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Abstract
In the absence of a complete voting record, decision records are an important data source to analyze com-
mittee decision-making in various institutions. Despite the ubiquity of decision records, we know surpris-
ingly little about how to analyze them. This paper highlights the costs in terms of bias, inefficiency, or
inestimable effects when using decision instead of voting records and introduces a Bayesian structural
model for the analysis of decision-record data. I construct an exact likelihood function that can be tailored
to many institutional contexts, discuss identification, and present a Gibbs sampler on the data-augmented
posterior density. I illustrate the application of the model using data from US state supreme court abortion
decisions and UN Security Council deployment decisions.

Keywords: Bayesian; Random Utility Models; Discrete Choice Models

At every level of politics, from a city council meeting up to the United Nations Security Council,
committees—groups of representatives—make rules, monitor and enforce compliance. While
many of these committees adopt decisions by some form of voting, the absence of a complete
voting record is an unfortunate but common feature of many of them. A large majority of domes-
tic and international institutions such as courts, central banks, or intergovernmental organiza-
tions does not publish voting records consistently.1

While the reasons for the lack of a voting record are plentiful, the consequences for quantitative
empirical research are the same: making inferences regarding how observables are related to
committee members’ vote choices is challenging. In a search for a means to make inferences,
some studies have turned to committees’ decision records. A decision record can generally be
defined as a list detailing the adoption or rejection decisions of a committee as a whole. Using
these data, such studies estimate the effect of observables on the probability of the committee adopting
or rejecting a decision to learn about the effect of these observables on members’ vote choice.

*For helpful comments and suggestions, I thank Stephen Chaudoin, Tom Clark, Songying Fang, Carlo Horz, Simon Hug,
Matt Loftis, Will Lowe, Lars Mäder, Nikolay Marinov, Christoph Mikulaschek, Simon Munzert, Adam Scharf, Curtis
Signorino, Tilko Swalve, and Anna Wilke. I am also grateful to the members of my dissertation committee, Thomas
König, Thomas Gschwend, Jeff Gill, and Daniel Stegmueller.

1For example, according to an analysis of data from 93 central banks that responded to a questionnaire from the Bank of
England in the 1990s, only six publish voting records (Japan, Korea, Poland, Sweden, the United Kingdom, and the United
States) (Fry et al., 2000, Chart 7.3). In a survey conducted by this author of 12 international organizations mentioned in
Schermers and Blokker (2011) that have nonplenary organs and operate on a global scale, eight use a show of hands
(ITU, UPU, ILO, UNESCO, WHO, IMO, WMO, and IAEA), two voting by assent (IMF, IBRD/IDA “World Bank”) and
one a secret vote (ICAO) as ordinary vote-casting procedure. Except for FAO on some issues, none uses recorded voting
as an ordinary voting procedure, but the rules of procedure typically allow committee members to request a recorded
vote (exceptions are the IMF, World Bank, and WMO).
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A typical example of this strategy is the literature on UN peace operations. The central puzzle
in this literature is why the UN Security Council deploys UN peace operations in some conflicts
but not others. One major line of inquiry is to evaluate whether UN Security Council permanent
members’ self-interest—captured by variables such as previous colonial relations, military alli-
ances, and trade relationships—prevents more decisive actions by the Council.2 Since most
votes on UN peace operation deployments are unavailable, studies in this literature cannot esti-
mate the effect of (measured) self-interest on permanent members’ vote choice but estimate only
the effect of average (measured) self-interest on the Council’s decision to approve or reject UN
peace operations.

This paper is about how to analyze decision records and the relative costs of using decision
instead of voting records. Typically, as, for example, in the literature on UN peace operations,
the decision record is assumed to be drawn from a convenient stochastic distribution, which
allows the analyst to employ a standard model for inference (e.g., a probit model). Deviating
from this reduced-form approach, I introduce a Bayesian structural model deriving the exact sto-
chastic distribution of decision record data from the vote-choice distributions that determine a
decision. To arrive at the structural likelihood function of the observed data, I model each unob-
served vote choice with an ordinary probit model: the choice to vote one way or the other is a func-
tion of observable variables and a vector of coefficients. However, since choices are unobserved, I
integrate out the actual vote choices to arrive at a likelihood function that is a function of observables,
coefficients, and the institutional context but not of the unobserved vote choices. I highlight the
intimate connection between the likelihood function and the little-known Poisson’s Binomial distri-
bution (Wang, 1993) and its relationship to the bivariate probit with partial observability (Poirier,
1980; Przeworski and Vreeland, 2002) and discuss (classical) parametric identification. I derive a
suitable Gibbs sampler to simulate from the exact posterior density. This Gibbs sampler
is implemented in this author’s open-source R-package consilium that accompanies this paper.

The Bayesian structural model clarifies the main methodological challenge with decision
records, incorporates additional information about the structure of the data-generating process,
and has practical advantages. First, it makes the costs of (partial) aggregation transparent. As I
discuss in detail, these costs include not estimable member-specific effects, an increase in poster-
ior uncertainty, and, in some circumstances, an aggregation bias. These costs can be mitigated by
including partially observed votes, which is computationally straightforward within the structural
model but infeasible in a reduced-form model. Furthermore, the structural model allows the ana-
lyst to calculate vote-choice probabilities, which is also infeasible with a reduced-form model.
Perhaps surprisingly, vote-choice probabilities are not linear functions of adoption probabilities.
This is because adoption probabilities are conditional probabilities with respect to the institu-
tional context, while vote-choice probabilities are unconditional probabilities. To the extent
that the analyst aims to learn how observables are related to members’ vote choices or intends
to make comparisons across institutional contexts, the structural model is a more suitable way
of analyzing decision-record data. Finally, I also show that the correct reduced-form model is
not necessarily the one that is typically estimated in practice.

