Sediment behavior controls equilibrium width of subglacial channels

ANDERS DAMSGAARD,1* JENNY SUCKALE,2,3 JAN A. PIOTROWSKI,4 MORGANE HOUSSAIS,5 MATTHEW R. SIEGFRIED,1,2 HELEN A. FRICKER1

1Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, CA, USA
2Department of Geophysics, Stanford University, Stanford, CA, USA
3Institute of Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
4Department of Geoscience, Aarhus University, Aarhus, Denmark
5Levich Institute, City College of CUNY, 140th Street and Convent Avenue, New York, NY, USA

Correspondence: Anders Damsgaard <andersd@princeton.edu>

ABSTRACT. Flow-frictional resistance at the base of glaciers and ice sheets is strongly linked to subglacial water pressure. Understanding the physical mechanisms that govern meltwater fluxes in subglacial channels is hence critical for constraining variations in ice flow. Previous mathematical descriptions of soft-bed subglacial channels assume a viscous till rheology, which is inconsistent with laboratory data and the majority of field studies. Here, we use a grain-scale numerical formulation coupled to pore-water dynamics to analyze the structural stability of channels carved into soft beds. Contrary to the soft-bed channel models assuming viscous till rheology, we show that the flanks of till channels can support substantial ice loads without creep closure of the channel, because the sediment has finite frictional strength. Increased normal stress on the channel flanks causes plastic failure of the sediment, and the channel rapidly shrinks to increase the ice-bed contact area. We derive a new parameterization for subglacial channelized flow on soft beds and show that channel dynamics are dominated by fluvial erosion and deposition processes with thresholds linked to the plastic rheology of subglacial tills. We infer that the described limits to channel size may cause subglacial drainage to arrange in networks of multiple closely spaced channels.

KEYWORDS: glacier hydrology, glacial tills, subglacial processes, subglacial sediments

1. INTRODUCTION

Channelization of subglacial meltwater is well documented from the sedimentary and geomorphological record (e.g., Piotrowski, 1999; Piotrowski and others, 1999; Jørgensen and Sanderson, 2006; Greenwood and others, 2016; Bjarnadóttir and others, 2017; Simkins and others, 2017). Several geophysical investigations support that channelization of subglacial meltwater is an important process under contemporary glaciers and ice sheets (e.g., Hubbard and Nienow, 1997; Winberry and others, 2009; Horgan and others, 2013; Le Brocq and others, 2013; Schroeder and others, 2013; Gimbert and others, 2016; Drews and others, 2017). Numerical models of Antarctic ice-stream flow have shown that channelized water flow is necessary for producing sufficient variations in water pressure and subglacial friction, to match observed variations in ice-surface velocity (e.g., Thompson and others, 2014; Rosier and others, 2015), and meltwater channelization appears to be necessary for stabilizing ice-stream shear margins (Suckale and others, 2014; Perol and Rice, 2015; Perol and others, 2015; Elsworth and Suckale, 2016). Channelized meltwater flow is especially important for water and ice dynamics during subglacial lake drainage events (e.g., Bartholomew and others, 2010; Stevens and others, 2013; Brinkerhoff and others, 2016; Dow and others, 2016; Fricker and others, 2016; Carter and others, 2017; Simkins and others, 2017). Recent studies have detailed that the influence of channel dynamics extends downstream of the grounding line, since point release of water through channels at grounding lines greatly enhances basal melt rates through the formation of turbulent buoyant plumes (e.g., Jenkins, 2011; Xu and others, 2012; Le Brocq and others, 2013; Marsh and others, 2016; Alley and others, 2016; Drews and others, 2017). Channelization is not only relevant for projecting ice fluxes, but also for understanding subglacial landforms as water flow in the channels may be a primary mechanism for eroding and delivering sediment from the ice-sheet or glacier interior to its margin (e.g., Swift and others, 2002; Alley and others, 2003; Kehew and others, 2012; Bjarnadóttir and others, 2017). Recent discoveries of curvilinear and erosive landforms near the last-glacial maximum terminus (Fig. 1) have raised questions on how subglacial drainage systems arrange on soft beds (Lesemann and others, 2010, 2014).

Glacier beds provide resistive friction to glaciers and ice sheets and limit how fast they flow, and are typically subdivided into hard (rigid and impermeable) or soft (deformable and typically sedimentary) types. The amount of resistance provided by the bed is strongly dependent on subglacial water pressure (e.g., Weertman, 1957; Lliboutry, 1968; Budd and others, 1979; Iken, 1981; Bindschadler, 1983;
Boulton and Hindmarsh, 1987; Fowler, 1987; Kamb, 1991; Hooke and others, 1997), and subglacial channels are the most efficient drainage type and water-pressure altering component at the ice-bed interface (e.g., Flowers, 2015). Meltwater evacuation through channels generally decreases pore-water pressure and increases basal strength in the adjacent areas under the ice (e.g., Shoemaker, 1986; Boulton and Hindmarsh, 1987; Rempel, 2009). Since changes in subglacial water-flow patterns directly affect the glacier stress balance, changes in subglacial hydrology can cause large-scale rearrangement in the flow patterns of ice sheets (e.g., Raymond, 2000; Tulaczyk and others, 2000a,b; Boulton and others, 2009; Piotrowski and others, 2009; Bougamont and others, 2015; Elsworth and Suckale, 2016).

