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Recent findings on wall-bounded turbulence have prompted a new impetus for modelling
development to capture and resolve the Reynolds-number-dependent influence of outer
flow on near-wall turbulence in terms of the ‘foot-printing’ of the large-scale coherent
structures and the scale-interaction associated ‘modulation’. We develop a two-scale
method to couple a locally embedded near-wall fine-mesh direct numerical simulation
(DNS) block with a global coarser mesh domain. The influence of the large-scale
structures on the local fine-mesh block is captured by a scale-dependent coarse–fine
domain interface treatment. The coarse-mesh resolved disturbances are directly exchanged
across the interface, while only the fine-mesh resolved fluctuations around the coarse-mesh
resolved variables are subject to periodic conditions in the streamwise and spanwise
directions. The global near-wall coarse-mesh region outside the local fine-mesh block
is governed by the augmented flow governing equations with forcing source terms
generated by upscaling the space–time-averaged fine-mesh solution. The validity and
effectiveness of the method are examined for canonical incompressible channel flows at
several Reynolds numbers. The mean statistics and energy spectra are in good agreement
with the corresponding full DNS data. The results clearly illustrate the ‘foot-printing’ and
‘modulation’ in the local fine-mesh block. Noteworthy also is that neither spectral-gap
nor scale-separation is assumed, and a smooth overlap between the global-domain and
the local-domain energy spectra is observed. It is shown that the mesh-count scaling
with Reynolds number is potentially reduced from O(Re2) for the conventional fully
wall-resolved large-eddy simulation (LES) to O(Re) for the present locally embedded
two-scale LES.
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1. Introduction

Numerical solutions of turbulent flows have been challenging especially under a
high-Reynolds-number condition, closely relevant to practical applications in many fields.
The wall-bounded turbulent flows are particularly demanding computationally owing to
the wide range of temporal and spatial length scales involved, from very large-eddies
scaling with the main flow path down to the Kolmogorov micro-scales. Consequently,
direct numerical simulations (DNSs) to resolve all turbulence scales are prohibitively
expensive for Reynolds numbers of practical interest. The computational cost in terms
of mesh count roughly scales with Reynolds number as O(Re3) (Jimenez 2003) for DNS.
Large-eddy simulations (LESs) filtering small scales to be modelled at a sub-grid level are
a less costly alternative with generally clear and consistent modelling fidelity (Sagaut &
Deck 2009). Nevertheless, the mesh count required for LES still scales as O(Re2) (Mizuno
& Jiménez 2013), thus the cost of full LES computations, though considerably lower than
DNS, is still far too high for wide engineering applications (Jimenez & Moser 2000). Even
with the projected increase in computer processing power, the challenging situation will
remain in the foreseeable future.

Of great relevance and interest is the near-wall region. This is where the turbulence
activities are most intense, not only in terms of the level of turbulence but also in terms
of the dynamics affecting the overall time-mean flow performance. This is also where
the required resolution is the highest owing to the very small spatial and temporal scales
of turbulence fluctuations. Being the main culprit of a high-mesh-count requirement, the
near-wall region becomes a focal part for which the development of solution approaches
with different fidelities and costs has evolved.

A prevalent wisdom based on past observations is that all near-wall turbulence behaves
similarly in a self-sustained manner. The seemingly ‘universal’ autonomous behaviour as
observed provides a strong impetus to develop a modelled, instead of resolved, treatment
for the near-wall turbulent flow region. This consideration leads to the development of
the hybrid approach with a scale-resolving outer flow region coupled with a modelled
(typically with a Reynolds-averaged Navier–Stokes, RANS, model) near-wall region,
notably by the work of Spalart et al. (1997), as overviewed by Spalart (2009). The
development of wall-modelled LES (Cabot & Moin, 2000; Piomelli & Balaras, 2002;
Larsson, et al., 2016; Bose & Park, 2018) makes scale-resolving turbulent flow solutions
feasible for various practical applications, though the solution accuracy and applicability
are restricted expectedly by the empirical nature of the near-wall RANS modelling as well
as by how the transition from a scale-resolving outer flow region to a modelled near-wall
region is realized.

Noteworthy is the significant progress in the fundamental understanding of
wall-bounded turbulent flows at high Reynolds numbers made in the past decade or so
through both advanced experimental measurements and high-resolution DNS analyses.
An emerging new consensus recognizes that the near-wall turbulence behaves distinctively
with some interesting ‘dual’ characteristics. In addition to the self-sustained ‘universal’
behaviour and dynamics, there is a clear Reynolds-number-dependent part, which seems
to be largely passive as influenced by large-scale coherent structures in the outer flow
region. An important aspect is the ‘foot-printing’ in the near-wall turbulence by the large
coherent structures far away from the wall. The velocity field below the buffer region
exhibits clear signatures of the long streaky outflow structures, as revealed in experiment
data (Hutchins & Marusic 2007; Marusic, Mathis & Hutchins 2010) and DNS results
(Bernardini, Pirozzoli & Orlandi 2013; Jimenez 2013; Agostini & Leschziner 2014; Lee
& Moser 2015). The ‘foot-printing’ behaviour is argued to be quasi-steady locally in
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a very near-wall region (Zhang & Chernyshenko 2016; Agostini & Leschziner 2016a).
Additionally, the near-wall turbulence seems to be subject to some interactions between
local small scales and those large ‘footprints’, through a ‘modulation’ (Mathis, Hutchins
& Marusic 2009), an aspect subject to some further analyses and discussions (Talluru et al.
2014; Baars, Hutchins & Marusic 2017; McKeon 2017; Agostini & Leschziner 2019).

These recent findings on near-wall turbulence have certainly provided some extra
challenges to existing modelling approaches and underlying wisdom. Some new
wall-modelling efforts are sought to recognize the distinctive scale-dependent behaviour as
observed, by generating a synthetic boundary condition to mimic the wall effect (Mizuno
& Jiménez 2013) or super-imposing the traditional ‘universal’ part and the Re-dependent
passively influenced part (Marusic et al. 2010; Agostini & Leschziner 2016b; Wang, Huang
& Xu 2021). Typically, the modelling efforts of this kind are based on and tested against
a single or a small set of DNS data, and the Reynolds number dependency of their
applicability remains to be a main issue of interest.

An alternative path, which the present work follows, is aimed at resolving, rather than
modelling, the near-wall region, with the use of a small number of fine-mesh blocks, or
only a single local fine-mesh block should homogeneity in the two wall-parallel directions
be warranted. The primary consideration is that such a locally resolved fine-mesh solution
approach must be compatible to the requirement of capturing and resolving the key features
as identified in the recent research on near-wall turbulence. In particular, the method
needs to capture the large-scale ‘footprints’ and resolve the local scale interactions in the
near-wall region adequately.

It is recognized that there have been some previous efforts in developing scale-resolving
near-wall turbulent flow in a small local truncated domain. Pascarelli, Piomelli & Candler
(2000) developed a method to couple a global coarse-mesh outer flow domain with a
local small fine-mesh near-wall block (often labelled as a ‘minimum flow unit’ (MFU)
with direct periodic conditions in the two wall-parallel directions). Their corresponding
instantaneous global near-wall flow field is created by mapping the local solution of a small
fine-mesh block (MFU) solution directly periodically in space. The resultant instantaneous
near-wall flow is thus subject to the artificial signatures of the imposed spatial periodicity
with the small block length and width, which are clearly incompatible with the footprints
of the outer flow large-scale coherent structures. Tang & Akhavan (2016) adopted a
two-domain ‘nested’ system with an MFU fine-mesh block and a coarse-mesh domain for a
channel flow. The two domains are solved separately without direct interfacing but coupled
by rescaling the flow instantaneously based on spatially averaged quantities. The spatial
averaging would smear out any spatial structures in the global domain, thus diminishes
the source of the ‘foot-printing’ of the large scales on the local fine-mesh domain. In
addition, the coarse-mesh domain in the near-wall region, though rescaled by the fine-mesh
solution in the minimal unit domain, would be subject to large discretization errors owing
to the under-resolved mesh. Sandham, Johnstone & Jacobs (2017) developed a method on
two distinctively separated scales. The near-wall flow solutions are obtained in discrete
non-space filling fine-mesh ‘patches’ which interact with the global coarse-mesh domain
by providing instantaneous wall-tangential boundary conditions without any cross-flow to
each other. The near-wall coarse-mesh domain is obviously under-resolved. More recently,
Carney, Engquist & Moser (2020) focused on non-flow interfacing between a near-wall
patch and its global-domain environment. A fringe layer is introduced for which the
boundary conditions and a transitional forcing are established based on the time-mean
momentum balance. The ability of the near-wall patch in capturing and resolving the
self-sustained ‘universal’ dynamics is clearly demonstrated, and the challenges associated
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with the patch in capturing the large-scale ‘footprints’ are also underlined. A common key
limitation suffered by those previous local-domain-based methods seems to arise from the
use of a near-wall MFU subject to the spatial periodic conditions, inherently impeding the
‘foot-printing’ by large-scale turbulence structures in an outer flow region. Without the
footprints, a ‘modulation’ of near-wall flow would have no starting point.

