SIMULTANEOUS MONOTONE L_p APPROXIMATION, $p \rightarrow \infty$

ROBERT HUOTARI AND SALEM SAHAB

ABSTRACT. Suppose that $f, g \in L_{\infty}[0, 1]$ have discontinuities of the first kind only. Using the measure, $\max\{\|f - h\|_p, \|g - h\|_p\}$, of simultaneous L_p approximation, we show that the best simultaneous approximations to f and g by nondecreasing functions converge uniformly as $p \to \infty$. Part of the proof involves a discussion of discrete simultaneous approximation in a general context. Assuming only that f and g are approximation is continuous, we show that their simultaneous best monotone L_p approximation is continuous.

Introduction. If $K \subset L_p = L_p(\Omega, \Sigma, \mu)$, $f, g, h \in L_p$ and $A \subset \Omega$, let $d_p^A(h, f) = (\int_A |h-f|^p)^{1/p}$, $d_p^A(K, f) = \inf_{h \in K} d_p^A(h, f)$, $d_p^A(h, f)$, and $d_p^A(K; f, g) = \inf_{h \in K} d_p^A(h; f, g)$. If $A = \Omega$, we will abbreviate d_p^A by d_p in each of the above definitions and for $d_p(h, f)$ we will use the familiar notation $||h - f||_p$. We say that $h^* \in K$ is a *best simultaneous* L_p *approximation to* f *and* g *from* K (p-b.s.a.) if

(1)
$$d_p(h^*; f, g) = d_p(K; f, g).$$

There are other ways of defining a simultaneous norm [12, 14], but the *max norm* we are using, being central to the theory of Chebyshev centers, appears to have the longest history. It is the norm in which the simultaneous approximation is most naturally generalized from two, to a compact set, of approximatees. See [2] for a survey of max-norm simultaneous approximation.

In the present paper, we are primarily interested in the continuous case, where $\Omega = [0, 1] \subset \mathbb{R}$, μ is Lebesgue measure and Σ consists of all Lebesgue measurable sets. In a preliminary step however, we will consider the discrete case, where $\Omega = \{1, 2, ..., n\}$ and μ is the counting measure. In the continuous case *K* will consist of all *nondecreasing* functions, i.e., $f \in K$ if and only if $f(t_1) \leq f(t_2)$ whenever $t_1 < t_2$. In the discrete case *K* will be any closed convex basically tubular set. If *K* is *any* closed convex subset of L_p and 1 , then there is exactly one*p*-b.s.a. to*f*and*g* $[6], which we denote by <math>S_p(f, g)$. We call $S_p(f, f)$ the best L_p approximation to *f* from *K* (*p*-b.a.).

Suppose that $f, g \in L_{\infty}$. Then $f, g \in L_p$ for all p in $[1, \infty]$. If $S_p(f, g)$ converges almost everywhere as $p \to \infty$, we say that the (simultaneous) *Pólya algorithm* converges. In the present paper we show that the Pólya algorithm converges in both contexts mentioned

This paper was prepared during the 1989 Summer of Approximation Theory at Idaho State University.

Received by the editors September 26, 1989; revised August 31, 1990.

AMS subject classification: Primary: 41A28, 40A05; secondary: 40A30, 41A30..

[©] Canadian Mathematical Society 1991.

above. We solve the discrete problem using the ideas of Descloux [5]. To solve the continuous problem, we assume f and g are *quasi-continuous*, i.e., f and g have discontinuities of the first kind only. This enables uniform approximation of f and g by step functions, and, thereby, reduction to the discrete case. We also show that, under mild restrictions on f and g, $S_p(f, g)$ is continuous, with the result that $\lim_{p\to\infty} S_p(f, g)$ is continuous. These results generalize those published in [4]. We conclude with a discussion of an alternative method of proving convergence, which generalizes that of Legg and Townsend [11].