The importance of changes in subglacial hydrology on ice flow has sparked efforts to develop and improve mathematical descriptions of subglacial water-pressure evolution in ice-flow models (e.g., Bougamont and others, 2013; Walder and others, 2013; de Fleurian and others, 2014; Kyrk-Smit and others, 2015). Building on the pioneering work of Röthlisberger (1972), Shreve (1972), and Nye (1976), which established the mathematical framework of dynamic water flow through channels melted into basal ice (R-channels), recent studies have improved our understanding of subglacial water drainage as a coupled system on hard beds. Differences in drainage properties between distributed and discrete drainage modes hint towards a complex interplay during non-steady drainage (e.g., Schoof, 2010; Hewitt, 2011, 2013; Kingslake and Ng, 2013; Werder and others, 2013). Schoof (2010) and Hewitt, 2011, 2013 demonstrated that variability in meltwater input has the potential to cause ice-flow acceleration, because transient increases in meltwater supply overwhelm the water transport capacity of the subglacial hydrological system. However, the majority of ice in contemporary and past ice sheets moves over soft beds (e.g., Alley and others, 1986; Engelhardt and others, 1990; Anandakrishman and others, 1998; Tulaczyk and others, 2000a; Kamb, 2001; Stokes and Clark, 2001; Piotrowski and others, 2004; King and others, 2009; Christianson and others, 2014; Greenwood and others, 2016; Bjarnadóttir and others, 2017; Kulessa and others, 2017; Simkins and others, 2017), but soft-bed channelized drainage is not included in current ice-sheet models despite efforts to parameterize the governing characteristics.

At present, our understanding of soft-bed hydrological processes is limited. Shoemaker (1986) presented the first mathematical analysis of subglacial hydrology and sediment stability for a soft-bedded ice sheet drained by a combination of porous (groundwater) flow and channelized drainage. He assumed that erosion of sediment at the channel floor would incise channels into the soft bed, but argued that the increase in effective stress on the channel flanks would increase sediment strength sufficiently to make channels stable at any size.

Alley (1992) investigated the mechanical stability of a simplified channel geometry, and applied analytical relationships for till mechanics, including perfect plasticity and Bingham rheology, in part based on parameter fits by Boulton and Hindmarsh (1987). While offering convenience by uniquely linking stress and strain in mathematical models, the weakly non-linear viscous till rheologies proposed by Boulton and Hindmarsh (1987) disagree with the nearly plastic sediment rheology known from fundamental granular and soil mechanics (e.g., Schofield and Wroth, 1968; Nedderman, 1992; Terzaghi and others, 1996; Mitchell and Soga, 2005), field measurements on subglacial till deformation (e.g., Hooke and others, 1997; Kavanagh and Clarke, 2006), laboratory deformation experiments on till (e.g., Kamb, 1991; Iverson and others, 1998; Tulaczyk and others, 2000a; Iverson and others, 2007), inversion of subglacial mechanics from ice-surface velocities (e.g., Tulaczyk, 2006; Walker and others, 2012; Goldberg and others, 2014; Minchew and others, 2016; Gillet-Chaulet and others, 2016), and numerical experiments (e.g., Iverson and Iverson, 2001; Kavanagh and Clarke, 2006; Damsgaard and others, 2013, 2016).

Walder and Fowler (1994) combined an earlier mathematical formulation of R-channel closure (Nye, 1976) with the mildly non-linear viscous closure relationship for conduits in till (Boulton and Hindmarsh, 1987; Fowler and Walder, 1993) and derived a new mathematical model for subglacial channels in soft beds. Contrary to the Bingham visco-plastic relationship applied by Alley (1992), Walder and Fowler (1994) ignored sediment yield strength and parameterized till to continuously creep toward the channel and counteract fluvial erosion. In their mathematical framework, they demonstrated that the type of channelized drainage is a function of surface slope. R-channels are likely to form under steep-sloped mountain glaciers, while fluvial incision into the soft bed is hypothesized dominate under relatively flat parts of ice sheets. Ng (2000a) further developed the mathematical theory by Walder and Fowler (1994), and demonstrated that sediment erosion and deposition by fluvial transport is more important than creep closure of the idealized viscous sediment. A similar model, also with viscous till rheology and fluvial channel incision into soft beds, was shown to effectively approximate drainage histories of Antarctic subglacial lakes better than a R-channel model with erosion into the ice base (Carter and others, 2017). However, the models assuming viscous till rheology provide a continuous flux of sediment towards the channel, and disregard sediment yield strength and associated plastic failure limits. Yet, subglacial till is known to behave...
like other clastic sediments with a nearly perfect plastic and rate-independent rheology with a yield strength \(\tau_y \) governed by the Mohr–Coulomb constitutive relation, \(\tau_y = C + N \tan \phi \), where \(C \) is the effective sediment cohesion, \(N \) is the effective stress normal to the shear plane, and \(\phi \) is the angle of internal friction (e.g., Terzaghi, 1943). As a matter of fact, the plastic behavior of sediment beds in general, with or without cohesive forces, is related to the general behavior of granular material (e.g., GDR-MiDi, 2004; Houssais and others, 2015; Houssais and Jerolmack, 2017).

In this study, we use numerical simulations of purely granular material (without cohesion) to move one step further in understanding the impact of sediment bed plasticity on the subglacial channel shape dynamics and the subglacial hydrology. In particular, we will study the effect of the effective normal stress at the ice–bed interface, and investigate how strong horizontal pore-pressure gradients toward the channel impact the shape and stability of the channel.

In the next section, we present the physical background of subglacial channel modeling, the simulation method we used, and how simulations of granular material were initialized and performed. Afterwards we present and discuss our results and combine our findings with established approaches for sediment and water in a new continuum formulation for subglacial soft-bed channels.