Given the background, the key intended attributes of the present development are, first,
the local fine-mesh domain should directly interact with the outer flow large structures
locally and instantaneously to capture the ‘footprints’ appropriately. Second, the local
and the global domains are to be coupled in a way to minimize the discretization errors
of the under-resolved coarse-mesh near-wall region. A two-scale source-term-oriented
approach is adopted to meet these requirements. The original framework is developed
for specific multiscale problems of surface micro-structures and effusion cooling (He,
2018). It is realized that the main attributes of the methodology are closely relevant to
general wall-bounded turbulent flows. The framework is thus adapted and implemented
in an open-source code to examine more general and fundamental cases. The local
near-wall fine-mesh block is embedded in a coarse-mesh domain and the embedded
block is directly interfaced with its surrounding coarse-mesh. The coupling between the
two domains is facilitated by a space–time averaging of the fine-mesh solution over the
overlapping coarse-mesh cells. The corresponding residual imbalance can simply be taken
as the source terms and mapped to the global coarse-mesh domain. These source terms
will effectively balance out the under-resolution-associated errors for the time-averaged
solution over the coarse mesh.

A substantive appeal for developing such a local-embedded fine-mesh method is the
possibility for much more efficient scale-resolving simulations whilst avoiding taking the
wall-modelled route. The potential computational gain will thus need to be measured in
terms of the mesh-count scaling with Reynolds number, which in the present context
manifests in terms of the fine-mesh block size in relation to the overall mesh count. Of
particular relevance is the interface location between the fine- and coarse-mesh domains
in the wall-normal direction. Once again, the choice is guided by the scale-dependent
outer–inner influence and interaction mechanisms as recently discovered. It is intended
that the global coarse-mesh should sufficiently capture and resolve all large-scale
turbulence structures, while the near-wall local fine-mesh block is designed to capture
both the basic ‘universal’ self-sustaining dynamics and the ‘foot-printing’ of the large
scales. It is well recognized that the large coherent structures exist in the log-law region.
The correlations (Klewicki, Fife & Wei 2009; Marusic et al. 2013) for the low bound of the
log-region with respect to Reynolds number would thus provide a physically sound basis
for the choice of the interface position.

The rest of the paper is organized as follows. In § 2, we discuss the mesh count scaling
with Reynolds number, first for wall-embedded DNS (‘WeDNS’) as the main validations
are carried out for DNS. Further scaling analysis is carried out for wall-embedded LES
(‘WeLES’) to indicate potential computational gains for practical applications. In § 3,
the two-scale methodology is described. A space–time averaging is introduced in either
a direct mode or an inverse mode, to be used in the two mesh domains respectively
for generating and enacting the source terms. The method implementation and cases
set-up for turbulent channel flows will be introduced in § 4. In § 5, the case analyses
to assess the validity of the method are presented for DNS channel flow solutions at
three Reynolds numbers. In § 6, potential applications of the present method in terms of
the Reynolds number scaling are illustrated for LES cases at higher Reynolds numbers.
Finally, summary and concluding remarks will be presented.
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Figure 1. Domain configuration for the channel flow with locally embedded block.

2. Mesh-count scaling with Reynolds numbers

Given the focus on the near-wall region requiring the highest mesh resolution and the
primary intent to facilitate localized fine-mesh blocks, we shall first examine the overall
cost implication in terms of the mesh-count scaling with Reynolds number. In this section,
the mesh-count estimation will be carried out based on a canonical plane channel flow. As
shown in figure 1, a local near-wall fine-mesh block is embedded in a global coarse-mesh
domain. The dimensions of the local embedded block are given by the streamwise length
lx, the corresponding spanwise width lz and the wall-normal height ly, in the x, z and y
directions, respectively. In the following, we will first discuss the choice of the embedded
fine-mesh block size, and then examine the mesh count–Reynolds number scaling in the
context of two-scale DNS and LES solutions.

2.1. Sizing fine-mesh block
The selection of the near-wall fine-mesh block size is based on examining the DNS data
for an incompressible channel flow by Lee & Moser (2015) with a range of friction
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Figure 2. One-dimensional pre-multiplied energy spectra reproduced from DNS data (Lee & Moser 2015)
with respect to (a) streamwise and (b) spanwise wavelengths at Reτ ≈ 1000 (solid lines), 2000 (dash lines) and
5200 (shaded contours). The yellow boxes mark the fine-mesh block sizes at Reτ ≈ 1000 (yellow solid lines),
2000 (yellow dash lines) and 5200 (yellow dash–dotted lines).

Reynolds numbers up to Reτ = 5200, where Reτ = uτ δ/ν is based on the wall friction
velocity uτ , the boundary layer thickness or the half-channel height δ and the kinematic
viscosity ν. This is the DNS data set with the highest Reynolds number accessible in
the public domain to the authors’ knowledge. The one-dimensional pre-multiplied energy
spectra are generated, as shown in figure 2, by accessing and processing the DNS database
(https://turbulence.oden.utexas.edu/). The energy spectra present a clear picture of the two
distinctive parts of interest: the ‘universal’ first energy peak near the wall and the departing
second peak in the outer flow with increasing Reynolds numbers.

The ‘universality’ of the first peak manifests in terms of the core location at
y+ ∼ 13.5 independent of Reynolds number, where the superscript ‘+’ indicates the
normalization by uτ and ν and is referred to as the viscous wall unit. Owing to the
dominance of small-scale activities in this inner near-wall region, the energy spectra of
the first peak can be covered by constant cut-off wavelengths independent of Reynolds
numbers. Based on the desired attribute for the embedded block to capture and resolve
the ‘universal’ turbulence behaviour associated with the first peak, we would thus take
the block sizes to be constant in wall units in the streamwise and spanwise directions
respectively l+x ≈ 3500 and l+z ≈350. The corresponding physical lengths in terms of the
overall domain size (δ) will be reduced with an increase in Reynolds number. The choice
of the fine-mesh block sizes in the x and z directions to be constant in wall units is in
line with that adopted for a near-wall DNS patch by Carney et al. (2020). The much
longer streamwise domain size reflects the near-wall elongated streaky structures in the
streamwise direction, consistent with common observations.

In the wall-normal direction, the starting location of the log-law region correlates
directly to Reynolds number as ys = Cδ+0.5, where δ is the boundary layer thickness or
the channel half-height. In the present work, the coefficient C is taken after Marusic et al.
(2013), thus the wall-normal height of the fine-mesh block correlates with the Reynolds
number as

l+y = 3
√

Reτ . (2.1)

The choice of the embedded block size as described above should suffice in serving the
present requirements for the near-wall region: to both resolve the ‘universal’ part of the
near-wall turbulence and to capture the ‘foot-printing’ effects of large coherent structures

933 A47-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://turbulence.oden.utexas.edu/
https://doi.org/10.1017/jfm.2021.1075


On locally embedded two-scale solution

of the outer flow if appropriate interface conditions between the local fine-mesh block and
the global coarse-mesh region can be established, as will be introduced in § 3.

2.2. Scaling mesh-count with Reynolds number
For wall-bounded flows, a two-scale consideration leads to different mesh resolution
requirements for the near-wall inner part and the outer flow region. We will now examine
both DNS and wall-resolved LES. The DNS is considered first because the validations for
the concept proof of the present two-scale method are conducted by comparing the present
wall-embedded DNS with the well-established full DNS. Then, the LES is considered, as
the primary motivation is to develop an efficient alternative to the full wall-resolved LES
for practical applications.

First consider a near-wall region to compare LES with DNS. The Kolmogorov
micro-scales should be expectedly smaller than a typical mesh resolution of LES in
general. The mesh resolution of a wall-resolved LES would however approach that of a
DNS in the near-wall region (Moin & Jimenez 1997; Jimenez & Moser 2000). As such,
the mesh resolution required for the near-wall fine-mesh block can be taken to be the same
for both DNS and LES in the present work.

For the outer flow region, large-scale flow structures can be captured by a coarser mesh.
Given the importance of the history effect for any coherent structures, the mesh needs to
cover a global domain of the whole channel. In addition, the mesh resolution required for
resolving large turbulence structures should also be much less sensitive to the sub-grid
models as well as to numerical dissipations. Hence, a mesh of LES for the bulk flow
region can be much coarser than that of a DNS counterpart. It then follows that the main
difference in the mesh scaling between a wall-embedded DNS (denoted as ‘WeDNS’) and
a wall-embedded LES (denoted as ‘WeLES’) will result from those for the global outer
flow region.

2.2.1. Mesh scaling for wall-embedded DNS (WeDNS)
WeDNS scaling is introduced to keep the grid spacings constant in wall units for both
the outer global domain and inner near-wall embedded block at different Reynolds
numbers for consistency when compared with well-established DNS results. Following
the procedure adopted by Jimenez (2003), we estimate the mesh count for the near-wall
DNS block with its wall-normal height bound by ys marking the start of the log-law region:

NDNSfine inner = NDNSembed block ∼ NxNz

∫ y+
s

0

dy+

Δ+
y

∼ NxNz

(
y+

s

Δ+
y

)
∼ δ+0.5, (2.2)

where Nx and Nz are the mesh count of the fine-mesh block in the x and z directions,
respectively, and should be Reynolds number independent, given that the constant cut-off
wavelengths in wall units l+x and l+z can be applied as discussed in § 2.1. Furthermore, in
the wall-normal y direction, we have y+

s = l+y ∼O(δ+0.5
) given by (2.1) and Δ+

y ∼O(1).
For the outer region further away from the wall, the smallest scales to be resolved by

DNS are of the order of the larger Kolmogorov scales correlated with the wall distance,
Δ+ ∼ (y+)0.25 (Tennekes & Lumley, 1972; Lee & Moser, 2019), and thus

NDNScoarse outer ∼
∫ δ+

y+
s

(δ+/Δ+)
2 dy+/Δ+ ∼ δ+2

∫ δ+

y+
s

y+−3/4 dy+ ∼ δ+2.25. (2.3)
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The final part to be considered in the present two-scale strategy is the global near-wall
region covered by a coarse mesh, apart from that of the fine-mesh block (‘Domain 3’ as
indicated in figure 1b). It is assumed that the resolution of this near-wall coarse mesh is
comparable to that of the outer coarse-mesh at its low bound interfacing with the fine-mesh
block. Thus, a largely constant mesh spacing in this region should be Δ+ ∼ ( y+

s )0.25. With
the interface position ys fixed by (2.1), we then have

NDNScoarse inner ∼ δ+2/(Δ+)3 ·
∫ y+

s

0
dy+ ∼ δ+2.125

. (2.4)

The overall mesh count of WeDNS is the sum of all three regions, (2.2)–(2.4). The
scaling with Reynolds number is dictated by the highest power index. Thus, the overall
mesh count scaling with Reynolds number for the wall-embedded DNS becomes

NWeDNS ∼ Re2.25
τ . (2.5)

In contrast, following the same procedure, one should have a Reynolds number scaling
of the mesh count for a full DNS as NDNS ∼ Re3

τ (Jimenez, 2003).