One of the reasons for our interest in monotone simultaneous approximation is that it is related to the statistical problem of isotonic regression. In [13] the method proposed to simultaneously approximate f_1, \ldots, f_n is to approximate the single function $\overline{f} = n^{-1} \sum f_i$. We find this method theoretically suboptimal and despair over the amount of data that is lost in the calculation of \overline{f} . The other major theme in this paper, the Pólya algorithm, is of theoretical interest in that its focus is the compatability of L_p , $p < \infty$, with L_∞ . When $p = \infty$, the set, K_∞ of best simultaneous approximations to f and g from K may contain more than one element. The Pólya algorithm induces a single-valued *selection* from K_∞ [8].

1. Simultaneous Approximation in \mathbb{R}^n . In this section we show that the discrete simultaneous Pólya algorithm converges for a large class of closed convex approximating sets: the *basically tubular* sets. Let $\Omega = \{1, ..., n\}$, let Σ consist of all subsets of Ω and let μ be the counting measure. In this context, it is common to denote L_p by ℓ_p and to describe a function $\mathbf{x} : \Omega \to \mathbb{R}$ by equating \mathbf{x} and the vector of its values, i.e., $\mathbf{x} := (x_1, ..., x_n)$. We begin by assuming only that K is a closed convex subset of \mathbb{R}^n . Let \mathbf{x} and \mathbf{y} be fixed elements of ℓ_p . For $1 we denote by <math>\mathbf{s}^p$, \mathbf{x}^p and \mathbf{y}^p the *p*-b.s.a. to \mathbf{x} and the *p*-b.a. to \mathbf{y} from K, respectively.

LEMMA 2. As $p \to \infty$, $\|\mathbf{x} - \mathbf{x}^p\|_p$ converges to $d_{\infty}(K, \mathbf{x})$ and $d_p(\mathbf{s}^p; \mathbf{x}, \mathbf{y})$ to $d_{\infty}(K; \mathbf{x}, \mathbf{y})$.

PROOF. If there exist $p < \infty$ and $\mathbf{z} \in K$ such that $\|\mathbf{x} - \mathbf{x}^p\|_p > \|\mathbf{x} - \mathbf{z}\|_{\infty} + 2\epsilon$ and $\|\|\mathbf{x} - \mathbf{z}\|_p - \|\|\mathbf{x} - \mathbf{z}\|_{\infty}\| < \epsilon$, then $\|\|\mathbf{x} - \mathbf{z}\|_p + \epsilon < \|\|\mathbf{x} - \mathbf{z}\|_{\infty} + 2\epsilon < \|\|\mathbf{x} - \mathbf{x}^p\|_p$, which contradicts the definition of \mathbf{x}^p . The proof of the second claim is similar.

A corollary of Lemma 2 is that for sufficiently large p, both $\{ \|\mathbf{x}^p\|_{\infty} : p \ge 1 \}$ and $\{ \|\mathbf{s}^p\|_{\infty} : p \ge 1 \}$ are uniformly bounded sets. Also it is clear that any convergent sequence $\{ \mathbf{s}^{p_v} : p_v \to \infty \}$ converges to an ∞ -b.s.a. of \mathbf{x} and \mathbf{y} .

We now describe the context in which we call K a *tubular* set. If $\mathbf{x}, \mathbf{v} \in \mathbb{R}^n$ and $A \subset \mathbb{R}^n$, let $L(\mathbf{x}, \mathbf{v})$ be the straight line in \mathbb{R}^n which contains \mathbf{x} and is parallel to the line containing $\mathbf{0}$ and \mathbf{v} , and let $N(A, \delta) = \{\mathbf{z} \in \mathbb{R}^n : d_{\infty}(A, \mathbf{z}) < \delta\}$. A subset A of \mathbb{R}^n is said to be \mathbf{v} -tubular at \mathbf{x} if for any $\epsilon > 0$ there exists $\delta = \delta(\mathbf{x}, \epsilon) > 0$ such that $d_{\infty}(L(\mathbf{y}, \mathbf{v}) \cap A, \mathbf{x}) < \epsilon$ whenever $\mathbf{y} \in A$ and $d_{\infty}(L(\mathbf{x}, \mathbf{v}), \mathbf{y}) < \delta$. (This is equivalent to the definition of \mathbf{v} -cylindrical in [9].) The set A is said to be *v*-tubular if it is **v**-tubular at every \mathbf{x} in the closure of A. A subset A of \mathbb{R}^n is said to be *basically tubular* if A is \mathbf{e}_i -tubular for each vector $\mathbf{e}_1, \ldots, \mathbf{e}_n$ in the standard basis of \mathbb{R}^n . Included in the class of