2. BACKGROUND AND METHODS

2.1. Continuum modeling of subglacial channels

Mathematical models of subglacial hydrology contain several balance equations, related to conservation of water mass, transients in hydraulic properties related to conduit opening and closure, and conservation of water momentum and energy (e.g., Nye, 1976; Walder and Fowler, 1994; Clarke, 2005; Schoof, 2010; Hewitt, 2011; Kingslake and Ng, 2013; Werder and others, 2013; Flowers, 2015). The cross-sectional size of a soft-bed subglacial channel evolves by the combined effect of melting and creep closure of the channel roof, and fluvial sediment erosion and deposition at the channel base. Here, we assume that the channel is governed by sediment flux alone, implying that the ice interface remains planar. Simultaneous incision of both the ice roof and sedimentary bed, may occur under more energetic conditions (e.g., Alley, 1989; Walder and Fowler, 1994; Carter and others, 2017). Changes in the channel cross-sectional area over time \(\partial S/\partial t \) are balanced by the along-channel gradient of fluvial sediment flux \(Q_s \) through the Exner equation with a representative bed porosity \(\Phi \) (e.g., Ng, 2000a):

\[
\frac{\partial S}{\partial t} = \frac{1}{1 - \Phi} \frac{\partial Q_s}{\partial s}
\]

where \(s \) is the channel streamwise dimension. Significant effort has been devoted to constraining the relationships behind sediment transport in fluvial settings, and this is an ongoing topic of research (e.g., Lajeunesse and others, 2010). As a result there are numerous propositions for parameterizing the sediment transport, \(Q_s \) (e.g., Shields, 1936; Meyer-Peter and Müller, 1948; Einstein, 1950; Parker, 1978; Stock and Montgomery, 1999; Whipple and Tucker, 1999; Ng, 2000a; Davy and Lague, 2009; Lajeunesse and others, 2010). The commonly used empirical relationships for sediment transport are a function of the shear stress generated by fluid flow near the bed, \(\tau \), generally reported as the dimensionless Shields number, \(\tau^* = \tau/[\rho_w - \rho_g]gD \) where \(\rho_w, \rho_g, g, \) and \(D \) are the particle density, fluid density, gravity, and particle diameter, respectively. The onset of sediment transport is classically associated with a critical Shields number, \(\tau^{*c} \), that is required to overcome grain friction (Shields, 1936). Meyer-Peter and Müller (1948) is a well-supported sediment transport relationship describing bed-load transport in a turbulent flow:

\[
Q_s = 8 \max(0, \tau^*/\tau^{*c})^{3/2} W \sqrt{\frac{\rho_w - \rho_g}{\rho_g} g D^3}
\]

where \(W \) is the channel width. Importantly, \(\tau^{*c} \) is highly dependent and, in particular, increases as particle sizes become small enough to cohesion forces become significant. We note that the sediment–flux relationship presented above may fall short for very clay-rich or multimodal beds (e.g., Wilcock, 1998; Houssais and Lajeunesse, 2012). The fluid shear stress \(\tau \) along the hydraulic perimeter can be inferred through the Darcy–Weisbach formula (e.g., Henderson, 1966; Walder and Fowler, 1994; Ng, 2000a; Creyts and Clarke, 2010; Carter and others, 2017), \(\tau = 0.125f_p (Q S^{-1})^{1/2} \) where \(f_p \) is a dimensionless friction factor.

As for hard-bed channel models the water flux \(Q \) along the channel length axis \(s \) can be described by a turbulent flow law (Hewitt, 2011):

\[
Q = \sqrt{F^{-1} S^{3/2} \left(\psi - \frac{\partial P_s}{\partial s} \right)},
\]

where \(P_s \) is the averaged effective pressure in the channel, and \(\psi \) is the topographically constrained pressure gradient:

\[
\psi = -\rho_w g \frac{\partial (b + H)}{\partial s} - (\rho_w - \rho_g) g \frac{\partial b}{\partial s}.
\]

Here, \(b \) is the bed topography and \(H \) is the ice thickness (e.g., Hewitt, 2011), and \(F \) is a function of conduit geometry and the Manning friction coefficient \(n' : F = \rho_w g n'[2\pi + 2/3 \pi n'^2]^{1/3} \). The water-flow law (Eqn 3) is typically rearranged to solve for along-channel change in effective pressure \(P_s \) (e.g., Ng, 2000b; Kingslake and Ng, 2013; Carter and others, 2017):

\[
\frac{\partial P_s}{\partial s} = \psi - \frac{F Q^2}{S^{3/2}}.
\]

The water flux \(Q \) in the above equation is usually found from an equation of water conservation, often by assuming water incompressibility, negligible change in water storage along the flow path, and negligible sediment fluxes relative to the water discharge. The change in water flux downstream is given by a local source term, \(m \) (e.g., Schoof, 2010):

\[
\frac{\partial Q}{\partial s} = m.
\]

The source term \(m \) can be comprised several contributions, including influx from the surrounding bed through ground-water seepage, inflow along the ice–bed interface, and input from englacial storage. In the following, we apply a numerical model of granular deformation to explore the
2.2. Grain-scale sediment modeling

2.2.1. Model description

We use a discrete element method (DEM, e.g. Cundall and Strack, 1979; Damsgaard and others, 2013) in order to resolve the sediment mechanics in the bed surrounding an idealized subglacial channel. The DEM is a Lagrangian-type numerical approach of multi-body classical mechanics. Newton’s Second Law of motion is explicitly integrated to find translational and rotational acceleration, velocity, and position for each grain through time. For a grain \(i \) in contact with \(j \) other grains, the sum of forces consists of gravitational pull \((f_g) \), grain-to-grain elastic-frictional contact forces \((\mathbf{f}_c) \), and the fluid-pressure force \((\mathbf{f}_f) \),

\[
\frac{d^2 \mathbf{x}_i}{dt^2} = m_i \ddot{\mathbf{x}}_i = f_i^g + \sum_{j \in \mathcal{N}} (f_i^c + f_i^f) + \ddot{f}_i, \tag{7}
\]

where \(\mathbf{x}_i \) is the grain center position, \(m \) is the grain mass, and \(t \) is the time. A similar equation conserves angular momentum:

\[
\frac{d^2 \mathbf{\Omega}_i}{dt^2} = \sum_{j \in \mathcal{N}} \left(- (r_i^j \mathbf{n}_i^j \times \mathbf{f}_i^j) \right) \tag{8}
\]

where \(\mathbf{n} \) is the grain-contact normal vector, \(\mathcal{Q} \) is the angular particle position, and \(I \) is the grain rotational inertia.