I conduct Monte Carlo experiments to verify that the model works as expected, and I replicate
a study by Caldarone et al. (2009) on US state supreme courts to contrast the inference when a
voting record is used with the inference when I artificially delete (a subset of) the recorded votes
retaining the decision record. To highlight the advantages of the structural model relative to a
reduced-form model, I return to the example of the UN Security Council and estimate whether
a UN Security Council member is more likely to support the deployment of a UN Blue Helmet
operation if it has strong trade relationships with the conflict location. I conclude this paper with
a short discussion on the (types of) institutions for which one can successfully compile a decision
record in the first place and then apply the partial m-probit.

2For example, Gilligan and Stedman (2003); Hultman (2013); Stojek and Tir (2015).
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1. Modeling decision records
I consider a setting with a committee of M members (i = 1, . . . , M) and J decisions
(j = 1, . . . , J). A member’s vote is a binary random variable, yij [ {0, 1} corresponding to mem-
bers’ binary vote choices to adopt or reject a proposal (no or yes). Crucially, the votes are not
observed. The vote of each member is governed by a vector of K covariates (observables), denoted
xij. While the analyst does not observe the votes, he or she observes the binary outcome of the
voting, which I denote with bj [ {0, 1}, where bj is zero if the proposal was rejected. A generic
dataset that clarifies the notation appears in Table 1.

Note that, if the votes had been observed, the data could be analyzed with standard discrete-
choice models. The aggregation of the voting record complicates matters here, and it is this com-
plication that I address.

My setting is different from that of ecological studies since the covariates are not aggregated
but fully observed, the dependent variable is binary instead of continuous or categorical, and
the number of vote choices is much smaller. The setting also differs from aggregate studies,
where the analyst usually observes only a sample of the members.3 The setting I consider is
one in which the values for all covariates for all members are available to the analyst.

1.1 Model statement

Let Xj be an M × K matrix that collects all covariates for all M members for each decision j, and
let yj be the vector of length M collecting all votes, y1j, . . . , yMj, for the corresponding proposal. I
refer to this vector as the vote profile.4 I define y∗j as the vector of latent utilities forM members to
support a decision j. An element of this vector is the latent utility of member i, denoted y∗ij.
Member i votes yes if y∗ij ≥ 0. For simplicity, I assume that the latent utility is a linear function
of the covariates with the corresponding parameter vector b.

Let the voting rule that governs the adoption or rejection of a proposal be a q-rule, with a
majority threshold R, such as a simple majority rule or a supermajority rule.5 If the number
of votes, that is,

∑M
i=1 yij, is less than R, the rejection decision (bj = 0) is realized; otherwise,

the decision to adopt is realized (bj = 1). Using this notation, the model can be written as follows:

y∗j = X jb+ e j

ej �iidf(0, 1)

yij =
0 if y∗ij , 0

1 otherwise

{
,

b j = 0 if
∑M

i=1 yij , R
1 otherwise

{
,

(1)

where f(0, 1) is the standard multivariate normal density. The model rests on two assumptions:

3Aggregate data analysis is a growing body of literature in biostatistics (Wakefield and Salway, 2001; Hanseuse and
Wakefield, 2008), but see Glynn et al. (2008) for a social science application. Aggregate studies differ from ecological studies
in two key respects: they incorporate additional, partially available individual-level data, and they model the aggregate out-
come based on models of individual behavior (Wakefield and Salway, 2001).

4Throughout the text, I follow the convention denoting vectors and matrices in bold letters.
5I use a simple, constant q-rule to reduce notational clutter but, as will become clear, the model and the Gibbs sampler can

handle decision-specific simple rules. Simple rules can be characterized by decisive coalitions (the set of all vote profiles that
lead to the adoption of a proposal) and encompass many generally used voting rules, including weighted-majority rules
(weighted q-rules) and veto-majority rules (collegial rules). However, plurality rule and Borda count are not simple rules.
For a formal definition of voting rules, see Austen-Smith and Banks (1999, Chap. 3.1).
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(1) coefficients are shared across all committee members, and (2) vote choices are conditionally
independent. The latter assumption corresponds to the familiar sincere-voting assumption made
typically in ideal-point models (e.g., Poole and Rosenthal, 1985; Clinton et al., 2004). As will
become clear from Section 1.3, these two assumptions are necessary for classical identification
of the likelihood. However, they could be relaxed if a partially observed voting record is available
to the analyst (see Section 4.3).

In most applications, vote choices will not be fully independent after conditioning on obser-
vables. However, this will not necessarily distort the inference as long as the correlation among
vote choices is induced by unobservables that are independent of the covariate for which the ana-
lyst wants to estimate marginal effects. In this situation, the unobservables are said to be neglected
heterogeneity that will only rescale the coefficient estimates in the same way that neglected het-
erogeneity affects probit models (e.g., Wooldridge 2001: 470). I provide more details in the
Supplementary Information (SI-C).

I have also made two additional assumptions that could easily be relaxed. First, I assumed that
the voting rule by which the committee makes decisions is known with certainty and followed
strictly. Second, proposals are conditionally independent. I relax the latter assumption by mod-
eling the unobserved heterogeneity across groups with a random intercept in the Supplementary
Information (SI-D). The former assumption might be relaxed by modeling R parametrically. I
leave this extension to future work.

I refer to the model above as a multivariate probit model with partial observability or, for
short, the partial m-probit. Multi- or k-variate probit models are usually employed to allow
for correlated choices by estimating the correlation matrix from the data. Similar to the selection
model for continuous outcomes popularized by Heckman (1976), bivariate probit models as
selection models, for instance, allow for correlated error terms across a sample selection and a
structural equation with binary outcomes (Dubin and Rivers, 1989). The problem addressed
by the partial m-probit is not one of correlated (sequential) choices but of the nonobservability
of the simultaneous choices.

