
BULL. AUSTRAL. MATH. SOC. 57N13, 57R57

VOL. 56 (1997) [363-384]

SEIBERG-WITTEN INVARIANTS OF
GENERALISED RATIONAL BLOW-DOWNS

JONGIL PARK

One of the main problems in Seiberg-Witten theory is to find (SW)-basic classes
and their invariants for a given smooth 4-manifold. The rational blow-down pro-
cedure introduced by Fintushel and Stern is one way to compute these invariants
for some smooth 4-manifolds. In this paper, we extend their results to the gen-
eral case. That is, we find (SW)-basic classes and Seiberg-Witten invariants for
generalised rational blow-down 4-manifolds by using index computations.

1. INTRODUCTION

As gauge theory (Donaldson theory and Seiberg-Witten theory) is developed, the
fundamental problem in this area is to find its invariants for a given smooth 4-manifold.

In 1993, Fintushel and Stern introduced a surgical procedure, called rational blow-
down, to compute the Donaldson series for simply connected regular elliptic surfaces
with multiple fibres of relatively prime orders. 'Rational blow-down' means that if a
smooth 4-manifold X contains a certain configuration Cp of transversally intersecting
2-spheres whose boundary is Lyp , 1 — p) , then one can construct a new smooth 4-
manifold Xp from X by replacing Cp with a rational ball Bp.

In fact, Casson and Harer [2] showed that for any pair of relatively prime integers
p and q, L(p2,1 — pq) bounds a rational ball BPtq. Hence one can extend this ratio-
nal blow-down procedure to the general case, that is, whenever a smooth 4-manifold
X contains a certain configuration CPi9 of transversally intersecting 2-spheres whose
boundary is L(p2,1 — pq) , one can always construct a new smooth 4-manifold XPiR by
replacing CPlq with a rational ball Bp>q.

For the q = 1 case, Fintushel and Stern initially computed the Donaldson series
of Xp = -Xp,i from the Donaldson series of X, and later they computed the Seiberg-
Witten invariants of Xp [5]. In Section 3 of this paper we extend these results to the
general case. Explicitly, we prove the following theorem by using index computations:
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364 J. Park [2]

THEOREM 1 . 1 . Suppose X is a smooth 4-manifold which contains a config-
uration CPiq. If L is a characteristic line bundle on X such that SWx(L) ^ 0,

(L\cp,qY = -b2(CPiq) and C I ( L | L ( , 2 I 1 _ M ) ) = mp e Zp2 * H2(L(p2,1 - pq); Z) with

m = (p — 1) (mod 2), then L induces a characteristic line bundle L on Xpq such that
SWXpiq{L)=SWx(L).

Furthermore, we prove the following theorem:

THEOREM 1 . 2 . If a simply connected smooth A-manifold X contains a config-

uration CPt<l satisfying condition (*) below, then the SW-invariants of XPtq are com-

pletely determined by those of X. That is, for any characteristic line bundle L on

XP}q with SWXp , (L) 7̂  0, there exists a characteristic line bundle L on X such that

The condition (*) in the theorem above is the following:

= {mp : — (p — 1) ^ m ^ (p — l)and m = (p — 1) (mod 2)}

All known configurations Cp<q satisfy this condition.

2. T H E TOPOLOGY OF RATIONAL BLOW-DOWNS

In this section we describe topological aspects and several examples of rational
blow-down 4-manifolds. For any relatively prime integers p and q with 1 ^ q < p, we
define a configuration Cp<q as a smooth 4-manifold obtained by plumbing disk bundles
over the 2-sphere instructed by the following linear diagram

uk uk-\ «i

where p2/{pq— 1) = [bk, bk-i, • • • , &i] is a unique continued linear fraction with all
bt ^ 2, and each vertex Ui represents a disk bundle over the 2-sphere whose Euler
number is —6;. Then the configuration CPtq has the following properties:

1. It is a simply connected smooth 4-manifold whose boundary is the lens

space L (p2,1 — pq) .
k

2. H2(Cp,q;Z) = 0 Z has generators {u, : 1 ^ i ^ k} which can be
i=i

represented by embedded 2-spheres, that is, each u; is represented by the
zero-section Sf of the disk bundle u; over S2. (We use u; for both a
generator and the corresponding disk bundle.)
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[3] Seibert-Witten invariants 365

3. The plumbing matrix for CPtq with respect to the basis
is given by the symmetric k x k matrix

P =

i : 1 ^ i ^ A;}

f-bi
1

0

1
~b2

1

0

0
1

-63

0

-bt-i

1
1

-bk

so that Cp<q is negative definite.
4. The intersection form on H2(CP}q; Z) with respect to the dual basis

1 ^ i ^ k} (that is, (7; , Uj) = Sij) is given by

PROOF: Note that the intersection form Q on H2(Cp<q; Z) is denned by

where 7 j € H2(CP}g,dCp<q; Z) is determined by ]*{l'j) — p2 • ~fj in the sequence

0 —-»• H2(Cp<q,dCPiq; Z) ^ H2{CP)q; Z) A H2{dCPtq; Z) —+ 0.