The forces from grain interactions \((\mathbf{f}_c \text{ and } \mathbf{f}_i) \) are determined by a Hookean (linear elastic) theory. The contact-normal interaction force is found from the contact-normal component of the inter-grain overlap distance vector \(\delta \):

\[
\mathbf{f}_c^i = -k_n \delta_i^n. \tag{9}
\]

The tangential (contact-parallel) interaction force is similarly found from the contact-tangential component of the overlap distance vector, but is in magnitude limited by the Coulomb frictional coefficient \(\mu \):

\[
\mathbf{f}_t^i = -\min\left(k_t |\delta_t^i|, \mu |\mathbf{f}_c^i|/k_t^{-1}\right) \delta_t^i, \tag{10}
\]

The contact-normal and tangential travel vectors \((\delta_n \text{ and } \delta_t) \) are incrementally adjusted over the duration of a grain-to-grain interaction, and continuously corrected in the case of contact rotation. If Coulomb failure occurs at the contact, the tangential travel is readjusted to correspond to a length consistent with Coulomb’s condition \(||\delta_t|| = \mu |\mathbf{f}_c|/k_t^{-1} \), e.g. Luding, 2008; Radjaï and Dubois, 2011). The contact stiffnesses for the elastic interactions \((k_n \text{ and } k_t) \) are, contrary to our previous study using this model (e.g., Damsgaard and others, 2015), determined by scaling against a macroscopic elasticity:

\[
k_{n,\text{Q}} = \frac{Ex(t_i + t_j)}{2}. \tag{11}
\]

where \(E \) is the Young’s modulus, and \(t_i \) and \(t_j \) are the radii of two interacting grains. This approach makes the bulk elastoplastic behavior independent of the chosen grain size (Ergenzinger and others, 2011; Obermayr and others, 2013).

The fluid-pressure force on each grain is determined by the local gradient of the water-pressure field \((\rho_f) \), as well as buoyant uplift from the weight of displaced fluid (Goren and others, 2011; Damsgaard and others, 2015):

\[
\dot{f}_i^f = -V_i^f \nabla \rho_f - \rho_f V_i^f \mathbf{g}, \tag{12}
\]

where \(V \) is the grain volume, \(\rho_f \) is the fluid density, and \(\mathbf{g} \) is the gravitational acceleration vector. We ignore other and weaker fluid-interaction forces (Stokes drag, Saffman force, Magnus force, virtual mass force) (e.g., Zhu and others, 2007; Zhou and others, 2010), which become important with faster fluid flow and associated larger Reynolds numbers.

Once the sum of forces (right-hand side of Eqn 7) and torques (right-hand side of Eqn 8) have been determined, we perform explicit and third-order temporal integrations with Taylor expansions in order to determine the new kinematic state (e.g., Kruggel-Emden and others, 2008). The maximum admissible time step is tied to the propagation of seismic (elastic) waves through the granular assemblage, and is determined by the density, size, and elastic stiffnesses in the granular system (e.g., Radjaï and Dubois, 2011):

\[
\Delta t = \frac{\varepsilon}{\sqrt{(\max(k_n,k_t)/\min(m))}} \tag{13}
\]

with a constant safety factor \((\varepsilon = 0.07) \).

2.2.2. Meltwater in sediment and channel

We describe pore-water pressure in the sediment by a time-dependent diffusion equation with a forcing term related to porosity change. The rate of pressure diffusion scales according to Darcy’s law in heterogeneous materials:

\[
\frac{\partial p_f}{\partial t} = \frac{1}{\beta_f \phi_{\text{sat}}} \nabla \cdot (k \nabla p_f) - \frac{1}{\beta_f (1 - \phi)} \left(\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi \right), \tag{14}
\]

where \(p_f \) is the fluid-pressure deviation from the hydrostatic pressure, \(\beta_f \) is the adiabatic fluid compressibility, and \(\mu_f \) is the fluid dynamic viscosity. The locally averaged grain velocity is denoted \(\mathbf{v} \). The local permeability is denoted \(k \) and is determined by empirical relations as a function of local porosity \(\phi \) (Goren and others, 2011; Damsgaard and others, 2015). The second term on the right-hand side forces a response in water pressure as local porosity changes, and is corrected for advection of porosity. For the sake of simplicity, the fluid-flow model considers the whole domain as porous, with a very high porosity and permeability in the channel (see Fig. 2). The above equation is not adequate for simulating turbulent water flow and sediment in bedload inside the channel.

We calculate the fluid-phase dynamics (Eqn 14) on an Eulerian and regular grid, superimposed over the granular assemblage. The fluid is fully two-way coupled to the granular phase. The fluid forces the sediment through spatial pressure gradients different from the hydrostatic pressure distribution, and the sediment forces the fluid phase by local changes in porosity (e.g., McNamara and others, 2000; Goren and others, 2011; Damsgaard and others, 2015). Contrary to our previous two-phase modeling studies (Damsgaard and others, 2015, 2016), the fluid grid...
is adjusted in size to the spatial domain of the granular phase during the simulations in order to correctly resolve the dynamics during volumetric changes, without requiring a constant-pressure boundary condition at the top.

