g* has an alternant of length In. This also characterizes g*. 
(c) g* E T, that is, there exist positive ah ô^ 0 < S\ < . . . < 8lv so 

that 

£?(*) = 2 Û/. x
5'. 

i = i 

(d)/(a) - g*(a) = / ( l ) - g*(l) = | | / - g*||[ail]. 

The above results follow from the corresponding results for approxima
tions by sums of exponentials to completely monotonie functions via the 
change of variables x = e~}'. These results are all to be found in [4] (see 
also [3], [6] and [7]). Conclusion (c) of the above theorem characterizes 
functions in V: 

THEOREM 2. A continuous function fis an element of Y if and only if for 
some a E (0, 1) and for all n, g*(f: [a, 1]) is an element ofY. 

Proof We need only comment on the "only if" part of this theorem. If 
g* E Y then 

J o gX(x) = J 0 x'dy»(t) 

where yn is a discrete positive measure and where 

/*oo 

g„*(l) = J 0 dyn(t) -§211/11^]. 

It follows from Helly's Theorem [10, p xii] that 
/*oo 

f(X) = J Q X'MO 

where y is a subsequential limit of the yn. 

Descartes' rule of signs tells us that a sum of the form 

n 

2 atx^ with£z < | / + 1 

can have no more positive zeros than the sequence {a\9 . . . , am) has sign 
changes. It follows that, for any continuous/, if there exists gn E <&n so 
t h a t / — gn has an alternant of length In on [a, 1] then gn is the unique best 
approximant to/from % on [a, 1]. Also, from Descartes' rule of signs we 
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can deduce that if there exist 2n + 1 points a ^ T\ < . . . < r2n+\ = 1 
and gn e &n so that 

s i g n e r / ) - g,7(r,)) = - sign(/(r / + 1) - gn ( T / + 1 ) ) 

then we have a de la Vallée Poussin type conclusion, namely 

G„(/:[a, 1]) g mm | / ( T / ) - gw(T,-)|. 
/=1,2, 2«+l 

We are considering approximations on an interval [a, 1] where a > 0. 
That the right hand endpoint of the interval be 1 is a matter of 
convenience. It can be taken to be any positive number by rescaling. 
However, taking a > 0 is necessary. If a = 0 then particular care must be 
taken. This case corresponds to exponential approximation on [0, oo) (see 
[4]). In all that follows we will be assuming that a is between zero and 
one. 

3. Comparison theorems. The rate of approximation to a function/ in F 
depends only on bounds on the measure y defining / in the following 
sense. 

THEOREM 3. Let f and h be elements of Y where 

0 x'dy(t) andh(x) = J() x'dfi(t)-

If fi — y is a non-negative measure then 

Gn(f: [a, 1]) ë Gn(h: [a, 1]). 

Proof. We may suppose that/ , h £ %. Let g* be the best approximant 
to h and let rh . . . , r2n be the points in [a, 1] at which h — g* = 0. Let 
q* <= <&n interpolate/at rh . . . , T2„. Such a q* exists and is an element of T 
(see [4] ). Furthermore, 

sign(/0x) - q*(x)) = sign(/z(x) - g*(x)) 

at every point in [a, 1] (see [6, p. 167]). Thus, if 

Gn(f: [a, 1]) > Gn(h: [a7 1]) 

then there exists c > 1 so that 

/ - q* = ch - eg* 

at In + 1 points in [a,\]. Since cfi — y is a positive measure and q* e F 
there exists a positive measure ju so that 
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/

oo 
0 x'dM). 

It follows that 

cg*(x) /

oo 

0 x'dtit) 

has 2/7 + 1 zeros in [a, 1]. It is, however, not possible for an element of <Sn 

to interpolate a function in T — % at more than In points. This can be 
seen by replacing /^° xld\i(t) by a sufficiently close interpolating approxi-
mation of the form Ha^x ', al,8l > 0, and appealing to Descartes' rule of 
signs. (Alternatively one may use [6, p. 164].) This contradiction finishes 
the proof. 

COROLLARY 1. Let 

CO CO 

f(x) = ^L ai*1 and h(x) = 2L btx
l. 

/ = 0 / = 0 

If bj ^ dj ^ 0 for all i then 

GM'(x); [a, 1]) ë Gn(h(x): [a, 1]). 

The above theorem is really an interpolation result. We state it as such 
in the next corollary. 

COROLLARY 2. Let y, /? and fi — y be non-negative measures. Let 
Ti, . . . , T2n be In (not necessarily distinct) points in [a,l] and let qn, gn e % 
interpolate j 0 xldy(t) and / 0 xfdf3(t) respectively at T\, . . . , r2n. Then, for 
x e [a, 1] 

/

oo Too 

0 x'dy(t)\ g \g„(x) - J0 x<dp(t)\-
The proof of the corollary is virtually identical to the proof of Theorem 

3. Multiple roots are handled by taking limits. The analogous results for 
rational approximations to Stieltjes transforms (functions of the form 
/o 1/(X + T) dy(t)) are established in [2]. This result, of course, also 
applies to exponential sum approximation to completely monotone 
functions by changing variables. 