344

basically tubular sets are all smooth rotund convex bodies and all polyhedral convex sets in \mathbb{R}^n . An example of the latter is the set of all nondecreasing vectors, i.e., all vectors **x** such that $x_i \leq x_j$ whenever i < j. See [9] for a discussion of tubular sets and a proof of the following lemma. We suppose for the remainder of this section that *K* is $\|\cdot\|_{\infty}$ -closed, convex and basically tubular.

LEMMA 3. Suppose $B \subset \mathbb{R}^m$ is basically tubular. If $\mathbf{u} \in B$, if $1 \leq k \leq m$ and if $\epsilon > 0$, then there is a $\delta = \delta(\mathbf{u}, \epsilon) > 0$ such that, if $\mathbf{v} \in K$ and $|u_i - v_i| < \delta$, $1 \leq i \leq k$, then there is a vector $\mathbf{w} \in K$ such that $w_i = v_i$, $1 \leq i \leq k$, and $||\mathbf{u} - \mathbf{w}||_{\infty} < \epsilon$.

To streamline our discussion, we will embed \mathbb{R}^n in \mathbb{R}^{2n} . Let $\mathbf{z} = (x_1, y_1, x_2, y_2, \dots, x_n, y_n)$ and let $\tilde{K} = \{\tilde{\mathbf{v}} = (v_1, v_1, v_2, v_2, \dots, v_n, v_n) : \mathbf{v} \in K\}$. Then \tilde{K} is a basically tubular subset of \mathbb{R}^{2n} [7]. If $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, let $|||(\mathbf{a}, \mathbf{b})|||_p = \max\{||\mathbf{a}||_p, ||\mathbf{b}||_p\}$. Then $||| \cdot |||_p$ is a norm on \mathbb{R}^{2n} and \mathbf{s}^p is a $||| \cdot |||_p$ -best approximation to \mathbf{z} from \tilde{K} . Thus, the set $K_{\infty} := \{\tilde{\mathbf{v}} \in \tilde{K} : d_{\infty}(\mathbf{v}; \mathbf{x}, \mathbf{y}) = d_{\infty}(K; \mathbf{x}, \mathbf{y})\}$ is not empty. We construct the *strict* approximation to \mathbf{z} as follows: if $\tilde{\mathbf{v}} \in K_{\infty}$, let $\phi(\tilde{\mathbf{v}})$ be the vector whose components are given by $|\tilde{v}_i - z_i|$, arranged in non-increasing order. The strict approximation to \mathbf{z} is the unique $\tilde{\mathbf{s}} \in K_{\infty}$ with $\phi(\tilde{\mathbf{s}})$ minimal in the lexicographic ordering on $\phi(K_{\infty})$.

THEOREM 4. With K, **x** and **y** as defined above, the net $\{\mathbf{s}^p\}$ converges as $p \to \infty$.

PROOF. We will show by induction that $\lim \tilde{s}^p = \tilde{s}$. Let $I = \{1, ..., 2n\}$, let $r_1, r_2, ...$ be the distinct values, in decreasing order, of $\{|\tilde{s}_i - z_i| : i \in I\}$, let C_0 be the empty set, and for each $k \in \mathbb{N}$, let $C_k = \{i \in I : |\tilde{s}_i - z_i| = r_k\}$ and $J_k = I - C_k$. By default, $\tilde{s}^p_i \to \tilde{s}_i$ for each $i \in C_0$.