2.3. Design of numerical experiments

The purpose of our numerical experiments is to test the hypothesis that sediment dynamics plays an important role in shaping subglacial channels. We design our experiments to simulate the sediment surrounding a channel cavity, which is stressed by a virtual ice-bed interface modeled as a horizontal wall with a pre-defined normal stress. The model is three dimensional in order to correctly resolve grain rotation and interlocking, but the simulation domain is shortened in the along-flow dimension (y) in order to reduce the computational overhead.

We perform dry (water-free) and wet (water-saturated) simulations, with the hypothesis that the presence of water without large pressure gradients does not influence sediment stability, as long as the effective normal stress is equal. The dry simulations (Fig. 3) are designed to inform about steady-state channel geometries under a constant normal stress on the top boundary, which spans the ice–sediment interface and the channel conduit. We perform these simulations without water in order to illustrate pure granular mechanics without transient hardening or softening associated with a pore-fluid pressurization (e.g., Iverson and others, 1998; Moore and Iverson, 2002; Goren and others, 2011; Damsgaard and others, 2015). The omission of fluid in these simulations additionally serves to reduce the required computational time.

For the second set of experiments, we employ wet (water-saturated) simulations (Fig. 4) to investigate sediment stability under various defined water-pressure gradients. The water pressures are kept constant at the channel and at the far-away lateral boundary (x = 0 m in Fig. 2), and water pressures are inside the sediment initialized according to a linear interpolation between these Dirichlet boundary conditions. After the initialization procedure, described below, the porosity at the top of the sediment is naturally larger because of the flat ice–bed interface. Additionally, the porosity generally tends to slightly decrease with depth as lithostatic pressure and packing density increases. Local deviations in water pressure from the hydrostatic pressure distribution directly affect the stress balance inside the sediment and at the upper boundary.

The granular assemblage is prepared by letting 1000 uniformly distributed and spherical particles settle in a small cubic volume under the influence of gravity. Afterwards the assemblage is duplicated and repositioned 58 times in space to construct the desired geometry for a total of 58,000 grains. We assume that the channel is horizontally symmetrical around its center and simulate half of the channel width. Before proceeding with our main experiments we perform a relaxation step where we allow the

![Fig. 2. Overview of the granular assemblage of 58,000 particles and the discretization of the fluid grid. We assume symmetry around the channel center (+x) and limit our simulation domain to one of the sides. The model domains of the two phases are superimposed during the simulations.](https://www.cambridge.org/core)
grains to settle and adjust their arrangement to the new geometry. Figures 3, 4 show the boundary conditions, as well as the geometry of the simulated sediment at the beginning of the experiments. Table 1 lists the values of the relevant geometrical, mechanical, and temporal parameters.

The governing equation for fluid dynamics (Eqn 14) is in its standard form singular for areas that do not contain grains (\(\phi = 1\)), such as the channel cavity. We therefore impose an upper limit on porosity of \(\phi = 0.9\) in Eqn (14) and the other fluid-related equations in order to allow our fluid-phase formulation to work for the channel conduit. Nonetheless, the strong non-linearity of the permeability relation \((k = 3.5 \times 10^{-13} \text{m}^2 \phi^2(1 - \phi)^{-2})\) causes much faster diffusion of fluid pressures in the conduit than internally in the sediment, consistent with our expectations of how the hydraulic system should behave. However, we are for the purposes of this study mainly interested in the mechanical behavior of the sediment surrounding the channel. Similarly, we do not resolve water flow along the channel length axis, but focus our experimental analysis of grain-fluid interaction inside of the sediment with the channel cavity acting more as a boundary condition.

We choose a relatively low value for Young’s modulus in Eqn (11) in order to increase the computational time step.
...and are not able to study, we investigate the mechanical state and deformation the fluid flux and further enhances flow localization. In this process reduces local friction against the processes driving distributed flow to R-channel drain-
form due to flow instabilities by differential erosion, similar to former experiments (e.g., Catania and Paola, 2001; Mahadevan and others, 2012; Kudrolli and Clotet, 2016; Métivier and others, 2017). We also omit tensile interactions between grains giving cohesionless behavior. However, apparent cohesion observed in laboratory shear tests on real geological materials often vanishes at very low normal stresses (e.g., Schellart, 2000), making grain-tension less important at free sediment surfaces.

We assume that channels in subglacial beds inherently form due to flow instabilities by differential erosion, similar to the processes driving distributed flow to R-channel drainage on hard beds. Intrinsic channelization during fluid flow has been demonstrated in physical dam-breach experiments (e.g., Walder and others, 2015) and in smaller experimental studies (e.g., Catania and Paola, 2001; Mahadevan and others, 2012; Kudrolli and Clotet, 2016; Métivier and others, 2017). Channelization occurs when fluid flux is able to erode the porous medium through which it is flowing. In turn, this process reduces local friction against the fluid flux and further enhances flow localization. In this study, we investigate the mechanical state and deformation patterns around an already established channel conduit incised into the sedimentary bed, and are not able to include the process of channel formation itself.

3. RESULTS

We do not observe significant differences in steady-state channel geometry between the dry and wet simulations at equal effective normal stresses, which is expected as the fluid only affects the granular force balance in the presence of water-pressure gradients (Eqn 12). However, the wet simulations take three times longer to complete.

In the dry experiments, we observe that the effective normal stress on the channel flanks results in rapid failure, occurring over a few seconds (Fig. 5). Larger normal stresses result in more deformation. Consistent with sediment plasticity, the deformation stops when a new stress balance has been established. The final and steady-state geometries are shown in Figure 6, where larger normal stresses result in smaller channel cavities. We do expect slow creep in the sediment, especially if there are large fluctuations in water pressure and granular stresses (Pons and others, 2015; Damsgaard and others, 2016) or strong water flow (Houssais and others, 2015, 2016). However, the associated creep is expected to occur with a significantly more non-linear rheology than previously used for soft-bed channels (e.g., Alley, 1992; Walder and Fowler, 1994; Ng, 2000b; Carter and others, 2017), and we do not detect measurable creep on the timescales considered here (Fig. 5).