2.2.2. Mesh scaling for wall-embedded LES (WeLES)
As discussed in §2.2.1, the mesh resolution for the near-wall fine-mesh block for WeLES
should be identical to that for WeDNS. The mesh count for the near-wall-embedded
fine-mesh block will thus be

NLESfine inner = NDNSembed block ∼ δ+0.5. (2.6)

For the LES outer region, the resolution is no longer set by the Kolmogorov
scales as they are supposed to be filtered out and modelled while resolving the large
energy-containing scales. Similarly, the outer region starts from the low bound of the
log-region ys and the integral length scales are proportional to the wall distance (Townsend
1976; Jimenez 2003). With ys again fixed by (2.1), we should have

NLEScoarse outer ∼
∫ δ

ys

δ2/y3 dy ∼ δ+. (2.7)

For the large near-wall region covered by a coarse mesh, it is similarly assumed that the
resolution of this near-wall coarse mesh is comparable to that of the outer coarse mesh at
its low bound. Therefore, the mesh spacing in this region should be Δ+ ∼ y+

s . We thus
have

NLEScoarse inner ∼ δ+2/(Δ+)3 ·
∫ y+

s

0
dy+ ∼ δ+. (2.8)

Summing up all three parts for the overall mesh count, the mesh count scaling with
Reynolds number will now be dictated by that of the global coarse meshes for both the
outer and inner portions, (2.7) and (2.8). Therefore, the mesh scaling for WeLES should
be

NWeLES ∼ Reτ . (2.9)

This scaling can also be usefully contrasted to that for a full wall-resolved LES (Jimenez
2003; Mizuno & Jiménez 2013): NWRLES ∼ Re2

τ .
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Figure 3. Comparison of mesh count scaling with Reynolds number among full DNS (black dots), full
wall-resolved LES (red dash line), the present wall-embedded DNS, ‘WeDNS’ (black dash–dotted line) and
wall-embedded LES, ‘WeLES’ (blue solid line). Symbols are for published DNS, ‘�’, Lee & Moser (2015);
‘+’, Lozano-Duran & Jimenez (2014); ‘◦’, Moser et al. (1999).

Figure 3 presents the comparison in the mesh count scaling with Reynolds number
among several well-established full DNS solutions (Moser, Kim & Mansour 1999; Hoyas
& Jimenez 2006; Lozano-Duran & Jimenez 2014; Lee & Moser 2015), full wall-resolved
LES (WRLES) and the present two-scale approach for either a wall-embedded DNS
(WeDNS) or a wall-embedded LES (WeLES).

3. Two-scale methodology

A canonical channel flow domain is partitioned, as shown in figure 1. Phenomenologically,
the two-scale method needs to be capable of capturing and resolving all key influences and
interactions between and within corresponding domains, as indicated in figure 4. First, we
assume that the coarse mesh in the global outer domain will be fine enough to resolve
coherent large-scale turbulence structures in the log-law region. Thereafter, close attention
is paid to two key considerations pertinent to the present work:

(1) the local embedded fine-mesh domain should be able to receive the influence
(‘foot-printing’) of the large-scale turbulence structures of outer flow;

(2) the global inner coarse-mesh domain (‘Domain 3’ in figure 1b) is under-resolved,
and thus the corresponding discretization errors need to be minimized.

For item (1), the embedded block will have to be directly interfacing with the global
coarse-mesh domain. This will certainly be the case for the top face of the local fine-mesh
block (Ftop, as shown in figure 1a). For the upstream and downstream faces (Fx,a and Fx,b)
and the spanwise side faces (Fz,a and Fz,b), direct periodic conditions, as in commonly
adopted MFU, are not deemed to be suitable as the resultant periodic flow patterns in
the two directions will be clearly incompatible with the large-scale coherent turbulence
structures of the outer region, thus impeding the ‘foot-printing’. A key enabler adopted in
the present work is a scale-dependent interface method in which the periodic condition is
only applied for fine-scale fluctuations. As such, the large scales of the global coarse-mesh
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• capture 'foot-printing', 'modulation'

• enable to correct global inner domain

• resolve universal characteristics

• condition global outer domain

• resolve large structures

Local embedded domain
• correct mesh under-resolution

• capture 'foot-printing'

• condition local embedded block

• conditioh global outer domain

Global inner domain

Global outer domain 

Figure 4. Domain–domain influence and interaction in a two-scale framework.

region can now directly interact with the local fine-mesh block to capture both the
‘foot-printing’ and the ‘modulation’ effects, as will be described in § 3.1.

For item (2), the correction on the global coarse-mesh domain in the near-wall inner
region is enabled by upscaling the fine-mesh solution to the corresponding coarse-mesh
cells. The forcing source terms resulting from the upscaling in the local embedded region
are then simply mapped to the global inner domain to drive the coarse-mesh solution.
The corresponding upscaling method with the source term generation will be described in
§ 3.2.

3.1. Dual meshing and interface treatment
The local fine-mesh block is created by simply subdividing the corresponding coarse-mesh
cells in the near-wall region. This dual-mesh system is purposely introduced to effectively
facilitate the interactions between the local embedded fine-mesh block and the global
coarse-mesh inner region.

A basic consideration for an interface treatment is the flux conservation. For the present
embedded meshing for the fine-mesh block, there will be non-conforming hanging mesh
nodes at the interface. The interface conservation is realized through the non-conforming
arbitrary mesh interface (AMI) patches based on the Galerkin projection (Farrell &
Maddison 2011).

Furthermore, two types of interface treatments are considered. For the interface at the
top face of the embedded block (Ftop, as marked in figure 1a), the baseline AMI treatment
will pass the full flow variable data directly between the coarse-mesh and the fine-mesh
sides, effectively by interpolation.

For a pair of side faces (either Fx,a and Fx,b, or Fz,a and Fz,b, as marked in figure 1a),
the interface treatment needs to accommodate both the large-scale signatures passed
on from the coarse-mesh side, and at the same time, avoid accuracy loss arising from
the under-resolution of the coarse mesh. Noting that the fine mesh is effectively a
‘sub-grid’ in relation to the local under-resolved coarse-mesh, we adopt a scale-dependent
periodic condition treatment. An instantaneous full flow variable is decomposed into the
coarse-mesh resolved local base value and the fine-mesh resolved fluctuation:

u(x, t) = uC(x, t) + u′′
f (x, t), (3.1)

where uC(x, t) is coarse-mesh resolved, obtained based on the baseline AMI. For the
fine-mesh fluctuation part u′′

f (x, t), the direct spatial periodic condition is applied.
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On locally embedded two-scale solution

For a pair of block side faces (e.g. Fx,a and Fx,b), we shall thus have

u′′
f (x, t)x,a = u′′

f (x, t)x,b

u(x, t)x,a = uC(x, t)x,a + u′′
f (x, t)x,b

u(x, t)x,b = uC(x, t)x,b + u′′
f (x, t)x,a

⎫⎪⎬⎪⎭ . (3.2)

Effectively, we have periodic fine-mesh fluctuations for the pairing side faces based on
corresponding inhomogeneous instantaneous coarse-mesh variables.

3.2. Two-scale formulations for flow equations
We consider the flow governing equations in a simple form for flow variable vector u:

∂u
∂t

+ R(u) = 0, (3.3)

which in its original form will be directly solved numerically in the near-wall embedded
fine-mesh block and in the global coarse-mesh outer domain as intended. For the global
near-wall inner region (‘Domain 3’, figure 1b), a set of augmented flow equations need to
be introduced to link the global coarse-mesh solution to the local fine-mesh solution of the
embedded block. Upscaling is typically referred to as the way to generate an approximate
set of equations for a coarse-scale domain of the same form as those for the fine-scale
domain (Farmer 2002). In the present two-scale framework, the upscaling is aimed at
producing a coarse-mesh solution which approaches a target solution originated from the
fine-mesh domain. In the following, we will first use the commonly known time averaging
(Reynolds averaging) as an illustrative example to introduce the upscaling procedure and
show how it may be cast in two modes for a fine-scale and a coarse-scale domain. We
will then describe how to obtain the upscaled equations for the present work based on
space–time averaging.