The next results provide some comparisons between Gaussian and 
polynomial approximations. 

THEOREM 4. Let f e T and let a > 0. Then 

G„+x<J-(x): [a, 1]) ê inf \\ f(x) - p2n(ln(x) ) | | K iy 
pine n2„ 

https://doi.org/10.4153/CJM-1983-031-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-031-7


552 PETER B. BORWEIN 

THEOREM 5. Let f e r and let v > 1. Then 

Gw+i(/Q): [1, H) ^ £2w(/Q): [1, H)-

Proof. We first prove Theorem 4. Let g* + i e ^ 7 + 1 be the best 
approximation t o / O ) o n [«» V] a n d let/?2« be any polynomial of degree 2n. 
Suppose that 

ll/(*) -^2 / i ( ln(x) ) | | [ a J ] < | | / (x ) - gï + \ ( x ) \ \ [ a A ] . 

Then, by Theorem 1, g% + \(x) — P2n(ln(x) ) has at least 2/7 + 2 positive 
zeros and hence, g* + \(ey) — P2n(y) n a s a t l e a s t 2n + 2 real zeros. 
Since 

g* +i(x) = 2 fl/*ô/ where ^ ^ Si i= 0 

we arrive at the contradiction that the function 

w+l 

(gï + i(^) - P2n(y)fn+[) = 2 («, ) 2"+ l^% > o 

has a real zero. 
Theorem 5 is proved analogously. We need only note that the best 

approximation t o / ( l / x ) from &n + \ is of the form 

n+ l 

2 aix~0, where ah 8/ = 0 

and hence, has non-vanishing derivatives of all orders. 

4. Gauss-Padé approximants. L e t / e T - ^ be given by 

Ax) = jl xldy{t). 

Associated with y is the Gaussian quadrature rule with positive nodes 
zu . . . , z„ and positive weights cob . . . , con which has the property that 

fb v« 
J 0 Pln-\(t)dy(t) = 2 WiP2«-lfe), />2*-l G

 I L H - I . 

In the next theorem we show that 
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n 

f{x) - 2 co,*" = 0((x - \fn) 
i=\ 

and derive error bounds for this Padé-type approximation. 

THEOREM 6. Let 

fix) = f0x'dy(t) e r 

/z 

g„0) = 2 UiX2' 

where the co7 and Zj are as above. Then, for 0 < x = 1 

iVoo/ For fixed x ^ 1 and any/?2w-i ^ n 2 w - i 

l/(*) - &,(*) I ^ 2 || x? - p2n~x {t) ||[0,i] f0 dy(t\ 

Since, with respect to the variable /, 

(JC')(2,I) = ( l n x ) 2 V , l u 

we know that there existsp*n-\ G ^2n-\ s o t n a t 

II » * mil «r 8 ( l n ^>2" 
IU' - /> !„ - ] ( / ) II[0,1] = 42« ( 2 w ) ! • 

(See [8, p. 38].) 

This result is reminiscent of a similar theorem for Padé approximants 
due to Baker [1, p. 191]. 

THEOREM 7. Let 

/(*> = / , 
'2 * 

rfy(0 
o l+xt 

then, for x > 0, 

/(*) - 2 r ^ - * 7 ^ = — / 0 y(0-
:_, 1+ZJCI [ l + A ; + V l + 2 x ] 2 " " 1 [ l + 2 x ] • / 0 ; = i 1+ZjX 
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This a slight variation of Baker's result. We include it because its proof 
is identical to the proof of Theorem 6 using the fact that 

? „ ( - * - :[0,2]) = 
( | c+l | - \fc2 + 2c)n 

Kx + c V c2 + 2c 

and as such is considerably different from Baker's proof. It is worth noting 
that this method also establishes that 

n 

/ = 1 1+Z/X 

is the («, n) Padé approximant t o / . 
Theorem 6 can be applied to the function (x ~ \)/\nx which has an 

essential singularity at zero and, hence, cannot be approximated by 
polynomials on [a,l] with a rate of convergence greater than pa . 

5. Approximations to ex and 1 + . . . + xtl. Let 

n 

Ta
n(x) = I I (x ~ zt) 

i=\ 

be the nth Cebycev polynomial shifted to the interval [a,l] and normalized 
to have lead coefficient 1. Let 

Ta
n(x) = ao + . . . + fl^-jx'1-1 + x'\ 

let 

and let 

M^n = max {|(3ol , . . . . , k C - i l } 

m^n = min {|ÛQI , . . . , |fl"_! | } . 

â Gw(l + x + . . . + x": [a, 1]) ^ 

THEOREM 8. 