We can describe the relationship between the imposed effective normal stress and observed maximum channel width reasonably well by a linear fit (Fig. 7):

\[W_{\text{max}} = (aN + b) \]

with fitting parameter values \(a = -0.118 \text{ m kPa}^{-1}\) and \(b = 4.60 \text{ m} \) (associated standard deviations (std dev.) reported in Fig. 7). By assuming a simple geometry where the slope of the channel flanks is given by the sediment angle of repose \(\theta\) (Fig. 8), we can approximate the limit to channel the cross-sectional area, \(S_{\text{max}}\) as a function of the channel width:

\[S_{\text{max}} = \frac{1}{4} W_{\text{max}}^2 \tan \theta. \]

We constrain the channel size in the continuum channel model (Eqns 1–6) in order to capture the stress-based limits.

Table 1. Simulation parameters and their values for the granular experiments.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain count</td>
<td>(N_p)</td>
<td>58 000</td>
</tr>
<tr>
<td>Grain radius</td>
<td>(r)</td>
<td>0.008 to 0.012 m</td>
</tr>
<tr>
<td>Grain Young’s modulus</td>
<td>(E)</td>
<td>7.0 × 10^9 Pa</td>
</tr>
<tr>
<td>Grain friction coefficient</td>
<td>(\mu)</td>
<td>0.5</td>
</tr>
<tr>
<td>Grain density</td>
<td>(\rho_g)</td>
<td>2600 kg m(^{-3})</td>
</tr>
<tr>
<td>Fluid density</td>
<td>(\rho_f)</td>
<td>1000 kg m(^{-3})</td>
</tr>
<tr>
<td>Fluid dynamic viscosity</td>
<td>(\mu_f)</td>
<td>1.797 × 10(^{-6}) Pa s</td>
</tr>
<tr>
<td>Fluid adiabatic compressibility</td>
<td>(\beta_f)</td>
<td>1.426 × 10(^{-5}) Pa(^{-1})</td>
</tr>
<tr>
<td>Hydraulic permeability prefactor</td>
<td>(k_h)</td>
<td>3.5 × 10(^{-12}) m(^2)</td>
</tr>
<tr>
<td>Spatial domain dimensions</td>
<td>(L)</td>
<td>[3.0; 0.17; 0.91] m</td>
</tr>
<tr>
<td>Gravitational acceleration</td>
<td>(g)</td>
<td>[0.0; 9.81] m s(^{-2})</td>
</tr>
<tr>
<td>Computational time step*</td>
<td>(\Delta t)</td>
<td>1.44 × 10(^{-6}) s</td>
</tr>
<tr>
<td>Simulation length*</td>
<td>(t_{\text{end}})</td>
<td>10 s</td>
</tr>
</tbody>
</table>

* Simulation time and time-dependent parameters are listed in scaled model time, see Damsgaard and others (2015, 2016).
We do not view extrapolation of the channel width below the tasted range \((N = [2.5; 40] \text{kPa})\) as physically meaningful. Geometries with slopes beneath the angle of repose should be stable without load from the ice overburden under events with overpressurized water \((N \leq 0 \text{kPa})\), allowing for the existence of larger subglacial cavities.

The grain-scale stress balance (Fig. 9) shows that stresses from the ice load on channel flanks are transmitted predominantly downwards, and do not affect the stress balance in the sediment beneath the channel conduit. The sediment beneath the channel conduit is loaded exclusively by its own weight (lithostatic pressure), which increases linearly with depth. This behavior contrasts with viscous till models, that assume that the stress on the channel flanks contributes to till uplift at the bottom of the channel.

In our wet simulations, forced with water-pressure differences between channel and bed, the pressure-gradients create drag forces on the grains oriented towards the channel (Fig. 10). The presence of smaller water-pressure gradients cause minor sediment rearrangement, but deformation rapidly decays and the channel continues to be stable (Fig. 11, left and center). The channel geometry is not significantly different from the dry experiment under small water-pressure gradients (compare the simulation with \(N = 10 \text{kPa}\) in Fig. 6 with Fig. 11, left and center). However, when larger pressure gradients are prescribed the sediment flushes into the channel, causing rapid channel infill and closure (Fig. 11, right).

Figure 12 shows the results of an example implementation of the continuum channel model (Eqns 1–6, with limits to channel size imposed by Eqns 15 and 16). The solution is found iteratively with a Dirichlet boundary condition of \(P_c = 0 \text{ Pa}\) at the terminus. Gradients are estimated with upwind finite difference approximations. We assume that channel effective pressure \((P_c)\) equals the magnitude of the effective normal stress on the channel flanks \((N)\). In real settings channel effective pressure will most commonly be slightly higher than normal stress on the flanks \((P_c > ||N||)\), as water pressure differences cause dominant water flow towards the channel.
In this example, the water fluxes are increasing downstream due to the water supply \((\dot{m}) \). The increasing water flux generally increases the sediment-bedload flux \((Q_s) \) downstream. At \(s = 0 \) to 0.8 km the large effective pressures \((P_c) \) inhibit channel development due to sediment failure. Close to the margin \((s = 0.8 – 1.0 \text{ km}) \) the effective pressure is sufficiently low to allow for channel existence. The increase in channel cross-sectional size near the margin decreases the fluvial shear stress and causes a rapid drop in fluvial sediment flux \(Q_s \).