Suppose that $\lim_{p\to\infty} \tilde{\mathbf{s}}_i^p = \tilde{\mathbf{s}}_i$ for each *i* in C_k , and that $\{\tilde{\mathbf{s}}^{p_\nu}\}$ is a sequence in $\{\tilde{\mathbf{s}}^p : 1 such that <math>\lim_{\nu} \tilde{\mathbf{s}}^{p_\nu} = \tilde{\mathbf{v}}$. Suppose, for contradiction, that there is a λ in C_{k+1} such that $\tilde{v}_{\lambda} \neq \tilde{s}_{\lambda}$. Since $\tilde{\mathbf{v}} \in K_{\infty}$, the minimality of $\phi(\tilde{\mathbf{s}})$ implies that there is a μ in $J := J_k$ such that

$$|\tilde{v}_{\mu}-z_{\mu}|=r>r_{k+1},$$

where $r = \max\{ |\tilde{v}_i - z_i| : i \in J \}$. By Lemma 3, we may choose a sequence $\{ \mathbf{w}^{\nu} \}_{\nu} \subset K$ such that, for every $\nu \in \mathbb{N}$,

(6)
$$\tilde{w}_i^{\nu} = \tilde{s}_i^{\rho_{\nu}}, \quad i \in C_k, \quad \nu \in \mathbb{N}$$

and $\lim_{\nu\to\infty} \|\mathbf{w}^{\nu} - \mathbf{s}\|_{\infty} = 0$. Thus, as $\nu \to \infty$, $d_{p_{\nu}}^{J}(\mathbf{w}^{\nu}; \mathbf{x}, \mathbf{y}) \to d_{\infty}^{J}(\mathbf{s}; \mathbf{x}, \mathbf{y})$ and $d_{p_{\nu}}^{J}(\mathbf{s}^{p_{\nu}}; \mathbf{x}, \mathbf{y}) \to d_{\infty}^{J}(\mathbf{v}; \mathbf{x}, \mathbf{y})$. It then follows from (5) and (6) that there exists a σ such that

$$d_{p_{\sigma}}(\mathbf{w}^{\sigma};\mathbf{x},\mathbf{y}) < d_{p_{\sigma}}(\mathbf{s}^{p_{\sigma}};\mathbf{x},\mathbf{y}),$$

a contradiction.

The above proof requires only notational changes to apply to the case where the ℓ_p norms are weighted, i.e., $\|\mathbf{x}\|_p = (\sum w_i |x_i|^p)^{1/p}$, $1 \le p < \infty$, and $\|\mathbf{x}\|_{\infty} = \sup\{w_i |x_i|\}$, where $w_i \ge 0$, $1 \le i \le n$.

2. Simultaneous Monotone Approximation on [0,1]. Let K be the set of all nondecreasing real valued functions on $\Omega := [0, 1]$ and let $S_p: L_p \times L_p \to L_p$ be defined as in the introduction. The next lemma shows that S_p is a monotone operator.

LEMMA 7. Suppose that $f_i, g_i \in L_p$, $i = 1, 2, 1 . If <math>f_1 \leq f_2$ and $g_1 \leq g_2$, then $S_p(f_1, g_1) \leq S_p(f_2, g_2)$.

PROOF. Let $h_i = S_p(f_i, g_i)$, $i = 1, 2, T_1 = h_1 \wedge h_2 = \min(h_1, h_2)$ and $T_2 = h_1 \vee h_2 = \max(h_1, h_2)$; let $a_i = |f_i - h_i|$, $b_i = |g_i - h_i|$, $c_i = |f_i - T_i|$ and $d_i = |g_i - T_i|$, i = 1, 2. By Lemma 2 in [10],

$$a_2^p + a_1^p \ge c_2^p + c_1^p$$
 and $b_2^p + b_1^p \ge d_2^p + d_1^p$,

so

 $a_2^p \lor b_2^p \ge c_2^p \lor d_2^p$ or $a_1^p \lor b_1^p \ge c_1^p \lor d_1^p$.