2(1 -a)2" „ „ r , _ 2(1 - a)2" 
Ma,2„42" - ~"v- • ~ L ' -J/ ma,2„42" ' 

7/c = (3 + a)/(l - a) //ien 

G„(l + x + . . . + x" : [a, 1]) â l/(c + Vc2 - l)2" 

and if d = (1 + a)/( l — a) ;/;e« 

G„(l + A: + . . . + x": [a, 1]) ê 2/(</ + Vd2 - \)2". 
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Proof. Consider 

TIM) = 2 alixi + "S 4+, (Vx)2' + I 

/=0 / = 0 

= Pn(x) + 8n(x) 

where pa
n e n,7 and g" e <gn. By Theorem 1 part (b) — ga

n is the best ap
proximation from <gn to/?" on [a,l]. Also, 

\\pa
n(x) + ga

n(x) \\[aJ] = 2(1 - a)2"/42". 

By Corollary 1 

G„(pa„/Maa„: [a, 1]) ^ G„ (1 + x + . . . + x": [a, 1]) 

= Gn (p„/maM: [a, 1]) 

and hence, 

If 

then 

2(1 - a)2n 

^ 2(1 - a)2" 

ll/>JI[a,l] = c 

(3 + a _. / / 3 + a \ 2 V 

This result may be found in [8, p. 43]. Thus, since 

\ || T ,, 20 - ^ 
II ^2«ll[a, l] ~ ^ 

we have 
Ma,2n ë | r 2 „ ( - i ) | 

- 2 ( 1 a) 2 " /3 + a , / / 3 + a \ 2 \ 2 " 

We note that 

/ 1 ~. \ 2A? 

T2^) = ( ~ ^ ) 2 V + vy - i)2 

+ 0> - Vy2 - 7 ) 2 1 

https://doi.org/10.4153/CJM-1983-031-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-031-7


556 PETER B. BORWEIN 

where y = (2x — (1 + a) )/(l — a). Thus, 

This finishes the proof. 

If we take a = \ we get 

1 1 
(193.9. . .)" " (7 + V48)2'7 

2 2 

^ Gn (\ + x 

x": [U]) 

(3 + V8)2» (33-9. . . y 

By comparison 

£ „ - i ( l + x + . . . + *": [1,1]) = 2/8" 

and we observe that Gaussian approximation is moderately more effective 
than polynomial approximation in this instance. 

COROLLARY 3. Iff(x) = 2 ^ = o akxk and a^ = ^k+\ = 0 ^ ^ 

<?„(/: [a, 1]) â 

(^ + vm~>r-
This corollary is a consequence of Corollary 1 and Theorem 8, we 

need only compare the approximation of / to the approximation of 
a„(l + . . . + x"). 

Applying the above to ex on [{, 1]) shows that 

G„(ex: [I 1]) ^ 1/(193.9. . .)nn\ 

whereas 

£„_,(**: [{, 1]) =i 6/8'W. 
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Finally, we observe that, for small /?, Gn+](e
x\ [\, 1]) may be somewhat 

smaller than En(e
x: [{, 1]). This is illustrated in the following table. 

Theorem 4 guarantees that 

Gn + l(e
x: [i, 1]) ^ inf \\ex - p2n(ln x) \\{i 1]. 

Pin G n2/, 

Computations were done using the IMSL routine IRATCU. 

n £w(e*:[U]) inf \\ex-p2n(\nx)\\ 
1 3.3 X 1CT2 9.7 X 10~3 

2 1.4 X 1(T3 1.1 X 1CT4 

3 4.3 X 1(T5 1.0 X 10~6 

4 1.1 X 10~6 8.1 X 10"9 

REFERENCES 

1. G. A. Baker, Jr. and P. Graves-Morris, Padé approximatifs, Vol. 1 (Addison-Wesley, 
Reading, Mass., 1981). 

2. P. Borwein, Rational approximations to Stieltjes transforms, Math. Scandinavica (To 
appear). 

3. D. Braess, Chebyshev approximation by y'-polynomials, J. Approx. Theory 9 (1973), 
20-43. 

4. D. W. Kammler, Chebyshev approximation of completely monotonie functions by sums of 
exponentials, SI AM J. Numer. Anal. 75(1976), 761-774. 

5. S. Karlin, Total positivity, Vol. 1 (Stanford Univ. Press, Stanford, California, 1968). 
6. S. Karlin and W. J. Studden, Tchebycheff systems: with applications in analysis and 

statistics (Wiley, New York, 1966). 
7. M. G. Krein, The ideas of P. L. Chebysev and A. A. Markov in the theory of limiting values 

of integrals and their future development, Uspehi Mat. Nauk (N. S.) 6(1951), no. 4(44), 
3-120; Am. Math. Soc. Transi, Ser. 2, 12, 1-122. 

8. G. G. Lorentz, Approximation of functions (Holt, Rinehart and Winston, N.Y., 1966). 
9. J. R. Rice, The approximation of functions, Vol. II (Addison-Wesley, Bath, 1969). 

10. J. A. Shohat and J. D. Tamarkin, The problem of moments, Am. Math. Soc. Surveys nos. 
7(1943). 

Dalhousie University, 
Halifax, Nova Scotia 

https://doi.org/10.4153/CJM-1983-031-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-031-7