4. DISCUSSION

We have demonstrated that sediment yield strength can prevent collapse of channels. Because of sediment plasticity, channel erosion into subglacial sediments is not balanced by a continuous flux of viscous till deformation into the channel cavity, which was assumed in prior parameterizations (e.g., Fowler and Walder, 1993; Walder and Fowler, 1994; Ng, 2000b). Instead, channel cross-sectional geometry is governed by fluvial erosive and depositional dynamics until channel size is limited by sediment yield strength.

Infilled fossil subglacial channels seen in field sections along the southern margin of the last Scandinavian Ice Sheet (Fig. 13) show similar geometry to the stable channel conduits observed in our granular experiments (e.g., Figs 6, 11), where the sediment angle of repose is a principal control on channel cross-sectional geometry. The channel sizes observed in the field (Fig. 13) are within the limits observed in our granular experiments (Fig. 7) and the simplified ice-marginal area of our continuum channel model (Fig. 12).

While Shoemaker (1986) assumed that the bed would strengthen against failure under high effective stresses, we show that the magnitude of effective stress on the bed surrounding the channel puts an upper limit on channel dimensions. The exact relationship between effective normal stress and channel size (Fig. 7) will be material dependent, and the granular model applied here includes several simplifying assumptions related to grain size and grain shape. The grain angularity and size distribution in subglacial tills might result in slightly larger yield strengths and allow for the existence of larger channels. Overconsolidation of subglacial tills additionally contributes to shear strength (e.g., Tulaczynk and others, 2000a), which will increase stability and limits to channel size. However, the stress–size relationship presented here should be a reasonable approximation for a simple model. While our results are based on numerical experiments on simplistic granular materials, our interpretation stands that it is unlikely for soft-bed channels to exist at effective subglacial normal stresses more than \(\sim 100 \text{kPa} \) in magnitude (Fig. 7). We propose that the constrained
relationship between channel geometry and effective normal stress makes it theoretically possible to assess water pressure and hydrological conditions under past ice sheets, e.g. when meltwater channels are identified from geomorphological interpretation of subaerial or subaqueous topography (e.g., Lesemann and others, 2010; Greenwood and others, 2016; Bjarnadóttir and others, 2017), or from channel-sediment geometries in the glaciogeological sedimentary record (e.g., Piotrowski, 1999; Tylmann and others, 2013).

Ice overburden stress does not impact the sediments beneath the channel floor directly; the compressive stress acting on channel-floor sediments is a result of their own weight as lithostatic pressure increases with depth (Fig. 9). Sediment dynamics at the floor of subglacial channels are then similar to those in subaerial rivers, although the drainage system arrangement may differ (Catania and Paola, 2001; Métivier and others, 2017). Due to the plastic rheology of sediment, erosion of the channel floor will be counteracted by an immediate sediment response when the channel is at its size limit, acting to reestablish stress balance in the bed surrounding the channel. If differential sediment advection toward the cavity bends the ice–bed interface downwards progressively, the resultant channel landform of erosive origin is likely to appear wider than the channel cavity itself (Boulton and Hindmarsh, 1987; Ng, 2000b).

The evolution of subaerial river size is governed by feedbacks and stability limits (e.g. Métivier and others, 2017). We conclude that there are two distinct feedbacks stabilizing subglacial channel size on soft beds: (1) If a channel becomes sufficiently efficient in evacuating subglacial meltwater, the pore-water pressure decreases and the effective normal stress on the surrounding areas of the bed increases. If this stress increase causes the channel size to exceed the stability limit, the channel spontaneously reduces in size which decreases the hydrological transport capacity which, in turn, can increase the water pressure and decrease the effective normal stress. (2) For a given water flux, an increase in channel cross-sectional size due to fluvial erosion decreases the water-driven shear stress on the channel bottom. The decrease in shear stress decreases sediment transport (Eqn 2), which decreases channel growth (decreasing $\partial Q_s/\partial s$ in Eqn 1). These feedbacks may ultimately lead to stabilization of subglacial sliding and hydrology, tied to the plastic failure limit of the bed and the basal hydraulic transmissivity.

For the subglacial drainage model presented here, we consider channelized flow alone although it could be significantly improved by coupling it to a diffusive flow model accounting for sheet flow at the ice–bed interface, ground-water flow, and/or R-channel incision (e.g., Creyts and Schoof, 2009; Hewitt, 2011; Werder and others, 2013; Flowers, 2015). Furthermore, the parameterization for water flux in the channel can be improved by including both laminar and turbulent descriptions, dependent on the Reynolds number of the water flow (e.g., van der Wel and others, 2013).

With increasing subglacial discharge, we expect a hydraulic transition from distributed drainage to sediment-incised channels (e.g., Mahadevan and others, 2012; Kudrolli and Clotet, 2016). However, yield failure of the channel flanks imposes a limit to their cross-sectional area and hydraulic transport capacity. If the hydraulic transmissivity becomes insufficient against the water fluxes, we either expect R-channel incision into the ice base, or the formation of multiple parallel drainage channels incised into the sediment. If subglacial soft-bed channels were able to grow

Fig. 11. Total per-grain spatial displacements at different times for three wet (water-saturated) simulations with different imposed water-pressure gradients and an effective stress of $N = 10$ kPa. The water-pressure gradients cause flow and drag forces toward the channel, and destabilize the conduit at higher values.
without size constraints, it would be thermodynamically more efficient to gather drainage in fewer and larger channels.