If the first case holds, then

$$\max(\|f_2 - h_2\|_p, \|g_2 - h_2\|_p) \ge \max(\|f_2 - T_2\|_p, \|g_2 - T_2\|_p)$$

Since $S_p(f_2, g_2)$ is uniquely defined, $h_2 = T_2 \ge h_1$. By similar reasoning, if the second case holds, then $h_1 = T_1 \le h_2$. This completes the proof of Lemma 7.

Let $f, g \in L_{\infty}$ be fixed and let $h_p = S_p(f, g), 1 .$

LEMMA 8. For $1 , if <math>f, g \in L_p$ and $c \in \mathbb{R}$, then $S_p(f + c, g + c) = h_p + c$.

PROOF. It easily follows from the definition of h_p that $d_p(h_p + c; f + c, g + c) \le d_p(h+c; f+c, g+c)$, for all $h \in K$. Since $K = \{h+c : h \in K\}$, the proof is complete.

LEMMA 9. For $1 , if <math>f, g \in L_p$, I is an open interval and both f and g are constant on I, then $S_p(f, g)$ is constant on I.

PROOF. Let $h = S_p(f,g)$ and let $h'|_I = -h + g + f$ and $h'|_{\Omega \setminus I} = h$. Note that $h'|_I$ is nonincreasing. For notational convenience, we let $||k - l|| = d_p^I(k, l)$. Then ||f - h|| = ||g - h'|| and ||g - h|| = ||f - h'||. If h'' = (h + h')/2 and d = (||f - h|| + ||g - h||)/2, then both $||f - h''|| \le d$ and $||g - h''|| \le d$. But this implies that

$$||f - h''|| \vee ||g - h''|| \le ||f - h|| \vee ||g - h||.$$

Since h'' = (g+f)/2 is constant on *I* and $h = S_p(f, g)$, it must be that h'' = h, so h' = h. Thus $h|_I$ is both nondecreasing and nonincreasing, hence constant.

Let f and g be quasi-continuous functions on [0,1]. Since step functions are uniformly dense in the space of quasi-continuous functions (see [15]), for any $n \in \mathbb{N}$ there are step functions

(10)
$$f_n = a_1 \chi_{[0,t_1]} + \sum_{i=2}^{k_n} a_i \chi_{(t_{i-1},t_i]} \text{ and } g_n = b_1 \chi_{[0,t_1]} + \sum_{i=2}^{k_n} b_i \chi_{(t_{i-1},t_i]},$$

(where χ_A is the indicator function of A, i.e., $\chi_A(t) = 1$ if $t \in A$ and $\chi_A(t) = 0$ if $t \notin A$) such that $||f - f_n||_{\infty} < n^{-1}$ and $||g - g_n||_{\infty} < n^{-1}$, where $\{0 = t_0 < t_1 < \ldots < t_n =$

346

1} is the common refinement of the partitions of [0,1] associated with the canonical representations of f_n and g_n . Let $h_{n,p} = S_p(f_n, g_n)$. By the last lemma, $h_{n,p}$ must have the form

(11)
$$h_{n,p} = c_1^p \chi_{[0,t_1]} + \sum_{i=2}^{k_n} c_i^p \chi_{(t_{i-1},t_i]}.$$

Thus, we are in the context of weighted discrete simultaneous approximation (where $f_n = \{a_i\}_{i=1}^{k_n}, g_n = \{b_i\}_{i=1}^{k_n}, h_{n,p} = \{c_i^p\}_{i=1}^{k_n}$ and $w_i = t_i - t_{i-1}$ so, by Theorem 4, there are numbers $c_i^{\infty}, 1 \le i \le k_n$, such that

(12)
$$\lim_{p\to\infty} h_{n,p} = h_{n,\infty} = c_1^{\infty} \chi_{[0,t_1]} + \sum_{i=2}^{k_n} c_i^{\infty} \chi_{(t_{i-1},t_i]}.$$

LEMMA 13. In the above context, for every $\epsilon > 0$, there exists an $N = N(f, g, \epsilon)$ such that for all $n \ge N$ and $p \in (1, \infty)$, $||h_{n,p} - h_p||_{\infty} < \epsilon$.