3.2.1. Upscaling for time averaging/Reynolds averaging
We take a conventional time averaging to illustrate the upscaling with augmented
equations. In this case, the fine-scale solution can be taken as a direct time-resolved
turbulence solution (or detailed unsteady experimental measurement). For application
purposes, we may be interested in a solution with a much lower temporal resolution,
and in an extreme but very common case, we may only be interested in the solution
with no temporal resolution at all (a time-averaged state). Then, the upscaling from
the temporally finely resolved unsteady solution to a steady-state solution for the
corresponding time-averaged flow is considered. Take a standard temporal decomposition
of an unsteady flow variable into a time-averaged and a fluctuation part:

u(x, t) = ū(x) + u′(x, t). (3.4)

By time averaging the flow equations (3.3), we have

R(u) = 0. (3.5)

However, owing to nonlinearity, R(u) /= R(ū), The equations with the time-averaged flow
variables can only be balanced with extra terms:

R(ū) = St, (3.6)

where St is a four-element vector for an incompressible flow. The first element should be
zero if the divergence-free criterion is fully achieved for the time-averaged flow. The other
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elements are three scalars representing the lumped Reynolds stresses in the momentum
equations in the three directions, respectively. The augmented equations (3.6) are the
upscaled flow equations for the coarse-scale domain, with zero temporal resolution in this
case. The lumped form of the Reynolds stresses underlines the simple but fundamental
way in which the turbulence stresses affect the time-averaged flow by balancing the
corresponding upscaled equations.

The upscaling can be expressed in two modes to be applied in the coarse-scale (denoted
with subscript ‘C’) and fine-scale domains (subscript ‘f ’). A ‘direct mode’ of the time
averaging as applied to the coarse-scale domain simply is

R(uC) = St. (3.7)

Here the source term St is taken as the input and the coarse-scale solution uC is the
output. It then follows that as long as we have a correct source term, regardless of its
origin (empirically, experimentally, numerically or analytically), we will get a correct
coarse-scale solution as intended. Alternatively, we can view the upscaled equation in
an ‘inverse mode’ to be used in the fine-scale domain:

St = R(uf ). (3.8)

In this case, a known time-averaged fine-scale solution (uf ) is taken as the input and
the source terms as the output. This is a well-posed problem with the four elements of
the source term vector as unknowns and the four flow equations. The source terms are
conveniently obtained simply from the flux residual evaluations using the given fine-scale
solution. After generating the source terms from the inverse mode (3.8) and driving the
coarse-mesh domain to converge, we will have uC = ūf as intended.

The inverse mode for a time averaging itself is rarely used as it seemingly does not
serve any practical purpose because one will need to get the fine-scale solution in the
first place. The possibility of getting a time-averaged solution through an inverse mode is
illustrated for self-excited unsteady flows in the context of trailing-edge vortex-shedding
(Ning & He, 2001). As will be shown in the following, however, the inverse mode can be
effectively used when the averaging and upscaling are extended to space as well as time.

3.2.2. Upscaling for the present space–time averaging
In the channel flow domain with distinctive two-scale regions, the flow solution of
the fine mesh block is first upscaled to the corresponding coarse-mesh cells by a
local volume-weighted averaging. For a coarse-mesh cell with m fine-mesh cells, the
corresponding local spatially averaged coarse-mesh variable is

ũf (x, t) = 1
�vC

m∑
i=1

[uf (x, t)�vf ]i, (3.9)

where �vC is the volume of the coarse-mesh cell: �vC = ∑m
i=1 (�vf )i. Similar to the

time averaging, the upscaled equations on the coarse mesh can only be balanced with
extra source terms:

∂ũf

∂t
+ R(ũf ) = Ss(x, t), (3.10)

where Ss(x, t) is effectively the source term vector needed to eliminate the spatial
discretization errors resulting from the under-resolved coarse mesh to reach the target
upscaled solution ũf in the coarse-mesh domain. Note that Ss(x, t) is both space and
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time dependent. Thus, if one simply propagates the spatial averaging associated source
terms to the global coarse-mesh domain, there will have to be artificial periodic signatures
characterized by the streamwise and spanwise lengths of the embedded block. This is
of course to be avoided given the primary intent of the present method development as
introduced earlier.

A basic motivating consideration is that for typical wall-bounded turbulent flows,
a time-averaged field is much smoother than its unsteady counterpart. Furthermore,
for a fully developed channel flow, we effectively have homogeneous statistics in both
the streamwise and spanwise directions. This property appeals greatly in relation to
propagating the upscaling effect from the local embedded domain to a global one. We thus
introduce a space–time averaging to make use of the spatially homogeneous time-averaged
flow in the two directions.

For a coarse-mesh cell embedded with m fine-mesh cells, the space–time-averaged flow
variable can be simply defined as the local volume average of time-averaged variables of
m fine-mesh cells: ˜̄uf (x) = 1

�vC

m∑
i=1

[ūf (x)�vf ]i. (3.11)

Noting the averaging being a linear operator, we see that the space–time averaging can be
also taken as a time averaging of the volume-averaged coarse-mesh cell as ũf (x) = ˜̄uf (x).
The upscaled equations in the coarse-mesh domain (‘direct mode’) become

∂uC

∂t
+ R(uC) = Sst(x). (3.12)

The source term Sst(x) is time-independent, thus homogeneous in x and z directions. It
consists of two parts:

Sst = (Sst)f + (St)C. (3.13)

The first part is generated by applying the ‘inverse mode’ of the space–time averaging to
the fine-mesh time-averaged solution:

(Sst)f = R(̃ūf ). (3.14)

The second part arises from the nonlinear time-averaging effect of the unsteady solution
on the coarse-mesh for which needs to be accounted to balance the upscaled equation for
the targeted space–time-averaged solution:

(St)C = R(uC) − R(ūC). (3.15)

With the source terms as defined in (3.14) and (3.15), when a scale-resolving
turbulent flow solution in the coarse-mesh domain is statically converged with a constant
time-averaged state, we will get the following by time averaging the upscaled equation
(3.12):

R(ūC) = R(̃ūf ). (3.16)

Hence, the time-averaged coarse-mesh solution ūC should converge to the target
space–time-averaged fine-mesh solution ˜̄uf as intended. The time averaging is carried out
on-the-fly during the solution (He, 2018).

4. Implementation for channel flow case studies

In this section, the baseline flow solution system will be briefly introduced first. The
parameters for both DNS and LES channel flow case studies will then be defined.
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Moving time-averaging for the

velocity field U for the update of 

(Sst)f ·

•  Time-marching at the local

   embedded region.

•  Space-averaging fine-mesh

   solutions on the corresponding

   embedded coarse mesh.

•  The first source term (Sst)f from

   the fine mesh region

•  The second source term (St)C
   from the coarse mesh region

Moving time-averaging for the 

coarse-mesh time source term (St)C.

Time step N + 1

Time step N

Time-marching at the global coarse

region with the added source terms,

including:

Figure 5. Flowchart of the two-scale solution process as implemented.

4.1. Baseline flow solution method
For concept proof and general application purposes, the two-scale method is implemented
in the open source CFD solver OpenFOAM. The present work is focused on the
concept proof through case studies for canonical channel flows. The baseline unsteady
incompressible flow equations in a channel flow domain Ω = [0, Lx] × [0, 2δ ] ×
[0, Lz] are

∇ · u = 0

∂u
∂t

+ (u · ∇)u + 1
ρ

∇p − ν∇2u = f

⎫⎬⎭ , (4.1)

where u = (u, v, w)−1. The only non-zero element of the baseline source term vector f is
the streamwise pressure gradient, fx = dP/dx. The corresponding boundary conditions for
the domain are

u = 0, at y = 0 and y = 2δ

u and p periodic in x and z directions in Ω

}
. (4.2)

The flow equations are discretized in a finite-volume scheme, with a second-order
central difference scheme in space. The time advancement is achieved by a second-order
Crank–Nicolson scheme. A constant time-step is taken in keeping the maximum Courant
numbers below 0.5. The pressure-implicit splitting operators (PISO) algorithm is used
for solving the incompressible flow field. A flowchart showing the main elements of the
present two-scale method, as implemented in the OpenFOAM for incompressible flow, is
shown in figure 5.

Some extra remarks should be made regarding the source term propagation in the
context of capturing the ‘modulation’. In the phenomenological discussions so far, the
large-scale coherent structures are regarded effectively as an external forcing from the
outflow region originating the foot-printing and the modulation within the embedded
near-wall block, which will in turn improve the conditioning of both the global inner
coarse-mesh region and the outer flow coarse-mesh region. The related assumption is that
those intermediate scales generated and affected by the modulation in the near-wall region
should have negligible feedback effects on the large scales in the outer flow region. This
assumption is deemed to be justifiable based on the present results, as presented in § 5.1.
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Reτ Domain G : Lx/δ, Lz/δ

L : l+x , l+z
Ny Δ+

y,w, Δ+
y,max ys/δ Δ+

x , Δ+
z

550 G 2π, π 146 0.55, 16 0.13 40, 12
L 3140, 432 35 0.55, 4 10, 6

550-f (finer mesh) G 2π, π 172 0.55, 10 0.13 20, 12
L 3140, 432 35 0.55, 4 10, 6

1000 G 2π, π 216 0.55, 18 0.1 43, 11
L 3140, 393 48 0.55, 5 11, 5.5

2000 G 2π, π 282 0.55, 22 0.06 43, 11
L 3140, 393 51 0.55, 6 11, 5.5

Table 1. WeDNS parameters within global (G) and local-embedded (L) domains.