An arrangement of closely spaced channel drainage is observed at Glaznoty, north-central Poland, where the channel in Figure 13 is one of a series of small, similar-sized channels occurring at the paleo-ice–bed interface. Parallel sediment landforms (glacial curvilineations) have been observed from under the palaeo-Scandinavian Ice Sheet (Fig. 1, Lesemann and others, 2010, 2014), which may be governed by the channel-size limits described here. Furthermore, radar-echo soundings of the sedimentary bed of Thwaites Glacier, West Antarctica have been interpreted to reflect hydraulic transitions between few to many parallel and closely spaced channelized drainage elements incised into the sedimentary bed (Schroeder and others, 2013). We do note that the landforms and channel-drainage elements observed in the glacial curvilineations are generally larger than what is predicted from our limits related to plastic failure (Fig. 7). We believe that this discrepancy is mainly related to the fact that the numerical material with spherical and smooth grains is mechanically weaker than subglacial tills with elongated and angular grains.

Liquefaction at the earth surface and in subaqueous environments is known to be initiated by overpressurization in the pore space, effectively reducing the compressive stress to low or even negative values (e.g., Zhang and Campbell, 1992; Terzaghi and others, 1996; Xu and Yu, 1997; Mitchell and Soga, 2005). In situ measurements of subglacial water pressure indicate that water pressures are highly variable through time (e.g., Hooke, 1984; Engelhardt and Kamb, 1997; Hooke and others, 1997; Bartholomaus and others, 2008; Andrews and others, 2014; Schoof and others, 2014). We propose that events of liquefaction in subglacial channels may be common when water-pressure in the channel rapidly decreases, and this process may be able to make significant volumes of weak sediment from the channel-floor wedge available for fluvial transport, especially in sedimentary beds with low permeability that require long timescales to respond to changes in interfacial water pressure.

As previously discussed, we are not able to include the effect of subglacial deformation due to ice movement along the channel length, which might be important for long-term channel stability. We do note that subglacial shear could...
be included by setting the y boundaries to be periodic (e.g., Damsgaard and others, 2013), but the spatial domain length along y in the current setup is too short to allow for shearing without geometrical instabilities. Sediment advection associated with shear deformation causes frictional heating and granular diffusion (e.g., Hooyer and Iverson, 2000; Utter and Behringer, 2004); these processes are likely to drive channel closure with a rate proportional to the shear-strain rate in the sediment. We also assume that the ice-bed interface remains flat and rigid over time, while Ng (2000b) and Behringer, 2004); these processes are likely to drive the experiments (Ng 2000b) demonstrated that differential ice and till advection toward the channel conduit bends the interface over longer timescales. Our model approach could be improved by simulating a dynamically evolving ice-bed interfacial geometry. However, we believe that inclinations in the ice-bed interface are unlikely to fundamentally alter the principal stresses in the surrounding sediment, and assume that the ice is responding elastically over the timescales investigated in the experiments (1 min).

5. CONCLUSIONS

Current relationships for subglacial channel dynamics incised into sedimentary beds assume linear to mildly non-linear viscous relationships for till rheology, which results in continuous sediment flux toward the channel balancing erosion by water flow. However, sediments are known to be nearly perfect plastic with a yield strength dependent on the confining stress.

We have coupled two separate models to gain a multiscale understanding between sediment deformation and subglacial channel stability. Our granular model informs about sediment stability under different effective normal stresses and water-pressure forcings. We observe that the channel conduit size is strongly limited by the magnitude of effective normal stress on the channel flanks, and that creep closure is negligible. The compressive stresses from the ice-bed interface on the channel flanks are oriented subvertically instead of being directed towards the channel floor. The channel-flooring sediments are only compacted by their own weight. Strong water-pressure differences between the channel and its surrounding parts can cause horizontal infilling by sediment movement along the ice-bed interface.

We use the results from our granular simulations to include effects of sediment plasticity in a continuum model of soft-bed subglacial channels. The channel size is limited by the yield strength of the sediment, which in turn depends on effective normal stress on the channel flanks. The size limit implies that multiple closely spaced channels are needed for transporting large amounts of water, which corresponds to geophysical observations under contemporary ice sheets and geomorphological signatures from previously glaciated areas. The presented continuum model for channelized drainage, derived from our suite of numerical simulations, increases the realism of hydrology models for ice sheets and glaciers residing on soft beds.

ACKNOWLEDGMENTS

A. Damsgaard was supported by a postdoctoral fellowship by the Cecil H. and Ida M. Green Foundation and NSF-PLR-1543396. A. Damsgaard acknowledges the NVIDIA Corporation for a hardware grant and the Extreme Science and Engineering Discovery Environment (XSEDE) for a high-performance computing startup allocation. In preparation for this paper, A. Damsgaard has benefited from discussions with C. W. Elsworth, L. Goren, I. J. Hewitt, S. P. Carter, A. Cabrales-Vargas, and V. Tsai. We thank Jonathan Kingslake and anonymous reviewer for constructive comments, which improved the manuscript and Neil Glasser for handling the editorial process.

REFERENCES

Catania G and Paola C (2001) Braiding under glass. Geology, 29(3), 259
Terzaghi K (1943) *Theoretical soil mechanics*. Wiley. London, UK

Thompson J, Simons M and Tsai VC (2014) Modeling the elastic transmission of tidal stresses to great distances inland in channeled ice streams. *Cryosphere*, 8(6), 2007–2029

Tylmann K, Piotrowski JA and Wysota W (2013) The ice/bed interface mosaic: deforming spots intervening with stable areas under the fringe of the Scandinavian Ice Sheet at Samplawa, Poland. *Boreas*, 42(2), 428–441

APPENDIX A. SOURCE CODE AVAILABILITY

The source code for the grain-fluid model is available at https://github.com/anders-dc/sphere, where the script channel-wet.py can be used as a template for model runs. An example implementation of the subglacial hydrology model built on channelization dynamics is available from https://github.com/anders-dc/granular-channel-hydro/blob/master/1d-channel.py.

MS received 19 June 2017 and accepted in revised form 9 October and 10 October 2017; first published online 27 November 2017