PROOF. Let $\epsilon > 0$ be given. Then there is an integer N such that $||f - f_n||_{\infty} < \epsilon$ and $||g - g_n||_{\infty} < \epsilon$ for all $n \ge N$. Thus, except on a set of measure zero, $n \ge N$ implies that (14) $f_n < f + \epsilon$, $g_n < g + \epsilon$, $f < f_n + \epsilon$, and $g < g_n + \epsilon$.

The Lemma follows from (7), (8) and (14).

We are now ready to state our principal result.

THEOREM 15. Let f and g be as given in (13). Then the net $\{h_p\}$ converges uniformly as $p \to \infty$.

PROOF. Let $\epsilon > 0$ be given. Then there exists *N* such that $||f_n - f_m||_{\infty} < \epsilon$, and $||g_n - g_m||_{\infty} < \epsilon$ for all $n, m \ge N$. An argument similar to that in the last proof shows that there exists an $N = N(f, g, \epsilon)$ such that for every $n, m \ge N$ and $p \in (1, \infty)$, $h_{n,p} < h_{m,p} + \epsilon$ and $h_{m,p} < h_{n,p} + \epsilon$. Letting $p \to \infty$, we obtain

(16)
$$\|h_{n,\infty} - h_{m,\infty}\|_{\infty} < \epsilon, \quad n,m \ge N.$$

Hence $\{h_{n,\infty} : n = 1, 2, ...\}$ converges uniformly to, say, h_{∞} . Since the values of N in (13) and (16) are independent of p, (12), (13) and (16) and the triangle inequality imply that h_p converges uniformly to h_{∞} as $p \to \infty$.

The example in §4 of [3] may easily be altered to show that mere *approximate* continuity of f and g does not guarantee the convergence of the Pólya algorithm. However it does guarantee that h_p is continuous, 1 , as is shown in the following theorem. If <math>f and g are continuous, then both are quasi-continuous and approximately continuous, so, by (15) and (17), h_{∞} is continuous on (0,1).

THEOREM 17. If f and g are approximately continuous and $p \in (1, \infty)$, then h_p is continuous on (0, 1).

PROOF. Suppose for contradiction that h_p has a jump discontinuity at $a \in (0, 1)$. We may assume without loss of generality that $g(a) \leq f(a)$.

We may approximate the above functions by step functions. Indeed, let $\sigma = g(a)$, $\tau = f(a), \lambda = h_p(a^-) = \lim_{t \uparrow a} h_p(t)$ and $\mu = h_p(a^+)$ and suppose that $\alpha > 0$. By Lemma 9, there exists an $\eta \in [\lambda, \mu]$ and $\epsilon = \epsilon(\alpha) > 0$ such that $\max\{\alpha(|\tau - \mu|^p + |\tau - \lambda|^p), \alpha(|\lambda - \sigma|^p + |\mu - \sigma|^p)\} = \max\{2\alpha|\tau - \eta|^p, 2\alpha|\eta - \sigma|^p\} + \epsilon$. If α is replaced by a multiple of α in the last equality, then ϵ is replaced by the same multiple of ϵ . Thus there exists a K > 0 such that $\epsilon(\alpha) = K\alpha$. Hence

$$\max\{|\tau - \mu|^{p} + |\tau - \lambda|^{p}, |\lambda - \sigma|^{p} + |\mu - \sigma|^{p}\} = \max\{2|\tau - \eta|^{p}, 2|\eta - \sigma|^{p}\} + K.$$