1.2 Likelihood and prior density

The probability of observing a decision is the sum over the probabilities of the vote profiles that
could have realized it. The probability of each of these vote profiles is the product over the indi-
vidual choice probabilities, which are—as in a probit model—a linear function of covariates and
parameters. The product over all decision probabilities yields the likelihood of the data. Next, I

Table 1. A generic dataset for a committee with M members, having made J
decisions

Observed
Unobserved

Member Decision Covariates Outcome Vote

1 1 x11
⎫⎪⎪⎬
⎪⎪⎭b1

y11
2 1 x21 y21
⋮ ⋮ ⋮ ⋮
M 1 xM1 yM1

⋮ ⋮ ⋮ ⋮ ⋮
1 J x1J ⎫⎪⎪⎬

⎪⎪⎭bJ

y1J
2 J x2J y2J
⋮ ⋮ ⋮ ⋮
M J xMJ yMJ

The observed decision outcome (bj ) is realized given a voting rule and the (unobserved) votes (yij ).
For each member–decision combination, there is a vector of covariates (xij ).
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define the probability of one vote profile and the sets of hypothetical vote profiles that can realize
a particular decision outcome. Using these two definitions, I state the likelihood of the data.

Using the assumption of independent choice making, the probability of observing a vote pro-
file yj is the product over the individual choice probabilities for proposal j or, equivalently, inte-
grating over the latent utility in each dimension on the interval that corresponds to the observed
vote choice. Formally, this

f (y j, X j|b) =
∫
p1j

. . .

∫
pMj

f(y∗j |X jb)dy
∗
j

= FP(yj)(Xjb),

(2)

where f(.) is the M-dimensional multivariate normal density and pij is the interval that corre-
sponds to the vote choice yij in the profile yj, that is, pij = [0, 1) if yij = 1 and pij = (−1, 0)
if yij = 0. To write this more compactly, I define P(yj) as the function that generates all
p1j, . . . , pMj given yj and let FP(yj)(·) be the implied distribution function.

Let ỹ be a hypothetical vote profile and let V(1) be the set of all hypothetical vote profiles for
which

∑
i ỹi ≥ R holds. In other words, this set contains all vote profiles that realize an adoption

outcome (bj = 1). Let V(0) be the complement set. Both sets are always finite but potentially
large. For example, in the case of the UN Security Council, V(1) is of size 848 and V(0) of
size 31,920.6

Using these two definitions, I can write the probability for bj = 1 (and its complement) as the
sum over the probabilities for all hypothetical vote profiles that can realize bj = 1 (bj = 0) and,
after additionally relying on the conditional independence assumption across proposals, the like-
lihood is obtained by taking the product over all decisions. Formally, this is

L(b|X, b) =
∏
j

∑
ỹ[V(bj)

[
FP(ỹ)(Xjb)

]
. (3)

Bayesian inference complements the likelihood with a prior density for the parameters (the
coefficients). I follow convention and assume that they are jointly normal with a prior mean
b0 and a diagonal covariance matrix B0. The posterior density is proportional to the product
of the likelihood function in Equation 3 and to the prior density.

The structure of the likelihood function is surprisingly general and can accommodate much
more specific decision records than those with binary adoption/rejection information. Suppose,
for example, that, in addition to knowing that the proposal passed, an analyst also knows that
it passed with some vote margin. In this case, the set of permissible vote profiles V in
Equation 3 can be substantially reduced. In fact, if the analyst knows how each and every member
voted, that is, if there is a voting record, then V shrinks to a set with a single vote profile. In this
case, Equation 3 reduces to a multivariate probit model, which is, since the covariance matrix is
assumed to be the identity matrix, an ordinary probit model with J ×M observations. There is
also nothing in the structure of the likelihood that precludes the amount of information from
varying across decisions. This implies that a partially observed voting record can be accommo-
dated within the likelihood function without difficulty or formal extensions.

Finally, it is worth placing this model in the broader context of the (statistical) literature. The
bivariate probit with partial observability by Poirier (1980) and the bilateral cooperation model by

6Since the five permanent members must always agree, the number of adopting coalitions is identical to the number of
adopting coalitions among the ten nonpermanent members, which is given by

∑ 10
m=4

10
m

( )
. The number of rejecting coalitions

is given by the difference between the total number of coalitions among all members minus the number of adopting coali-
tions, that is,

∑ 15
m=0

15
m

( )−∑ 10
m=4

10
m

( )
.
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Przeworski and Vreeland (2002) emerge as special cases of Equation 3 if M = 2 and the voting
rule is unanimity. In a recent contribution, Poirier (2014) extended his 1980 model to the case of
M . 2 but remains focused on the case of unanimity.7 More importantly, each factor in the like-
lihood above is the (complementary) cumulative density function of Poisson’s Binomial distribu-
tion8 parameterized with a set of probit functions (proofs for both statements appear in SI-A).

1.3 Identification

Before I continue with the computation of the posterior distribution, I discuss the (classical) para-
metric identification of the likelihood. A likelihood is said to be (parametrically) identified if a
unique set of estimates exists for the parameters of a model. In the Supplementary
Information (SI-B), I show that the conditional mean for the likelihood in Equation 3 is always
identified. The system of nonlinear equations that maps the structural parameters b to the
reduced-form conditional means is identified under some conditions. Using a linearization of
this system with a first-order Taylor series expansion, I show that it is identified if the aggregate
design matrix has full rank. The aggregate design matrix of dimension J × K results from stacking
the J vectors that result from column-averaging all Xj matrices on top of each other.