A simple option to further address this will also be introduced and presented in
Appendix A for completeness.

4.2. Parameters for DNS and LES case studies
The implemented two-scale method is applied to a canonical turbulent plane channel flow
at Reτ ≈ 550, 1000, 2000, 4100 and 5200. The full computational domain sizes are Lx =
2πδ and Lz = πδ, where δ is the half-height of the channel (figure 1). The size of the
computational domain corresponds to the minimum one used for the full DNS simulations
(Moser et al. 1999; Lozano-Duran & Jimenez 2014). Thorough discussions on the effect
of the domain size are made by Lozano-Duran & Jimenez (2014), where the same domain
size as that used in the present work is proven to be adequate for reproducing one-point
statistics of those larger ones. The global domain size is also the same as that adopted by
Tang & Akhavan (2016).

The fully developed channel flow is driven by a set mass flow. Given a bulk mean
velocity Ub = (1/2δ)

∫ 2δ

0 ū( y) dy in the streamwise direction, the present simulations are
carried out at bulk Reynolds numbers in line with those of the published DNS data
(Hoyas & Jimenez 2006; Bernardini et al. 2013; Lee & Moser 2015). The simulations
are initialized with a laminar parabolic Poiseuille profile (de Villiers 2006) and run for
sufficiently long time to reach a statistically steady state with mean statistics to differ less
than 1 %. The turbulence statistics to be reported are obtained by ensemble-averaging the
flow quantities spatially in the two homogeneous directions and in time over at least ten
eddy turnover times δ/uτ .

Uniform grids are implemented in streamwise and spanwise directions. In the wall
normal direction (y), grids are allocated with a geometric stretching ratio around 1.05.
Within the local embedded DNS region, the mesh grid spacings Δx, Δy and Δz follow the
DNS requirement (Bernardini et al. 2013). Given the Kolmogorov scale at wall η+

w ∼1.5,
the grid spacing in wall-parallel directions is Δx/η < 7 and Δz/η < 5. In the wall normal
direction, the largest grid spacing relative to the local Kolmogorov scale is at the interface
between the embedded block and the global coarse-mesh region, where (Δy/η)max is kept
below 1.9.

DNS simulations are run for three Reynolds numbers: Reτ ≈ 550, 1000 and 2000, with
the details of the simulation parameters given in table 1. Solutions for different mesh
densities are also run to examine the mesh sensitivity at Reτ ≈ 550, and the result for a
refined mesh (denoted as ‘550-f’) is also presented. The DNS results for validations will
be presented and discussed in § 5.
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Reτ Domain G : Lx/δ, Lz/δ

L : l+x , l+z
Ny Δ+

y,w, Δ+
y,max ys/δ Δ+

x , Δ+
z

2000 G 2π, π 226 0.55, 41 0.06 55, 13
L 3140, 393 51 0.55, 5 11, 6.3

4100 G 2π, π 264 0.55, 79 0.05 88, 21
L 3140, 393 62 0.55, 7 11, 5.2

5200 G 2π, π 290 0.55, 100 0.04 110, 28
L 3140, 393 64 0.55, 7 11, 4.7

Table 2. WeLES parameters for global (G) and local-embedded (L) domains.

Given the interest in developing an efficient method for applications at a moderate to
high Reτ in the order of at least O(103) (Smits & Marusic 2013), the capability of the
two-scale wall-embedded LES (WeLES) is also examined and demonstrated for higher
Reynolds number cases, Reτ ≈ 2000, 4100 and 5200. For the LES global coarse grids to
resolve the energy-containing large scales as intended, the grid spacing follows that of
Georgiadis, Rizzetta & Fureby (2010) and the scaling estimated in § 2.2.2. Details of the
WeLES simulation parameters are given in table 2. In the present calculations, the explicit
sub-grid model is not included, the solutions can thus be regarded as implicit LES where
the sub-grid scales are dampened by numerical dissipations. The results of the WeLES
simulations will be presented and discussed in § 6.

5. Wall embedded DNS

In this section, the results of the wall embedded DNS will be presented for Reτ ≈ 550,
1000 and 2000 in comparison with the DNS results of Lee & Moser (2015) and the
two-dimensional (2-D) spectral results from the DNS calculations of del Alamo et al.
(2004). The emphasis is placed on examining the validity of the present locally embedded
two-scale methodology. In particular, attention is paid to the capability of the method in
terms of the two major intended attributes: to adequately resolve the ‘universal’ near-wall
small scale turbulence dynamics and interactions within the embedded block, and to
capture the ‘foot-printing’ of the large-scale structures of the outer flow on the near-wall
region.

5.1. Mean statistics
Figure 6 shows the mean velocity profiles in good agreement with the full DNS results.
Table 3 presents the predicted wall shear-stresses compared with the values of the
published DNS as the target. All the present calculations are set to match the bulk flow
Reynolds numbers Reb of the DNS results. The comparisons between Reτ,computed and
Reτ,target indicate the accuracy of the wall shear-stress prediction. The errors are all within
2 %.

Also shown in Figure 6 are the predicted turbulence intensities and the Reynolds stresses
u+

rms
2, v+

rms
2, w+

rms
2 and u′v′+ where the subscript ‘rms’ denotes the root-mean-squared

values. In general, the local DNS solutions (denoted as ‘Local-fine’) within the
local embedded fine-mesh block match well with the full DNS. The coarse-mesh
solutions behave differently in the two global regions. In the outer region (denoted as
‘Coarse-outer’), the coarse mesh solutions agree well with the corresponding full DNS
both in terms of the mean flow velocities and the turbulence statistics. The results of
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Figure 6. Mean velocity profiles (a,c,e) and turbulence fluctuations (b,d, f ) compared with the DNS results
(Lee & Moser 2015) marked in black solid lines. The results are at three Reynolds numbers: (a,b) Reτ ≈ 550;
(c,d) Reτ ≈ 1000; (e, f ) Reτ ≈ 2000. The blue diamond symbols indicate results within the local fine-mesh
block. The red squares and red dashed lines indicate results in the global coarse outer and inner region,
respectively. The green dashed lines in panels (a,b) are the results of a finer mesh ‘550-f’ (table 1) in the
global region. The vertical grey solid lines mark the interface location ys. Note that not all data points are
included to increase readability.

‘550-f’ (table 1) with a finer mesh are also presented, which are in good agreement
with the standard mesh resolution (‘550’ in table 1). The two solutions from the two
meshes of different resolutions are almost indistinguishable in the outer region. The
large-scale structures are resolved on the global coarse grids regarding both the mean and
the fluctuations. The outer ‘energy plateau’ of the turbulence fluctuations in the streamwise
direction is captured by the global coarse-mesh, most clearly at the highest Reynolds
number.

For the near-wall region of the global coarse-mesh (‘Domain 3’ as shown in figure 1,
denoted as ‘Coarse-inner’), the agreement between the present solution and the reference
DNS can only be observed for the time-mean velocities (figure 6a,c,e). It is noted however
that the magnitude of turbulence fluctuations in the global near-wall inner region tends
to be over-predicted, most noticeably for the streamwise components in figure 6(b,d, f ).
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Reτ,target Reb Reτ,computed Error in τw (%)

544 10 000 548 +1.5
1001 20 000 995 −1.2
1994 43 650 1989 −0.5

Table 3. Wall shear-stress prediction of the two-scale WeDNS approach.

It should be remarked that the over-riding factor in the global near-wall inner region is
the under-resolution of the local coarse-mesh. Lack of sufficiently resolved small scales
locally should correspond to lack of dissipation, and thus the over-estimation of the
local turbulence fluctuations is expected. Nevertheless, the under-resolved global inner
region still serves in receiving the ‘foot-printing’ of the large-scale structures from the
outer-flow region, which in turn will feed into the embedded fine-mesh block through the
direct interfacing treatment at the coarse mesh resolved level as discussed in § 3.1. The
source-term correction of the upscaled flow equations (3.12) is effective only in driving
the time-averaged coarse-mesh flow field towards the space–time-averaged target solution
of the embedded fine-mesh block. This primary objective of the present work seems to
be met adequately, as demonstrated by the comparisons in the mean flow velocity profiles
shown in figure 6(a,c,e).

For consistency of the two-scale methodology in the context of the global and local
domain partitioning (figure 1b), the correction source terms activated in the global
inner domain (‘Domain 3’) arising from the upscaling should approach zero smoothly
when approaching from the inner region to the inner–outer interface in the wall-normal
direction. Figure 7 presents the distributions of the source terms in the wall-normal
direction, for the total source terms Sst consisting of the fine-mesh space–time-averaging
term (Sst)f and the coarse-mesh time-averaging term (St)C in (3.13). As can be observed
from figure 7, these terms are all decreasing asymptotically to become negligible
when approaching the inner–outer interface. This indicates that the global coarse-mesh
resolution at the interface is sufficiently fine to resolve the local flow directly. Thus, no
corrections should arise from the upscaling around the interface. The diminishing source
terms approaching the interface are also in line with the assumption that the feedback from
the inner region ‘modulation’ on those large structures in the outer flow region should be
negligibly small, as discussed in § 4.1 and further considered in Appendix A. It should be
mentioned that the source terms in the spanwise direction, including (Sst)f ,z, (St)C,z and
Sst,z, are much smaller than those in the streamwise and wall-normal directions, thus are
not shown here.