Let $h_p^r(t) = h_p(t)$ if t > a and $h_p^r(t) = \mu$ if $t \le a$, and define h_p^ℓ similarly, with reversed inequalities. Then each of h_p^r and h_p^ℓ is continuous at a so, by Theorem 5.4 in [1], each of $|h_p^j - k|^p$, j = r, l, k = f, g, is approximately continuous at a. By Theorem 8.2 in [1],

$$\lim_{\delta \to 0} \delta^{-1} \int_{a}^{a+\delta} |h_{p}^{r} - k|^{p} = |h_{p}^{r}(a) - k(a)|^{p}, \quad k = f, g,$$

and similar statements hold for h_p^{ℓ} , with integration from $a - \delta$ to a. Since K > 0 there exists a $\delta > 0$ such that $M(h_p) > M(\eta)$, where

$$M(z) = \max\left\{\delta^{-1}\int_{a-\delta}^{a+\delta}|z-f|^p, \delta^{-1}\int_{a-\delta}^{a+\delta}|z-g|^p\right\}.$$

If h_p^* is defined by

$$h_p^* = \begin{cases} \eta, & t \in [a - \delta, a + \delta] \\ h_p(t), & \text{otherwise,} \end{cases}$$

then h_p^* is a better simultaneous L_p approximation to f and g than is h_p , a contradiction.

3. The Legg-Townsend Method. In [11], Legg and Townsend showed that if f has one-sided limits at a few select points, then $\lim_{p\to\infty} f_p$ can actually be constructed. Their method appears to require only trivial modifications to apply in the context of simultaneous approximation. We now provide an outline of this method, along with some of the necessary changes:

1. Divide [0, 1] into a finite number of sub-intervals, starting with the interval $[x_{11}, y_{11}]$ where b_{11} is the essential maximum, over all pairs (x, y) such that $x \le y$, of

$$\left\{ \left(f(x) - g(y) \right)^{+}, \left(g(x) - f(y) \right)^{+}, \left(f(x) - f(y) \right)^{+}, \left(g(x) - g(y) \right)^{+} \right\}.$$

On this interval, let $h_{\infty}(x) = (1/2)[(f,g)(x_{11}^1) + (f,g)(y_{11}^1)] = A_{11}$, where (f,g) depends on the outcome of b_{11} , and x_{11}^1 , y_{11}^1 satisfy $x_{11} \le x_{11}^1 \le y_{11}^1 \le y_{11}$ and $(f,g)(x_{11}^1) - (f,g)(y_{11}^1) = b_{11}$.

2. Continue partitioning $[0, 1] - [x_{11}, y_{11}]$ in a similar manner, and defining h_{∞} on every subinterval, bearing in mind the monotonicity of h_{∞} .

3. Generalize Theorem 3.1 in [11]. If f and g are simple Lebesgue measurable functions and if $\lim_{x\to x_{ij}^{+}} f(x)$, $\lim_{x\to x_{ij}^{+}} g(x)$, $\lim_{x\to x_{ij}^{-}} f(x)$ and $\lim_{x\to x_{ij}^{-}} g(x)$ exist for each x_{ij} , y_{ij} as computed from the construction steps, then h_p converges uniformly to h_{∞} on [0, 1]. An outline of the proof follows. We will consider the case where $b = b_{11}$, the essential maximum, over all pairs (x, y) such that $x \le y$, of $(g(x) - f(y))^+$, is positive, $x_{11}^{11} < y_{11}^{11}$ and

$$x_{11}^{11} = \sup\{x_{11} \le x \le y_{11} : \mu[x_{11} < t < x : g(t) \neq g(x_{11}^1)] = 0\},\$$

and

$$y_{11}^{11} = \inf\{x_{11} \le y \le y_{11} : \mu[y < t < y_{11} : f(t) \ne f(y_{11}^{1})] = 0\}.$$

