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Corrigendum

Connected components of affine Deligne–Lusztig
varieties in mixed characteristic

(Compositio Math. 151 (2015), 1697–1762)

Miaofen Chen, Mark Kisin and Eva Viehmann

In the proof of Theorem 1.1, the following assertion in line 4 of page 1725 is incorrect:

The kernel of the composition π1(M)Γ
→ π1(G)Γ is generated by the elements∑

β∈Ω β
∨, where Ω ∈ ΦN,Γ satisfies Ω ∩ C 6= ∅ (C defined as in Proposition 4.1.9).

The mistake consists of a misapplication of Proposition 4.1.9, which asserts only that an
element in the kernel is a Z-linear combination of elements in the Galois orbit of C. Although
an element in the kernel is Γ-invariant, in general this is not enough to imply that it is a sum of
elements of the form

∑
β∈Ω β

∨, where one sums over a Galois orbit Ω of an element in C. More
precisely, the assertion is incorrect in certain cases when there are Galois orbits of coroots of
different orders. This was pointed out to the authors by Sian Nie.

We replace the above argument by the proposition below. All other assertions of the paper
including the rest of the proof of Theorem 1.1 remain unchanged.

Proposition 0.0.1. There exists Φ0
N,Γ ⊆ ΦN,Γ such that:

(i) the kernel of the map π1(M)Γ
→ π1(G)Γ is generated by the elements

∑
β∈Ω0

β∨ and∑
β∈Ω β

∨, where Ω ∈ ΦN,Γ satisfies Ω ∩ C 6= ∅ and Ω0 ∈ Φ0
N,Γ;

(ii) for any element Ω0 ∈ Φ0
N,Γ, the element

∑
β∈Ω0

β∨ is mapped to 1 by the composite

π1(M)Γ ∼= π0(XM
µx(b)) → π0(XG

µ (b)).

Lemma 0.0.2. Let x, x′ ∈ ĪM,G
µ,b be such that x′ = x+α∨−αm∨ with α an adapted positive root in

N . Let Ω be the Galois orbit of α. Then, for all g′M(OL) ∈XM
µx′

(b), there exist gM(OL) ∈XM
µx(b)

and n ∈ Z such that g ∼ g′ and

wM (g)− wM (g′) =

m−1∑
i=0

α∨ + n
∑
β∈Ω

β∨ in π1(M).

Proof. If x′ → x is of immediate distance and x′ − x = α∨ − αm∨ is as in Definition 4.4.8, then
for any g′M(OL) ∈ XM

µx′
(b), there exists gM(OL) ∈ XM

µx(b) such that g ∼ g′ and

wM (g)− wM (g′) =
m−1∑
i=0

αi∨ in π1(M)
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by Proposition 4.5.4 (in which there is also a sign typo in (4.5.5)) and the fact that JMb (F )

acts transitively on XM
µx(b). Similarly, if x → x′, then for any g′M(OL) ∈ XM

µx′
(b), there exists

gM(OL) ∈ XM
µx(b) such that g ∼ g′ and

wM (g′)− wM (g) =

|Ω|−1∑
i=m

αi∨ in π1(M).

Hence,

wM (g)− wM (g′) =

m−1∑
i=0

αi∨ −
∑
β∈Ω

β∨ in π1(M).

The general case is reduced to the immediate distance case by the proof of Proposition 4.4.10. 2

Proof of Proposition 0.0.1. Let S := {∑β∈Ω β
∨ ∈ π1(M)Γ|Ω ∈ ΦN,Γ and Ω ∩ C 6= ∅}.

If the kernel of the composition π1(M)Γ
→ π1(G)Γ is generated by the elements in S, then

take Φ0
N,Γ = ∅ and we are done.

Therefore, it suffices to prove the proposition under the following hypothesis.

(HYP): the kernel of the composition π1(M)Γ
→ π1(G)Γ is not generated by the elements in S.