5.2. Spectral analysis
A key aspect pertinent to the validity and effectiveness of the locally embedded
methodology is its ability in capturing and resolving a range of turbulence scales.
To examine this, spatial spectral analyses on a near-wall plane are carried out. The
wall-normal location commonly taken for such analyses is that around the ‘universal’ first
peak of turbulence fluctuations at y+ = 13.5. Figure 8(a) shows the velocity field snapshot
on this plane, on which the embedded block is also marked. Two points are worth noting
here. First, the large meandering streaky structures are clearly captured by the global
near-wall coarse mesh, which in turn feed into the embedded fine-mesh block through
the direct interfacing treatment at the coarse-mesh resolved level, as discussed in § 3.1.
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Figure 7. Source term profiles: the fine-mesh space–time-averaging term (Sst)f in blue diamonds, the
coarse-mesh time-averaging term (St)C in red squares and the total source term Sst in grey circles, in relation
to wall distance y+ at two Reynolds numbers: (a,b): Reτ ≈ 1000; (c,d) Reτ ≈ 2000. (a,c) Source terms in the
streamwise direction. (b,d) Source terms in the wall-normal direction.

Thus, the local fine-mesh block will be influenced directly by the large structures captured
in the global coarse-mesh domain through both the top interface and the side interfaces
(figure 1a). Second, the fine-mesh of the embedded block is enabled to provide a local high
resolution effectively thanks to the fine-scale fluctuation based periodic condition (3.2).
The two-scale characteristics in the fine-mesh block and the surrounding coarse-mesh
region with contrasting resolutions are clearly seen in figure 8(b) indicating corresponding
scales of vortical structures and figure 9 showing the near-wall vorticity fields on an x–y
plane.

Figure 10 shows the one-dimensional streamwise energy spectra. The global
coarse-mesh covers adequately the large scales. However, it is clearly under-resolved at
higher wave numbers. The profiles of the coarse-mesh spectra deviate from the full DNS,
being overpredicted first at intermediate wavenumbers, e.g. kx ≈ 40 (figure 10a), and
then underpredicted at higher wavenumbers for small scales of the dissipation range. The
resolution dependency is more strongly manifested in the energy spectra as functions of
the streamwise wavenumbers kx (figure 10a) than those of the spanwise wavenumbers kz
(figure 10b). For the high wavenumber part in the spectra, the numerical dissipation caused
by the under-resolution of the coarse grids results in a much more abrupt drop of energy
(figure 10a). However, the embedded block is sufficiently fine to resolve small scales down
to the Kolmogorov ones in the near-wall region, reflected by the predicted spectra at higher
wavenumbers. As discussed earlier, the embedded fine-mesh block is able to receive the
disturbances of the long wavelength dictated by the global domain size adopted.

The most noteworthy feature of the results shown in figure 10 is the overlapping of the
two spectra from the fine- and coarse-mesh domains. The smooth overlapping of the two
spectra in good agreement with the full DNS indicates that the fine-mesh block is subject
to turbulence disturbances of a full spectra range. In contrast, if a global domain solution
is indirectly coupled with a small fine-mesh domain with a direct periodic condition (as
commonly adopted in MFU), discontinuous spectra from the two domains may occur
(Tang & Akhavan 2016). A more direct illustration of the length-scale range captured
by the fine-mesh solution of the embedded block is provided by a local frequency power
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(a)

(b)

4
z U+

U+

y x
6 8 10 12 14 16 18 20

Local embedded fine-mesh

5 10 2015 25

Figure 8. (a) The x–z plane snapshot of the instantaneous velocity field around the embedded block at the
inner location y+ = 13.5. (b) Iso-surfaces of the second invariant of the velocity gradient tensor (Jeong &
Hussain, 1995), coloured with the instantaneous velocity contours. The solid black boxes mark the embedded
fine-mesh block.

(b)

(a)

y+ = 135

–1 –0.2 0 0.2 0.3

y  = 0

y

x

ωz

Figure 9. The x–y snapshot of the spanwise vorticity ωz contours near wall: (a) the local embedded DNS
region; (b) the global coarse-mesh region on the same x–y scale. Contour values are normalized by the
maximum magnitude.

spectral density (PSD), as shown in Figure 11, where the dimensionless frequency is taken
based on the half-channel height and bulk flow velocity: k = f δ/Ub. It is worth noting that
the PSD taken from the middle of the embedded block confirms a full coverage of the
spectra range in the locally fine-mesh block. However, the global coarse-mesh region is
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Figure 10. One-dimensional energy spectra at y+ = 13.5 as functions of streamwise wavenumbers kx and
spanwise wavenumbers kz compared with DNS results (Lee & Moser 2015) in black solid lines at Reτ ≈ 1000.
The blue diamond symbols indicate the results within the local fine-mesh block, while the red symbols indicate
the results in the global coarse-mesh region.

k  = fδ/Ub

k–5/3

10–12

10–8

10–10

10–4

10110010–110–2

10–6

10–2

PSD

Figure 11. Turbulence power spectra density (PSD) as functions of the non-dimensional frequency at Reτ ≈
1000. Data obtained at two locations of the same wall normal distance y+ = 13.5 at the middle of the embedded
fine-mesh block (blue lines) and at a coarse-mesh point outside the embedded block (red lines).

clearly subject to an underprediction for the small-scale high-frequency part (figure 11) as
expected.

It is emphasized that although the present method is phenomenologically based on a
two-scale framework, there is no spectral gap between the two scales assumed, nor is such
spectral gap or separation observed in either the spatial spectra from the two domains
(figure 10) or the temporal counterparts (figure 11).

Figures 12(a) and 12(c) show the one-dimensional pre-multiplied energy spectra kzΦ
+
uu

of the inner embedded DNS region compared with the full DNS results. The counterpart
spectra processed from the global coarse-mesh results are shown in figures 12(b)
and 12(d) indicating a notable discrepancy in the near-wall region for the dominant
shorter-wavelength part. The overprediction of the streamwise velocity fluctuations arising
from the local under-resolution in the global inner near-wall region is consistent with the
mean statistics, as shown in figure 6. The boxes with the vertical black lines indicate
the embedded fine-mesh block size in the spanwise direction. It is clear that the inner
‘universal’ energy peak is sufficiently covered in the embedded block, in line with that
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(c) (d)
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Figure 12. One-dimensional pre-multiplied energy spectra kzΦ
+
uu for the inner region normalized by uτ . (a,c)

the present results within the embedded block with the blue dashed lines showing the results from the full DNS
database (Lee & Moser 2015); (b,d) the present results of the global coarse-mesh region compared with the
same full DNS results. The contour levels are 0.5/1.5/2.5. Results in panels (a,b) are at Reτ ≈ 1000. Results in
panels (c,d) are at Reτ ≈ 2000. Black solid lines indicate the size of the embedded block.

illustrated in figure 2. The longer-wavelength disturbances are well captured in the global
coarse-mesh domain, as shown in figures 12(b) and 12(d).

After examining the inner region and the local embedded block, we now evaluate the
resolutions in the outer-flow region. Attention is paid to a plane at the outer location y+

out ≈
3.9

√
Reτ , within the log-law region, which is taken by Marusic et al. (2010) as the location

where the ‘outer signals’ can be extracted as inputs for their two-scale model. The grid
resolution of the global coarse-mesh is examined to see if the local small scales of the
large energy-containing structures can be sufficiently resolved. Figure 13 shows the 2-D
pre-multiplied energy spectra kxkzΦuu in relation to streamwise wavelengths and spanwise
wavelengths. As can be seen, the coarse mesh resolves outer large scales down to λ+ ≈ 102

well in comparison with the full DNS data (del Alamo et al. 2004).
Figure 14 shows the one-dimensional pre-multiplied energy spectra kzΦuu as functions

of spanwise wavelengths λ+z and wall distances y+. These results underscore the existence
of two energy peaks predicted by the present WeDNS in comparison with the full DNS
(Lee & Moser 2015): the first inner one located at y+ ≈ 13.5 and the second outer one
located in the log-law region, stretching from y+ ≈ 3

√
Reτ to y/δ ≈ 0.3. The inner and

outer energy peaks both can be observed in the present results (figure 14a). The inner
region within the local embedded fine-mesh block is marked by the smaller black box.
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Figure 13. Two-dimensional pre-multiplied energy spectra kxkzΦuu (in shade) normalized by local intensity
compared with the DNS (solid lines) (del Alamo et al. 2004) at the outer location y+

out ≈ 3.9
√

Reτ at two
Reynolds numbers: (a) Reτ ≈ 1000; (b) Reτ ≈ 2000. The contour levels are (a) 0.035 and (b) 0.025 of the
local streamwise intensity.

(a) (b)

104102 103101
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10–1

y/δ

λ+
z
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10–2
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Figure 14. (a) One-dimensional pre-multiplied energy spectra kzΦuu compared with (b) DNS (Lee & Moser
2015) results at Reτ ≈ 2000. The contour levels are 0.05/0.35 (of the local intensity). The inner smaller box
marks the local embedded block, while the larger box marks the global full domain used in the present work.