The classical parametric identification condition is empirically verifiable by checking if the
design matrix of the model (X), after averaging all variables for each decision, has linear inde-
pendent columns. Trivially, this condition will fail whether the design matrix before averaging
does not have full rank. However, it will also fail if the design matrix has full rank and a variable
exhibits variation within but not across decisions. In that case, the variable will be constant after
averaging as well as a linear combination of the intercept. This renders the aggregate design
matrix less than full rank, and the effect of the respective variable and the intercept are not sep-
arately identifiable. In practice, this implies, for example, that, for a committee with constant
membership, fixed effects for members or member-specific effects are unidentifiable and conse-
quently cannot be estimated.

The identification condition is based on the linearization of a system of nonlinear equations.
Consequently, there might be instances where the condition of a full-rank aggregate design matrix
holds but a unique set of parameters still does not exist. This is problematic for frequentist infer-
ence because, for example, the properties of the maximum likelihood estimator are at least incon-
venient for unidentified likelihoods. However, in a Bayesian analysis, unidentified likelihoods are
of less concern since the posterior density will still be proper if proper priors are used. The only
consequence is that the marginal posterior density of the intercept will be, in the worst case, per-
fectly negatively correlated with the marginal posterior density of the unidentified effect. From a
theoretical perspective, this is not a problem, but in practice, it means that the Gibbs sampler pre-
sented in the next section will be very slow in exploring the posterior density, which is why an
identified likelihood is advantageous for a Bayesian analysis.

2. Posterior computation
As in most Bayesian models, the posterior density cannot be marginalized analytically, which
prompts me to construct a Gibbs sampler to simulate from the density and use the samples to
characterize the density with a desirable degree of accuracy. A Gibbs sampler requires derivation

7Poirier (1980, 2014) allows for member-specific effects and correlated choices among agents. However, his theoretical
results suggest that, even under a unanimity voting rule, member-specific effects and the correlation among agents’ choices
are at best only partially identifiable from the data. See also Section 1.3 in this paper.

8In the most comprehensive paper on the distribution, Wang (1993) follows a reviewer suggestion and refers to the density
as Poisson’s binomial density. While this name choice is much less confusing than earlier conventions, an even more descrip-
tive name might be “heterogeneous binomial density” since it emerges from the convolution of heterogeneous Bernoulli
densities, and the standard binomial density is a special case if all choice probabilities are identical.
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of the full conditional densities for all unknown quantities in the model. To derive them, I use a
theorem by Lauritzen et al. (1990), who show that, if a joint density (such as a posterior density)
can be written as a directed acyclic graph (DAG), the full conditionals are given by a simple for-
mula (see SI-D).

A DAG representation of the posterior density appears in Figure 1(a). Each node in this graph
is a random variable. Rectangular nodes indicate observed variables (the data and hyperpara-
meters), while circle nodes represent unobserved variables (parameters). An arrow indicates
the dependencies between these variables, and the plates indicate the J replications. The graph
is acyclic since it has no cyclic dependency structure.

The conditional for b in Figure 1(a) is not a member of a known parametric family from
which samples can be easily drawn. To arrive at full conditionals that are easy to sample from,
I follow a data augmentation strategy (Tanner and Wong, 1987) and explicitly introduce two vari-
ables from the derivation of the likelihood. The augmented DAG appears in Figure 1(b). The first
augmentation is identical to the Albert–Chib augmentation in a Bayesian (multivariate) probit
model (Albert and Chib, 1993; Chib and Greenberg, 1998), explicitly introducing y∗j , the latent
utility, in the model. The second augmentation augments the latent utility with yj, the unobserved
votes. Because of this sequential augmentation, I refer to the Gibbs sampler as a double-
augmented Gibbs sampler.

Applying the result from Lauritzen et al. (1990) cited above yields three full conditionals for
the three unobserved variables in the DAG. The conditional for b can then be written as follows:

f (b| b0, B0, y
∗, y, b, X)/ f (b| b0, B0) ×

∏
j

f ( y∗j |Xj,b)

= f
((B−1

0 + X′ X)−1(B−1
0 b0 + X′ y∗),

(B−1
0 + X′ X)−1

)
.

(4)

The two other conditionals and their sampling algorithms are given in the Supplementary
Information (SI-D).

It is not a coincidence that the functional form of the conditional for b is exactly the same as
the conditional for an ordinary probit model and a Bayesian normal regression model when the

Figure 1. Two directed acyclic graphs of the partial m-probit. (a) Unaugmented. (b) Double augmented.
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same prior for b is chosen. The primary difference between a probit model, a partial m-probit,
and a normal regression is that only in the latter case is the variable y∗ fully observed. In the other
two cases, y∗ is observed only in a coerced fashion. However, the precise nature of the coercion is
irrelevant once the data are augmented. In fact, the very purpose of the data-augmentation strat-
egy is to render the coefficients conditionally independent of the coerced data.

The Gibbs sampler, which I refer to as the double-augmented Gibbs sampler, is an iterative
sampling from the conditionals until convergence (see SI-D for the details). It has a very intuitive
sequence: (1) choose some starting value for the coefficients; (2) conditional on these values, the
covariates, and the decision record, draw vote profiles for all decisions; (3) conditional on the vote
profiles and the covariates, draw the vector of latent utilities for all decisions; (4) conditional on
the latent utilities and the covariates, draw the coefficients; and (5) repeat until convergence.

The Gibbs sampler is implemented in an open-source R-package consilium, which accompan-
ies this paper. I also conducted Monte Carlo experiments to verify that the Gibbs sampler (and its
implementation) obtains samples from the posterior density and to provide some insights into
the computational costs of the model (see SI-F).