Then not all elements in ΦN,Γ have the same cardinality and hence the Dynkin diagram

of G is of type A2n+1, Dn or E6. Let Φsmall
N,Γ be the subset of ΦN,Γ consisting of the orbits of

smallest cardinality, and let Φlarge
N,Γ = ΦN,Γ\Φsmall

N,Γ . Then the elements of Φlarge
N,Γ are all of the same

cardinality, which is nG times the cardinality of the elements in Φsmall
N,Γ with nG = 2 or 3. Here,

nG = 3 only occurs when the Dynkin diagram of G is of type D4. Moreover, by Proposition 4.1.9,

for every Ω ∈ Φlarge
N,Γ ,

∑
β∈Ω β

∨ is contained in the subgroup of π1(M)Γ generated by S. Hence,

we will define Φ0
N,Γ as a subset of Φsmall

N,Γ .

Case 1: the Dynkin diagram of G is of type A2n+1 or of type D4 with nG = 3. One can easily

show that the kernel of the map π1(M)Γ
→ π1(G)Γ is generated by the elements in S and∑

β∈Ω′ β∨ for any Ω′ ∈ Φsmall
N,Γ . Hence, it remains to find Ω0 ∈ Φsmall

N,Γ satisfying condition (2) in

the statement and to define Φ0
N,Γ = {Ω0}.

Claim 1. Under hypothesis (HYP), there exist adapted positive roots αi ∈ Ωi ∈ Φlarge
N,Γ for i= 1, 2

such that α1−α2 = αd1−αd2 is still a root in N , where d is the number of connected components

of the Dynkin diagram of G and such that

x′ = x+ α∨1 − αd∨1 = x+ α∨2 − αd∨2 ∈ ĪM,G
µ,b .

We only show Claim 1 when the Dynkin diagram is of type A2n+1. The proof for the other

case of type D4 is similar and much easier and is therefore omitted. By Proposition 4.1.9, we can
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choose a connected component of the Dynkin diagram of G with the following numbering of the

simple roots.

A2n+1: e
γ−n

e
γ−n+1

· · · e
γ−1

e
γ0

e
γ1

· · · e
γn−1

e
γn

such that there exists a pair (i0, j0) ∈ N2 with

〈γ−i0 + · · ·+ γ0 + · · ·+ γj0 , µx〉 = −1. (0.0.3)

Moreover, by condition (HYP) for all 0 6 i 6 n, 〈γ−i + · · ·+ γ0 + · · ·+ γi, µx〉 6= −1; therefore,

we may assume that i0 > j0 (possibly exchanging the notations γi and γ−i) and that

〈γ−i0 + · · ·+ γ−j0−1, µx〉 = −1, 〈γj0+1 + · · ·+ γi0 , µx〉 = 1.

It follows that

α1 = γ−i0 + · · ·+ γj0 , α2 = γ−i0 + · · ·+ γ−j0−1

are the desired elements in Claim 1.

Let Ω0 ∈ Φsmall
N,Γ be the Galois orbit of α1 − α2, and Φ0

N,Γ = {Ω0}. We want to show that∑
β∈Ω0

β∨ ∈ π1(M)Γ is mapped to 1 under the composite π1(M)Γ ∼= π0(XM
µx(b)) → π0(XG

µ (b)).

By Lemma 0.0.2, for any g′M(OL) ∈ XM
µx′

(b), there exist g1M(OL), g2M(OL) ∈ XM
µx(b) and

m1,m2 ∈ Z such that g1 ∼ g′ ∼ g2 and

wM (g1)− wM (g′) =

d−1∑
i=0

αi1 +m1

∑
β∈Ω1

β∨ in π1(M),

wM (g2)− wM (g′) =
d−1∑
i=0

αi2 +m2

∑
β∈Ω2

β∨ in π1(M).

Taking the difference of the above two equalities, we get

wM (g1)− wM (g2) =
∑
β∈Ω0

β∨ + (m1 −m2)
∑
β∈Ω1

β∨ +m2nG
∑
β∈Ω0

β∨ in π1(M).

Using g1 ∼ g2 and the fact that JMb (F ) acts transitively on XM
µx(b), the element

wM (g2)− wM (g1) ∈ π1(M)Γ

is mapped to 1 by the composite π1(M)Γ ∼= π0(XM
µx(b)) → π0(XG

µ (b)).