The first energy peak is with the dominant spanwise wavelength of λ+z ≈ 102. The task to
capture and resolve the first energy peak and near-wall small-scale dynamics is carried out
in the fine-mesh embedded DNS block where the local solutions agree very well with the
full DNS, as shown previously in figures 12(a) and 12(c). The second peak in the outer flow
region contributed by the energetic large scales reaches a maximum beyond y+

s = 3
√

Reτ

that extends to the middle of the channel with the dominant spanwise wavelength of λ+z ≈
O(103) (Agostini & Leschziner 2014) in wall units or λz ≈ δ in the outer dimension. These
large structures should be scaled with the outer variables and increase in wall units in y
growing with Reynolds number. Note that the largest scales approaching the middle of the
channel are cut off by the limited global domain size adopted in the present study. The
influence of even larger scales is discussed by Lozano-Duran & Jimenez (2014), which is
beyond the scope of the present paper.

5.3. ‘Foot-printing’ and ‘modulation’ in near-wall region
In this section, we will examine the instantaneous flow field in the near-wall region with an
emphasis on the scale interdependence and interactions. The ‘foot-printing’ effect of the
outer flow large structures on the near-wall flow motions will be examined by correlating
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y+
in = 13.5

y+
in = 13.5

0

0

Positive

value

red

Zero

value

black

y+
out ≈ 175

y+
out ≈ 175

x = 2πδ

x = 2πδ

z = πδ

z = πδ

(a) (b)

(c) (d) (e)

Figure 15. Illustration of the ‘foot-printing’ effect: (a) original inner instantaneous velocity field at location
y+

in=13.5; (b) original instantaneous velocity field at y+
out≈3.9

√
Reτ ≈ 175; (c) long-pass filtered field of panel

(a); (d) red contours for the positive value of panel (c) while black lines sketch the zero envelop of panel (e);
(e) long-pass filtered field of panel (b). In panel (d), the outer field snapshot is adjusted as per the inclination
angle in y to be compared with the inner. All contours range from −3 (blue) to +3 (red) standard deviations of
each field. Black dashed boxes indicate the embedded fine-mesh block.

the inner flow large scales to those of the outer flow. Furthermore, we will also analyse the
interaction between the large coherent scales and small scales in a form of corresponding
intermediate scales (‘modulation’) in the near-wall region.
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The Huang–Hilbert empirical mode decomposition (EMD) method (Huang et al. 1998)
is applied to the instantaneous raw velocity field of the present WeDNS at Reτ ≈
2000. The algorithm splits the original signals into a set of intrinsic mode functions
(IMFs) based on local characteristic scales without introducing any cut-off wavelengths.
This EMD method of a 2-D version is applied to decompose small- and large-scale
components in DNS channel flows notably by Agostini & Leschziner (2014, 2016a,
2016b, 2019). In the present work, with the implementation of the EMD code originally
developed by Bhuiyan, Adhami & Khan (2008), the last three of eight IMFs are retained
as the long-pass filtered large-scale flow field. The raw data of instantaneous streamwise
velocity fluctuations at an inner and outer location are shown in figures 15(a) and 15(b),
respectively. The filtered large-scale structures of the inner field (figure 15c) show a clear
resemblance to those of the outer flow when the local fine scales are filtered out (figure
15e). These filtered inner and outer fields are further compared by matching the zero-value
contour lines of the outer flow (figure 15e) and the positive-value contours of the inner flow
(figure 15c), which leads to the composite contour plot in figure 15(d). Note closely that
the near-wall large scales travel continuously across the coarse–fine interface (figures 15c
and 15d), similar to the contour lines cut across the interfaces smoothly seen previously in
figure 8.

Recognizing that the global coarse mesh for the whole domain under-resolves
the disturbances when approaching the wall, we nevertheless can still observe clear
correlations between inner and outer large-scale coherent structures. This is taken as the
evidence of the ‘foot-printing’ of the outer scales on the inner region, which provides the
signatures of the large scales of the global outer field on the locally embedded fine-mesh
block.

Figure 16 is generated to illustrate the scale interactions between the large ‘footprints’
and the small local scales in the form of ‘modulation’ (Mathis et al. 2009), manifested
in the presence of some intermediate structures enveloped (conditioned) by the large
structures of the outer flow. The inner small-scale fluctuations are retained in figure 16(b)
by simply removing the large scales. This is enabled by subtracting the long-pass filtered
field shown in figure 15(c) from the near-wall raw field in figure 16(a), similar to that
performed by Marusic, Baars & Hutchins (2017). We then apply the long-pass filter to the
small-scale fluctuations and retain only the ‘positive’ islands shown in figure 16(c). The
‘footprinting’, as demonstrated in figure 15(d), is duplicated in figure 16(d). The presence
of intermediate scales is clearly seen in figure 16(c).

The near-wall incoherent scales are the local ‘universal’ small scales modulated by the
large-scale movement. We compare figure 16(c) and (d) more closely in a closeup of the
embedded fine-mesh region in figure 17. The ‘modulation’ being the small-scales response
to the large scales is seen to correlate to the near-wall large-scale structures, therefore is
fused with the ‘footprints’. If we inspect the length-scale discrepancy of the near-wall
coherent large scales (figure 16d) and the near-wall incoherent scales (figure 17a), we can
easily observe that the former naturally is much larger than the size of the embedded
block, while the latter is much smaller and well resolved by the local fine-mesh DNS. The
‘modulation’ due to the inter-scale interaction appears at the intermediate scales (figure 16c
and figure 17b).

6. Wall-embedded LES

In this section, the potential applications of the two-scale approach are illustrated for
WeLES cases at Reτ ≈ 2000, 4100 and 5200. The results are compared with the existing
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0
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Figure 16. Illustration of the ‘modulation’: (a) the original instantaneous velocity field at the inner location
y+

in=13.5 (duplication of figure 15a); (b) equivalent short-pass filtered field of panel (a) (the raw field minus the
filtered flow field in figure 15c); (c) long-pass filtered field of panel (b) with only contours of positive values
retained, to be compared with the zero envelopes of panel (d); (d) duplication of figure 15(d) showing the
large-scale ‘footprints’. All contours range from −3 (blue) to +3 (red) standard deviations of each field. Black
dashed boxes indicate the local embedded fine-mesh domain.

y+
in = 13.5(a)

(b)

(c)

x

z

y+
in = 13.5

l+ ˜O(102)

y+
out ≈ 175

Figure 17. The instantaneous velocity fields at the vicinity of the embedded region as the green box in figure
16(b) enlarged: (a) local small-scale-pass filtered field near wall (close-up view of figure 16b); (b) intermediate
scales indicative of the ‘modulation’ (close-up view of figure 16(c) with negative values added as shown in
blue); (c) outer large-scale-pass filtered field (close-up view of figure 15e). The black dashed boxes in panels
(a) and (b) mark the local embedded block. The grey dashed box in panel (c) only indicates the corresponding
location of the embedded block underneath.

DNS database (Bernardini et al. 2013; Lee & Moser 2015). Once again, a given mass flow
rate is targeted to match the same Reb as that of a full DNS. The mean velocity profiles
predicted by the present WeLES are shown in figure 18(a–c), in good agreement with the
corresponding DNS data for the three Reynolds numbers, respectively.

The comparisons between the computed Reynolds number based on the friction velocity
Reτ,computed and those targeted Reτ,target are presented in table 4 indicating the accuracy in
the wall shear-stress prediction. The cases computed by using the present two-scale method
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Figure 18. Mean velocity profiles at high Reynolds numbers: (a) Reτ ≈ 2000; (b) Reτ ≈ 4100; (c) Reτ ≈
5200. The blue diamond symbols indicate results within the local fine-mesh block. The red squares and red
solid lines indicate results in the global coarse outer and inner region, respectively. (d) Comparison in the mean
velocity between the one-scale direct solution (‘One-scale5200’ shown as a dashed red line) and the present
two-scale solutions (‘Two-scale5200’) with the source-term coupling on the same mesh grids at Reτ ≈ 5200.
Note that not all data points are included to increase readability.

are labelled as ‘Two-scale2000’, ‘Two-scale4100’ and ‘Two-scale5200’ for the three
nominal Reynolds numbers. Also included in the table are the two high-Reynolds-number
(4100, 5200) cases computed without the source term coupling in the global inner region.
These two computed cases without the source-term coupling are effectively single-scale
direct solutions, thus are labelled as ‘One-scale4100’ and ‘One-scale5200’ for the two
Reynolds numbers. The errors of the two-scale method solutions are all well within 1 %
for these two high-Reynolds-number cases. In contrast, a much larger error (∼15 %) results
from the near-wall coarse-mesh under-resolution when no source-term corrections are
applied as in the direct one-scale solutions. The mean velocity profile in a closeup in
the near-wall region predicted by the one-scale solution is compared with the two-scale
and the DNS results, as shown in figure 18(d), in which the impact of the source term
correction is clearly highlighted.

Extra attention is paid to the local fine-mesh block of the WeLES. Although this is an
LES case, the local embedded block is assumed to be able to capture the inner energy peak
comparably to a full DNS. The computed energy spectrum of the inner embedded block
solution is shown in figure 19, which agrees well with the DNS.