3. Aggregation costs
Whenever data are aggregated, the analyst pays a price in terms of (a) effects that cannot be esti-
mated, (b) posterior uncertainty (efficiency), and (c) bias for the estimable effects. What are the
costs when analyzing a decision record relative to an analysis with a voting record? The discus-
sion on identification has highlighted that member-specific effects in committees with constant
membership cannot be estimated with decision-record data. This is in sharp contrast to voting
records where member-specific effects can be estimated. If such effects are the object of inquiry,
decision records cannot be used. Moreover, even if the effect of interest is assumed to be shared,
its inference might be hampered if the analyst suspects relevant, unobserved member-specific het-
erogeneity. While such heterogeneity could be modeled with varying intercepts in an analysis of
voting records, it is infeasible with decision records.

For estimable effects, posterior uncertainty and aggregation bias are further potential costs.
Aggregation bias, as discussed in the classical ecological inference literature (Erbring, 1989;
King, 1997), is a form of confounding with the group-assignment variable. Since the number
of groups equals the number of observations in the aggregated sample, adjustment strategies,
that is, weighting with or conditioning by the group-assignment variable, are not feasible.
However, if the group-assignment variable is chosen at random, grouping cannot lead to bias,
the classical example for aggregation bias being spatially aggregated data on vote choice and
race in mass elections. To the extent that electoral districts are drawn with perfect knowledge
about vote choice and race in an election, the effect of race on vote choice in the same election
cannot be inferred without bias.

For aggregation bias to be a threat to inference with decision records, the process of assigning
members to decisions (the “groups”) must be a function of members’ vote choices on a proposal
and some unmeasured covariate. If that were the case, then the proposal-assignment vector would
be a confounder for which we cannot adjust and aggregation bias is unavoidable.9 While mem-
bership in a committee is presumably a function of (expected) vote choices and potentially some
unmeasured covariates, the committee’s membership is usually constant over a certain period.
Within this period of constant membership, aggregation bias cannot occur.

Beyond aggregation bias, there is also the issue of posterior uncertainty since aggregation
reduces the effective sample size. While posterior uncertainty might seem secondary, it becomes

9In SI-E, I illustrate in a proof for the bivariate case with vague priors that the posterior mean of the coefficient is not a
function of the vote choices (but only the decision record) if the proposal-assignment vector is orthogonal to the latent utility
and the covariates. The proof follows directly from classical results in ecological inference (e.g., Erbring, 1989; Palmquist,
1993; King, 1997) that give extensions to the multivariate case.
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paramount once the aggregation reduces information to a point where no variation is left to draw
inference from. For instance, in an institution where all members have a high (low) average prob-
ability of voting one way or the other, there is a chance that the decision record will exhibit no
variation and the posterior equals the prior.10

4. Advantages of the model
Unsurprisingly, the structural model tends to produce more efficient estimates since the amount
of information in the estimation is larger. More importantly, the structural model allows one (a)
to choose the correct reduced-form specification, (b) to estimate vote-choice probabilities instead
of adoption probabilities, and (c) to combine partially observed voting records with decision
records.

4.1 Choosing specifications

Decision records are used for empirical inference on a regular basis with convenient models such
as a probit. However, perhaps surprisingly, the specification that is usually chosen is not the
reduced-form complement to the structural model outlined in the previous section. As an
example, consider this simple partial m-probit:

p(bj = 1) =
∑

ỹ[V(1)

FP(ỹ) b0 + xjb1

( )
(5)

and one reduced-form complement with zj =
∑

i xij:

p(bj = 1) = F b′
0 + zjb

′
1

( )
, (6)

where one might scale zj by dividing by M, which then makes zj the average of xj.
11

However, typically, the sum in Equation 6 is not taken over all members but only a subset. For
example, in studies on the UN Security Council, measures of political or economic closeness
between the conflict location and the permanent members are included (e.g., an indicator for
a defense alliance), although the Council consists of the five permanent and ten nonpermanent
members (e.g., Gilligan and Stedman, 2003; Mullenbach, 2005; Beardsley and Schmidt, 2012;
Hultman, 2013; Stojek and Tir, 2015).

However, leaving out parts of the membership introduces measurement error in zj.
12 As in any

other setting with errors in variables, the resulting coefficient estimates will be biased. Moreover,
the estimated effect cannot generally be interpreted as a member-specific effect since, as shown in
Section 1.3, there is no variation in decision-record data that can identify member-specific effects.

4.2 Estimating vote-choice probabilities

Both the structural model and the reduced-form model allow one to estimate the predicted prob-
ability of observing the adoption of a proposal (the “adoption probability”). These predicted
probabilities can be used to characterize how much a one-unit increase in a covariate changes

10The aforementioned Monte Carlo experiments in SI-F also provide some intuition about the increase in posterior uncer-
tainty that comes with aggregation.

11Strictly speaking, the probit model (or logit model) has no theoretical basis as a reduced-form complement but is often
used in practice. A theoretical justified reduced-form complement is the linear regression model that provides the best linear
approximation to the nonlinear conditional expectation function of the data.

12Only if the means of those members included and those left out coincide for all decisions is no measurement error
introduced.
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the adoption probability. In addition to the adoption probability, the structural model also allows
one to calculate the predicted probability of a supportive vote choice (the “vote choice probabil-
ity”). This quantity is typically calculated when one analyzes a voting record and can be used to
describe how a one-unit change in a covariate changes the vote-choice probability.

While the adoption probability can be of considerable interest in some situations (e.g., if the
analyst intends to predict the adoption of proposals), it must be recognized that it is not only a
function of the coefficients and the covariates but also of the institutional structure (the size of the
membership and the majority threshold). Consequently, it is a conditional probability whose
magnitude, as it turns out, is not a linear function of the vote-choice probability.