All other cases are similar. Let $\epsilon > 0$ be given. Choose p_0 large enough so that if $p \ge p_0$, then $(b/2 + \epsilon)^p (y_{11}^{11} - y_{11}) > (b/2)^p$. If $h_p(x) \ge h_{\infty}(x) + \epsilon$ for some $x \in (x_{11}, y_{11}^{11}]$. Then by monotonicity, $h_p(x) \ge h_{\infty}(x) + \epsilon$ for all $x \in (y_{11}^{11}, y_{11}]$. Also we have $|f(x) - h_p(x)| \ge b/2 + \epsilon$ a.e. on $(y_{11}^{11}, y_{11}]$. From the way h_{∞} was constructed, we conclude that $|g(x) - h_{\infty}(x)| \le b/2$ a.e. on [0, 1]. Hence

$$\begin{aligned} \|g - h_{\infty}\|_{p}^{p} &\leq (b/2)^{p} < (b/2 + \epsilon)^{p}(y_{11} - y_{11}^{11}) \\ &\leq \int_{x_{11}}^{y_{11}} |f(x) - h_{p}(x)|^{p} dx \leq \|f - h_{p}\|_{p}^{p} \end{aligned}$$

Similarly $||f - h_{\infty}||_{p}^{p} \le ||f - h_{p}||_{p}^{p}$. Combining the last two inequalities, we conclude that h_{∞} is a better best L_{p} -simultaneous approximation to f and g than is h_{p} , a contradiction.

REFERENCES

- A. M. Bruckner, *Differentiation of Real Functions*. Lecture Notes in Mathematics, 659, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
- 2. E. W. Cheney, *Multivariate Approximation Theory: Selected Topics*. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1986.
- 3. R. B. Darst and R. Huotari, Best L₁-approximation of bounded approximately continuous functions on [0, 1] by nondecreasing functions, J. Approx. Theory 43(1985), 178–189.
- 4. R. B. Darst and S. Sahab, Approximation of continuous and quasi-continuous functions by monotone functions, J. Approx. Theory 38(1983), 9–27.
- J. Descloux, Approximation in L^p and Chebyshev approximation, J. Soc. Ind. Appl. Math. 11(1963), 1017– 1026.
- 6. D. S. Goel, A. S. B. Holland, C. Nasim and B. N. Sahney, On best simultaneous approximation in normed linear spaces, Canad. Math. Bull. 17(1974), 523–527.
- **7.** R. Huotari, *Tubular sets in* \mathbb{R}^n , with applications to multivariate approximation, to appear.
- 8. _____, The p-limit selection in uniform approximation, to appear.
- 9. R. Huotari, D. Legg and D. Townsend, *The Pólya algorithm on cylindrical sets*, J. Approx. Theory **53**(1988), 335–349.
- D. Landers and L. Rogge, On projections and monotony in L_p-spaces, Manuscripta Math. 26(1979), 363– 369.
- 11. D. Legg and D. Townsend, Best monotone approximation in $L_{\infty}[0, 1]$, J. Approx. Theory 42(1984), 30–35.
- **12.** W. H Ling and H. W. McLaughlin, *Approximation of random functions*, J. Approx. Theory **20**(1977), 10–22.
- 13. T. Robertson, F. T. Wright and R. L. Dykstra, Order Restricted Statistical Inference. Wiley, New York, 1988.

R. HUOTARI AND S. SAHAB

14. S. Sahab, On the monotone simultaneous approximation on [0, 1], Bull. Austral. Math. Soc. 39(1988), 401-411.

15. A. C. M. Van Rooij and W. H. Schikhof, A Second Course on Real Functions. Cambridge, 1982.

Department of Mathematics Idaho State University Pocatello, Idaho USA 83209 Internet: HUOTARIR@CSC.ISU.EDU

Mathematics Department King Abdulaziz University Jeddah 21413 Saudi Arabia

350