On the other hand, as Ω0 ∈ Φsmall
N,Γ and Ω1 ∈ Φlarge

N,Γ , by Proposition 4.1.9, nG
∑

β∈Ω0
β∨ ∈

π1(M)Γ and
∑

β∈Ω1
β∨ ∈ π1(M)Γ are both contained in the subgroup generated by S and hence

by the proof of Theorem 1.1 (more precisely the third paragraph on page 1725, which is not

affected by the gap we are discussing here), nG
∑

β∈Ω β
∨ and

∑
β∈Ω1

β∨ are both mapped to 1

by the composite π1(M)Γ ∼= π0(XM
µx(b)) → π0(XG

µ (b)). Therefore, so is
∑

β∈Ω0
β∨, i.e. Ω0 satisfies

condition (2) of the proposition.
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Case 2: the Dynkin diagram of G is of type Dn with nG = 2. Consider any connected component

of the Dynkin diagram of G with the following numbering of the simple roots.

Dn: e
αn−2

e
αn−1

e · · · e e
α2

e
α1

e��HH eeα−1

α′−1

Let Ωi be the Galois orbit of αi for 1 6 i 6 n− 2. Then the kernel of π1(M)Γ
→ π1(G)Γ is

generated by the elements in S and
∑

β∈Ωi
β∨ for 1 6 i 6 n− 2. We will construct subsets

Φ1
N,Γ ⊆ Φ2

N,Γ ⊆ · · · ⊆ Φn−2
N,Γ =: Φ0

N,Γ ⊆ ΦN,Γ

such that for any Ω ∈ Φn−2
N,Γ , the element

∑
β∈Ω0

β∨ is mapped to 1 under the composite π1(M)Γ ∼=
π0(XM

µx(b)) → π0(XG
µ (b)) and, for any 1 6 i 6 n− 2,

∑
β∈Ωi

β∨ is contained in the subgroup of

π1(M)Γ generated by the elements in S and
∑

β∈Ω β
∨, where Ω ∈ Φi

N,Γ. Note that the orbits of

α−1 and α′−1 are in Φlarge
N,Γ and therefore need not be considered.

We first construct Φ1
N,Γ. By Proposition 4.1.9, there exists α ∈ C such that σl(α1) � α for

some l. Without loss of generality, we assume that l = 0. We may also assume that
∑

β∈Ω1
β∨

is not contained in the subgroup of π1(M)Γ generated by S, otherwise let Φ1
N,Γ = ∅. By (HYP),

the Galois orbit of α ∈ C is in Φlarge
N,Γ . In particular, 〈α1, µx〉 > 0 and 〈α−1, µx〉 = −1 (possibly

exchanging α−1 and α′−1). By the existence of α and the minimality of µx, there are four

possibilities:

Case 2.1: 〈α1, µx〉 = 0, 〈α′−1, µx〉 = 1;

Case 2.2: 〈α1, µx〉 = 0, 〈α′−1, µx〉 = 0;

Case 2.3: 〈α1, µx〉 = 1, 〈α′−1, µx〉 = −1;

Case 2.4: 〈α1, µx〉 = 1, 〈α′−1, µx〉 = 0 and there exist 2 6 i 6 n− 2 such that

〈αj , µx〉 =

{
−1, j = i,

0, 2 6 j 6 i− 1.

In Cases 2.2 and 2.3, we have α1 +α−1 +α′−1 ∈ C. In Case 2.4, αi+ · · ·+α1 +α−1 +α′−1 ∈ C
and αi+ · · ·+α2 ∈ C. Thus, for Cases 2.2–2.4,

∑
β∈Ω1

β∨ is contained in the subgroup of π1(M)Γ

generated by S and hence these cases will not occur.

It remains to consider Case 2.1. In that case

x+ α∨−1 − α′−1
∨

= x+ (α−1 + α1)∨ − (α′−1 + α1)∨ ∈ ĪM,G
µ,b .

The same computation as in Case 1 shows that Φ1
N,Γ := {Ω1} satisfies the desired properties.

For general i, we apply the same discussion as above. We obtain either Φi
N,Γ = Φi−1

N,Γ or

Φi
N,Γ = Φi−1

N,Γ ∪ {Ω̃i} with Ω̃i the Galois orbit of α1 + · · ·+ αi. Altogether, the proposition holds

in Case 2.

Case 3: the Dynkin diagram of G is of type E6. The discussion is very similar to Case 2 and

is therefore omitted. 2
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