To illustrate, consider a committee of 20 members with various majority thresholds between
11 (a simple majority) and 20 (unanimity). To simplify matters without loss of generality, sup-
pose also that the vote-choice probability for all members is homogeneous at 0.75. The vote-
choice probabilities are shown with a solid line in Figure 2. The figure also shows, corresponding
to each of these vote-choice probabilities, the implied adoption probabilities conditional on the
10 majority thresholds (dashes). While the vote-choice probabilities are constant across commit-
tees of various sizes, the adoption probabilities are a monotone, but nonlinear, function of the
vote-choice probabilities.

The monotonicity of the adoption probability with respect to the vote-choice probability is
good news because it suggests that the direction of any effect on the vote-choice probability
can always be inferred from the direction of the effect on the adoption probability. However,
the nonlinearity also suggests that the adoption probability cannot be easily compared across dif-
ferent institutional contexts. Figure 2 illustrates that, even in the absence of differences in vote-
choice probabilities in two different institutional contexts, adoption probabilities will vary if
the membership or majority threshold differs.

Furthermore, the magnitude of the adoption probability can be a very poor indicator of the
magnitude of the vote-choice probability. Figure 2 illustrates that the closer the majority threshold
moves toward unanimity, the smaller the adoption probability becomes up to the point where it is
minuscule. All the while, the vote-choice probability remains constant. This emphasizes that it is
quite important to define what the quantity of interest is when analyzing decision records. If the
analyst’s interest is in understanding how covariates change the vote-choice probability, the
structural model is the more promising approach.

4.3 Including a partially observed voting record

The discussions on the likelihood function and the Gibbs sampler have already highlighted that
including a partially observed voting record is very easy when using the structural model but
infeasible when using a reduced-form model. Ordering the proposals for which only the decision
record is available from j = 1, . . . , K and the proposals for which a voting record is available
from j = K + 1, . . . , J , the two-component likelihood function with parameter vector ḃ takes
the following form:

L̇(ḃ|X, b, Y) =
∏K
j=1

∑
ỹ[V(bj)

(
FP(ỹ)(Xjḃ)

)
·
∏J

j=K+1

FP(yj)(Xjḃ)
( )

, (7)

where Y denotes the stacked matrix of all observed voting profiles. The Gibbs sampler is easy to
expand by simply dropping the sampling of the vote profiles for those proposals where a voting
record is available. It is fairly intuitive that the posterior inference from this likelihood will be
more certain than the posterior inference from the likelihood in Equation 3.

Including a partially observed voting record can also reduce aggregation bias. In the
Supplementary Information (SI-E), I show that the familiar missing-at-random (MAR) condition
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from the literature on missing data (Little and Rubin, 2002) is a necessary assumption to reduce
aggregation bias. In particular, it is necessary that, conditional on the covariates, the observability
of the recorded votes is random. If this assumption is fulfilled, aggregation bias will be removed
from the estimates. Complementarily, if the observed voting record is a nonrandom subset, it
might cause selection bias if incorporated.

Another benefit of including a partially observed voting record is that one can relax the
assumption of shared effects across all committee members. These effects are obviously identifi-
able from voting records and, as discussed in Section 1.3, unidentifiable with decision records.
Consequently, if member-specific effects are of interest and included in the model, the identifying
variation to estimate these effects will come from the variation in the partially observed voting
record. The conditional-independence assumption with respect to vote choices could also be
relaxed for the same reasons.

The ability to supplement a decision record with a partially observed voting record can also
have advantageous consequences for data collection. Consider, for example, a situation where
the analyst wishes to collect another sample of votes from a voting record to decrease the poster-
ior uncertainty but, as it happens, collecting such a sample proves quite expensive. To avoid these
costs, the analyst could instead collect a large sample from the decision record. To the extent that
collecting a large sample from a decision record is much cheaper than a sample from the voting
record, this reduces the costs of data collection.

5. Replication: US State Supreme Court decisions
I replicate a study by Caldarone et al. (2009) to contrast the coefficient estimates when a voting
record is used with the coefficient estimates used when I artificially delete (some of) the recorded
votes and only use the decision record in the analysis. Caldarone et al. (2009) test the prediction
“that nonpartisan elections increase the incentives of judges to cater to voters’ ideological lean-
ings” (p. 563). To test their prediction, the authors assemble a dataset of US state supreme
court decisions on abortion for the period from 1980 to 2006. They collect these data for all
state supreme courts for which judges face contested statewide elections. Their dataset contains
19 state supreme courts (which vary in size between five and nine judges) and a total of 85 abor-
tion decisions.

Figure 2. Illustration of the relationship between vote-
choice and adoption probabilities for a committee of 20
members. The solid line indicates the different vote-choice
probabilities and the dashed line the corresponding adop-
tion probabilities.
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The dependent variable in the authors’ analysis is a regular justice’s vote. Using state-level
opinion data, the authors code each justice’s vote as either popular (if it leans toward the state’s
public opinion) or unpopular. Consequently, the dependent variable takes a 1 if the justice votes
“pro-choice” and the state leans “pro-choice” or if he votes “pro-life” and the state leans “pro-life”
(Caldarone et al., 2009: 565). In the authors’ dataset, 261 votes are popular (43 percent). The
authors’ independent variable of interest is a binary variable indicating whether a supreme
court justice was elected in a nonpartisan election. Of the 85 abortion decisions, 39 were made
in a partisan electoral environment (46 percent).