Finally, figure 20 presents the estimated mesh-count scaling with Reynolds number
compared with the actual mesh-count values adopted for the present WeLES computations.
The two-scale approach with the locally embedded fine-mesh solution indicates a
remarkable potential for computational efficiency gains.
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Cases Reτ,target Reb Reτ,computed Error in τw (%)

Two-scale2000 1994 43 650 1991 −0.3
Two-scale4100 4079 95 667 4062 −0.8
One-scale4100 3764 −14.9
Two-scale5200 5186 125 000 5172 −0.5
One-scale5200 4764 −15.6

Table 4. Wall shear-stress prediction of the two-scale WeLES approach.
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Figure 19. (a) One-dimensional energy spectrum at y+ = 13.5 in relation to spanwise wavenumbers within
the local fine-mesh block (blue diamonds) compared with the DNS results (black solid line, Lee & Moser
2015) at Reτ ≈ 2000. (b) One-dimensional premultiplied energy spectrum kzΦ

+
uu in relation to wavelengths and

wall distance in the inner region within the embedded block (greyscale contours) compared with the dashed
contour lines for the DNS results from the database (Lee & Moser 2015) at Reτ ≈ 2000. The contour levels are
0.5/1.5/2.5.
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1×108N/δ3
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Figure 20. Comparison in mesh-count scaling with Reynolds number between the full WRLES (red dash
lines) and the present two-scale WeLES (blue solid lines) underlined by the actual mesh counts of the present
WeLES cases (blue triangles). The full DNS scaling (black dots) is also included.
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On locally embedded two-scale solution

7. Summary and conclusions

When seeking an efficient and accurate solution for wall-bounded turbulent flows by
coupling a local near-wall fine-mesh block with a global coarse-mesh domain, we face
two challenging issues: first, how to capture and resolve the distinctive influence of
large-scale turbulent structures of the outer flow region on the near-wall turbulence, as
clearly established and consistently substantiated in recent research findings, and second,
how to correct the under-resolved global coarse-mesh near-wall region outside the local
fine-mesh block.

We develop a two-scale method with a locally embedded fine-mesh block generated by
sub-dividing the base coarse mesh cells in the near-wall region. The wall-normal height
of the fine-mesh block is taken at the low bound of the log-law region (Marusic et al.
2013) and the streamwise and spanwise sizes are taken based on the spatial spectra of
the full DNS data (Lee & Moser 2015) to ensure sufficient coverage of the resolved
‘universal’ small-scale dynamics and the associated turbulence peak region for a wide
range of Reynolds numbers. Correspondingly, the base coarse-mesh resolution in both the
global outer flow and global near-wall regions is assumed to be sufficiently fine to capture
and resolve all large-scale turbulence structures.

The influence of the large-scale structures on the locally embedded fine-mesh block is
captured by a scale-dependent interface treatment with the distinctive and closely relevant
capability, which is lacking in previous commonly adopted MFU-based methods. The
coarse-mesh resolved disturbances can now be directly exchanged across a coarse–fine
mesh domain interface, whilst only are the fine-mesh resolved fluctuations around the
coarse-mesh variables subject to the periodic condition at the pairing boundaries of the
fine-mesh block in the two wall-parallel directions. The results through scale filtering
re-composition clearly indicate the ‘footprints’ of the outer flow large structures on the
local embedded block, as well as the intermediate scales expected from the large–small
scale interactions (‘modulation’) in the near-wall region. In this two-scale framework, we
make no assumptions in relation to the need for the presence of a scale separation or
spectral gap between the disturbances of the global coarse-mesh domain and those of
the local fine-mesh block. The spatial energy spectra predicted by the present two-scale
method exhibit a substantial range where the two spectra obtained from the two domains
overlap smoothly. It is a manifestation of the wide and continuous range of the length scales
of disturbances captured by the present two-scale coupled system. More importantly, as
confirmed by a single-point temporal spectrum, the local fine-mesh domain is shown to
be subject to a full range of length scales from the smallest scales resolved locally to the
largest one dictated by the global domain size.

The global coarse-mesh in the near-wall region is under-resolved as expected. We
resort to upscaling through a space–time averaging. The time-averaged and locally
volume-averaged fine-mesh solution for corresponding coarse-mesh cells is taken as
a target for the coarse-mesh region outside the embedded fine-mesh block. The
corresponding forcing source terms, generated from the target solution of the fine-mesh
block, are directly mapped to the corresponding coarse-mesh cells in the global inner
domain, given the homogeneity of the time-averaged field in the streamwise and spanwise
directions. With the pointwise source terms-based corrections, the coupling between
the two domains directly reflects the physical interaction: the global domain provides
improved conditioning for the local embedded fine-mesh block whilst the local fine-mesh
block solution provides means to lead to an effectively improved resolution for the global
domain. It follows that the improved near-wall solutions of both the embedded fine-mesh
block and the coarse-mesh inner region in turn lead to improved conditioning for the global
outer flow region.
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The two-scale method is examined for an incompressible channel flow. Validation case
studies are carried for Reτ ≈ 550, 1000 and 2000, with the mean statistics and energy
spectra being compared with the corresponding full DNS data (del Alamo et al. 2004; Lee
& Moser 2015). Analyses using the Huang–Hilbert EMD method for scale decomposition
and re-composition, in a similar way to that of Marusic et al. (2017), clearly illustrate the
‘foot-printing’ and the ‘modulation’ effects in the local fine-mesh block. It is shown that
the mesh-count scaling with Reynolds number can be potentially reduced from O(Re2) for
conventional wall-resolved large-eddy simulations (WRLES) to O(Re) for the present local
wall-embedded LES (WeLES). Further LES tests are conducted for Reτ ≈ 2000, 4100 and
5200, which demonstrate the projected mesh count gains and the improved accuracy of
the present method over a direct coarse-mesh solution without the two-scale source-term
coupling.

Finally, some further comments should be made regarding the prospect of applying the
present two-scale methodology as described to more practical applications. The seemingly
restrictive feature of a channel flow is the homogeneity of the time-averaged flow in the two
wall-parallel directions. We intentionally make use of the simple canonical configuration
to highlight the most relevant while generally applicable key difference between an
unsteady field and its time-averaged counterpart. The latter is much smoother than the
former, thus a source term correction based on a time-invariant averaged (instead of an
instantaneous) flow would be far more readily amenable to spectral mapping efficiently
and accurately in the two wall-parallel directions for wall-bounded turbulence. This should
be the case for many practical wall-bounded turbulence flows where a time-averaged
flow is smooth while being inhomogeneous in two wall-parallel directions. As indicated
in the introduction, the present work stems from a two-scale block spectral method
development aimed at more specific practical problems, such as surface micro-structures,
micro/effusion-cooling (He 2018; Kapsis et al. 2020) and aerothermal analyses of multiple
blade passages and rows (He 2021), commonly subject to non-uniform flow conditions
and geometries. The work presented in this paper should provide a more fundamental
while generalizable underpinning of the two-scale methodology, as motivated. Further
developments and applications are expected.
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Appendix A. An option for additional buffer layer

For the baseline implementation of the two-scale method, it is assumed that the
‘modulation’ can be mostly regarded as a one-way influence of the large scales in the
outer flow region on the small scales and some intermediate scales in the near-wall region,
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Buffer 2 (corrected)
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Wall

Buffer 2 (corrected)
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Figure 21. Domain with coarse-mesh buffer regions (an extended version of figure 1b).

as indicated in figure 17. However, the modulated near-wall turbulent flow should, in
principle, be able to provide feedback to affect the outer large scales, which is neglected
in the baseline implementation. Although the authors have so far not seen any noticeable
feedback effects, the issue should be dealt with for completeness of the framework and
implementation method. In this Appendix, we consider a very simple option without extra
mesh-cost to include this feedback, should it become significant.

As illustrated in figure 21, we take a local region of the coarse-mesh domain directly
adjacent to the embedded fine-mesh block as a target buffer region (labelled as ‘Buffer
1’). Correspondingly, we take a global buffer region to be corrected which is adjacent
to the global inner coarse-mesh region, labelled as ‘Buffer 2’. A phenomenological
argument within the two-scale framework follows that if the ‘modulation’ resolved in the
near-wall fine-mesh block does have non-negligible feedback on the outer flow region,
the buffer region adjacent to the local fine-mesh block will have to be different from that
of the global outer coarse-mesh region directly adjacent to the coarse-mesh inner region.
Thus, the time-averaged flow of Buffer 1 will have to be different from that of Buffer 2.
As such, we can use the time-averaged flow of Buffer 1 as the target to correct Buffer 2.

For the buffer regions, the general upscaled coarse-mesh flow equations (3.12) can be
written as

∂uB

∂t
+ R(uB) = (Sst)B1 + (St)B2. (A1)

For the target region Buffer 1, the space–time averaging is now reduced to time averaging
only. Thus, the driving source is simply generated taking the inverse mode of the time
averaging:

(Sst)B1 = R(ūB1). (A2)

For Buffer 2, making use of (3.15), we have the upscaled equation:

∂uB2

∂t
+ R(uB2) = R(ūB1) + R(uB2) − R(ūB2). (A3)

After time averaging equation (A3), we then get the resultant equation driving the
converged time-averaged flow in Buffer 2 to the target in Buffer 1, as intended:

R(ūB2) = R(ūB1). (A4)

It is emphasized that the implementation of this option does not involve any extra mesh,
as all the buffer regions are of the coarse mesh which is meant to be sufficiently fine to
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resolve all relevant scales locally. The only extra cost will be that for local time averaging,
and that for evaluating and actuating the time-averaging source terms in the inverse or the
direct mode for the two buffer regions, which tend to be minimally small.

The two-scale method with the added extra buffer regions is tested for the case with
Reτ ≈ 5200 in which the buffer thickness is taken to be 0.05δ. The comparison between
the results with and without the buffer shows negligible differences for the case tested.
This further test would suggest that for the present cases at the given Reynolds numbers,
the ‘modulation’ can still be regarded as predominantly only influential on small and
intermediate scales in the near-wall region without noticeable feedback to the large scales
themselves in the outer flow region.
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