A replication of the authors’ baseline specification (model 1 in their table) using a Bayesian
probit model appears as the lower row (row 5) in the coefficient plot in Figure 3. The upper
row (row 1) instead shows the results produced when I retained only a binary variable indicating
whether the courts passed a popular decision by majority rule and estimated the same specifica-
tion using the partial m-probit.13 Dropping all votes leaves me with 36 popular rulings (42 per-
cent). In essence, dropping all votes reduces the number of observations for the left-hand side of
the regression equation to 85, while it leaves the observations on the right-hand side unaffected
(N = 605).

For the main variable of interest, nonpartisan election, the posterior probability that there is a
positive effect of nonpartisan elections is still 0.9 even after dropping all votes and despite the
sharp decrease in available information on the left-hand side of the regression equation. The

Figure 3. Regression results from a
Bayesian partial m-probit model
with a decision record (row 1) and
a partially observed voting records
(row 2: 25 percent observed, row
3: 50 percent, row 4: 75 percent) as
well as a Bayesian probit model
with justices’ voting record (row 5).
While the dots indicate the posterior
mean, the segments represent the 95
and 68 percent posterior intervals,
respectively.

13For both models, I use vague normal priors centered at 0 with a variance of 10. The regression table in SI-H contains
detailed information on the Gibbs sampling parameters and convergence.
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estimated effects for the two controls, which exhibit within-case variance, are notable. The effect
of elections in two years is estimated with a similar posterior mean but with considerably larger
posterior uncertainty. The effect of the justices’ party being aligned with public opinion is esti-
mated to be a little larger and to have more posterior uncertainty.

One benefit of the structural model is that it allows one to combine a partially observed voting
record with a decision record to decrease the costs of aggregation. To demonstrate this, I
re-estimate the partial m-probit with random samples of recorded votes and the same prior.
The results appear again in the same coefficient plot (row 2–4). The upper bars (row 2) show
the estimates when, in addition to the decision record, 25 percent of all votes are observed, fol-
lowed by the estimates for 50 and 75 percent. As expected, the greater the number of recorded
votes included in the analysis is, the higher the similarity will be between the estimates of the
partial m-probit and the ordinary probit. For most variables, the trend toward the probit esti-
mates and the decrease in posterior uncertainty appear to be quite linear (e.g., for nonpartisan
election or the justices’ party alignment). However, for some, there is a significant payoff for
observing some votes compared to no votes (e.g., elections in two years). This suggests that, at
least in some situations, collecting a few votes to supplement the decision record can greatly
improve the quality of the estimates.

6. Application: Trade and UN operations
A major line of inquiry in the literature on the UN Security Council aims to understand Council
members’ motives in involving themselves in third-party conflicts within the framework of the
United Nations (e.g., Gilligan and Stedman, 2003; Hultman, 2013; Stojek and Tir, 2015). Are
the members more likely to support a UN Blue Helmet operation in conflicts where they expect
economic or political gains from a swift end to the conflict? I reconsider this question by estimat-
ing the effect of trade relationships between the members and the territories in conflict, highlight-
ing the advantages of using the partial m-probit.

To conduct this analysis, I use a revised version of the cross-sectional panel dataset by
Hultman (2013), which combines the UCDP/PRIO Armed Conflict dataset (Gleditsch et al.,
2002) with the dataset on third-party interventions by Mullenbach (2005). Focusing on intrastate
conflicts that occurred outside the territories of the Council’s permanent members, the effective
number of observations is 885, nested in 102 conflicts. There are 17 conflicts for which the UN
Security Council deployed a UN operation.

I interpret each observation as an instance where each of the 15 Council members14 must
decide to support or oppose the deployment of a UN operation. Consequently, the unit of ana-
lysis in my dataset is a UN Security Council member’s binary support choice per conflict-year. I
supplement these data with information about the size of total trade (export and imports)
between a Council member and the conflict location (Barbieri et al., 2009).15

There is no complete voting record from the UN Security Council. While some votes from the
UN Security Council are on record and could be incorporated, these recorded votes constitute a
selected sample from the set of all votes. This is because the Council conveys “in public only to
adopt resolutions already agreed upon” (Cryer, 1996: 518). “By the time the resolutions come to a
vote, it is usually known by all how much support there will be for each” (Luard, 1994: 19). Most
conflicts are never discussed in the Council or they are discussed but the Council cannot agree on
whether to deploy a UN operation. Consequently, recorded votes only occur in very particular
circumstances (if the Council agrees to deploy) and incorporating these recorded votes is likely
to result in a selection bias.

14The UN Security Council uses a veto-majority rule. Specifically, nine out of 15 member states must approve a proposal,
but each of the five permanent members (China, France, Russia, the United Kingdom, and the United States) has a veto.

15For a detailed description of the data, see SI-G.
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I condition on a set of common causes to decrease the threat of confounding and also include
a varying intercept for the conflict location. In order to account for annual and conflict-period
trends, I include two B-splines (with the deployment year and the period of the conflict).
Except for the binary independent variables, I center and scale all variables by twice their stand-
ard deviation before estimating each model, which aids in the construction of weakly informative,
normal priors centered at 0 and a variance of 5.

The estimates appear in Table 2 in the row labeled model 1 (see also SI-H, for the full table and
details on the Gibbs sampling parameters and convergence). The estimates suggest that an
increase in trade between a Council member and the conflict location decreases a member’s
probability of supporting a UN operation. The posterior probability for this effect to be negative
is 0.95.

To illustrate the difference between the inference from the partial m-probit and a
reduced-form model, I aggregate the data to a dataset of conflict-years. In the aggregated dataset,
the trade variable measures the total trade of all Council members with the conflict location. The
estimates from a probit model appear in Table 2 in the row labeled model 2. As expected, the sign
of the association is identical to model 1. Interestingly, the posterior probability for this
association to be negative is only 0.89—reflecting that the partial m-probit delivers more efficient
estimates. Notice that the magnitude of the coefficient from model 2 provides no information
about how trade between a Council member and the conflict location decreases a member’s prob-
ability of supporting a UN operation. This information is only available from the partial m-probit
estimate.

Typical studies on the UN Security Council16 do not include covariates that measure the vari-
ation of a concept across all members but, rather, usually focus on the permanent five (the P5).
To illustrate that this can lead to a misleading inference in the trade case, I estimate the effect of
total trade of the P5 leaving out the contribution from the ten nonpermanent members (see row
labeled model 3 in the Table 2) and include each P5 trade share separately (rows labeled models
4–8). As explained in Section 4.1, none of these estimates can be interpreted as estimates of the

Table 2. Regression results from a Bayesian partial m-probit model (model 1, N = 15× 885) and seven Bayesian probit
models (model 2–8, N = 885) each with posterior means and 95 percent posterior intervals in parentheses

Model Variable Posterior

Model 1 log(Trade) −1.09
[− 2.61, 0.15]

Model 2 log(Trade) of all mbrs. −1.02
[− 3.05, 0.66]

Misspecified
Model 3 log(Trade) of P5 only −1.40

[− 3.55, 0.26]
Model 4 log(Trade) of US only −1.02

[− 3.02, 0.71]
Model 5 log(Trade) of UK only −2.97

[− 6.36, − 0.50]
Model 6 log(Trade) of FR only −0.15

[− 1.60, 1.63]
Model 7 log(Trade) of RU only −2.09

[− 4.75, − 0.24]
Model 8 log(Trade) of CN only −1.31

[− 3.34, 0.41]

All models include covariates, varying intercepts and B-splines (df = 3).

16See, for example, Gilligan and Stedman (2003); Mullenbach (2005); Fortna (2008); Beardsley and Schmidt (2012);
Hultman (2013) and Stojek and Tir (2015).
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effect of trade on the respective members’ vote choices (or the heterogeneous effect of trade on
members in general). Instead, the estimates from the models 3–8 can be interpreted as a version
of the estimates in model 2 but contaminated by measurement error.

The results here are at odds with the recent analysis by Stojek and Tir (2015). Using data from
Fortna (2008) and a logit model on UN peacekeeping deployment, they estimate a positive effect
of the P5 total trade volume on the probability of deployment. While their unit of analysis is a
ceasefire analysis, the positive effect they estimate is largely driven by conflicts in which perman-
ent members are directly involved (e.g., the Northern Ireland conflict), while the data I use
exclude all conflicts that occur in the territory of the permanent member states.

7. Discussion
Analyzing a decision record instead of a voting record is not something for which one would
hope. The aggregation of vote choices by a voting rule increases the uncertainty of estimable
effects and may even bias them. It also prohibits the estimation of member-specific effects.
However, confronted with the choice between abstaining from an analysis or relying on decision
records, an analyst might still prefer the latter. In this paper, I argue that, if the analyst decides to
examine the decision record, his or her analysis can be improved by turning to a structural model
instead of opting for a convenient reduced-form model.

In this paper, I highlight several advantages of the structural model; however, the most import-
ant might be that it allows one to bring partially observed voting records into the analysis. Inter
alia, the replication of the study by Caldarone et al. (2009) highlights that there are large benefits
in terms of efficiency when analyzing a decision record jointly with a voting record sample even if
the later is small. Beyond efficiency, such a joined analysis opens the route to estimate member-
specific effects as well as reduce potential aggregation bias. This suggests that effort should be
made to collect a sample of votes from archival documents or committee members’ personal
notes. Potentially, even if no explicit voting record is provided in existing documents, it might
be still feasible to reconstruct a small set of votes with high confidence based on in-depth quali-
tative research.

Beyond the question of which model to use to analyze an available decision record, one might
wonder for which (types of) institutions one can successfully compile a decision record in the first
place and then apply the partial m-probit. While a systematic listing is beyond the scope of this
paper, a few examples might highlight that decision records are either directly available from par-
ticular institutions or can be compiled based on available knowledge about these institutions.

A decision record is typically available from institutions where members vote on a regular
basis on issues but decide not to publish these votes. While I have artificially created a decision
record in the case of the US state supreme courts in Section 5, international courts in particular
(e.g., the European Court of Justice or the European Court of Human Rights) typically publish
only the decisions on each case but not judges’ votes.17 Another example in this category is cen-
tral banks other than those of the US and UK where voting records are published.

However, even committees that do not explicitly vote on each decision may adopt proposals by
acclamation on a regular basis, which gives rise to a decision record that can be analyzed. The UN
Security Council analyzed in Section 6 is a case in point: the Council explicitly only votes on the
deployment of UN peace operations that are known to pass but implicitly rejects all UN peace
operations in ongoing conflicts by never advancing them to the voting stage in the first place.
Another example is the IMF Executive Board, which approves loans by acclamation instead of
voting and whose decision record has been analyzed previously using reduced-form models
(Broz and Hawes, 2006; Copelovitch, 2010; Breen, 2013).

17See, for example, Carrubba et al. (2008) and Helfer and Voeten (2014) for studies using decision records from inter-
national courts.
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However, not every institution’s decision record will be suitable for analysis nor will it always
be possible to compile a decision record in the first place. The ability to compile a decision record
when it is not directly published by an institution depends on the availability of a natural agenda
that defines the issues under consideration at the respective institution. In the case of the UN
Security Council, for example, studies assume that the agenda is defined by the set of ongoing
conflicts. Suitable decision records are those where the conflict between committee members
across decisions evolves around a binary decision “to do something or not”. However, if the con-
flict across decisions is determined by a conflict over how much to do (and consequently some-
thing is always done), the analysis of decisions records will provide little further insights into the
institution.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psrm.2021.11.
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