Since ]* = P, we have

7. • 7; := ^ ( 7 .

LEMMA 2 . 1 . The inclusion induced homomorphism d : H2(Cp,q;Z)

H2(dCp<q\ Z) = Zp2 is given by 9(7;) = n;, where n; is a number satisfying

-1 0\ /0 1\ / - I 0 -1 ON/0 1W0

PROOF: By Poincare duality, it suffices to show d : H2{CPiq,dCPtq; Z) -> Hi(dCPtq; Z)

is given by d(PD~fi) = n{. For each i, choose a fibre Z?̂  of a disk bundle M, over S2
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so that D2 • S2 = Sij. Then D2 is a representative for PD(fi) € H2{CPiq,dCp,q;Z).
Since

dCPiq = D+ x Si UAk dD~ x Si U S dD+ x 5^_j UAk_1 • • • UAl D~ x S\

= D+ xSl l)A D~ x Si

where S,1 := <9D2 and A := AkBAk-i • • • Ai with A{ := [~ ) , and 5 :=
o n v h i y

1 0 J w e h a v e

0 1 \ / - I 0

which is homologous to ( ) in H\{dCPtq\ Z) . Hence, by choosing I j as a gener-

ator of ifi ( d C M ; Z) , we have d(PD-fi) = n,. D

LEMMA 2 . 2 . The iens space L(p2 ,1 — pc?) = dCP]q bounds a rational ball Bpq

with TTi(Bptq) — Z p , and t i e inclusion induced homomorphism

S : H2(Bp,q;Z) * Zp —> fT2(L(p2,1 - M ) ; Z ) = Z
p 2

can be given by n i—>• np.

PROOF: The first part was proved by Casson and Harer [2]. For the second part,
since the Mayer-Vietoris sequence for X = CPA UL Bp>q which is homeomorphic to

0 —>• H2(Cp,q; Z) © H2(Bp,q; Z) —»• H2 (»fcCP2;

implies tf2(-BP]?;Z) is torsion free, by Poincare duality, H2(BPtq,dBpq;Z) = H2(BPtq) —

0. On the other hand, since the exact sequence for (BPiq,dBPtq) also implies that

.* : H2{BPtq- Z) S Zp —»• H2(dBp,q; Z) S Zp 2

is injective, t*(l) = Zp for some / with gcd (Z,p) = 1. Hence, by re-choosing a generator
of H2(dBPtq; Z) = Zp2, we may assume that t*(l) = p , so that t*(n) = np. D

LEMMA 2 . 3 . 5 P ? is spin if p is odd, and Bpq is not spin if p is even.

P R O O F : If p is odd, then Hx{BPtq) S Zp implies H2{BPtq;Z2) = Ex^H^Bj,,,,); Z2)
= 0. Assume p is even and Bp<q is spin. Then the index of the Dirac operator on Bpq

should be an integer. But the index computation on Bpq (Proposition 3.3 and its
remark) shows that it is not an integer—a contradiction! D
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[5] Seibert-Witten invariants 367

Now we define the rational blow-down procedure: Suppose X is a smooth 4-
manifold which contains a configuration Cp^q for some relatively prime integers p and
q. We construct a new smooth 4-manifold Xp<q, called the rational blow-down of
X, by replacing CPi9 with the rational ball Bp<q (Figure 1). We call this procedure
a '(generalised) rational blow-down'. Note that this procedure is well defined,
that is, XPtq is uniquely constructed (up to diffeomorphism) from X because each
diffeomorphism of dBp^q = L(p2,l — pq) extends over the rational ball Bpq by the
same argument as in [5, Corollary 2.2].

X =

UpM-pq)

Figure 1

LEMMA 2 . 4 . b+{XPt9) = b+{X) and c?(XPi,) = c2{X) + k, where k = 62(CP,,).

PROOF: Since Cp,, is negative definite, b+(Xp,q) =b+(X) and

= 3(a{X) + k) + 2(e(X) - k)

where a(X) is the signature of X and e(X) is the Euler characteristic of X. D

Here are several configurations CPiQ that will be used later.

CASE q = 1. This case is studied in [5], whose configuration Cp,i is

-(p + 2) -2 -2
Up_l Up_2 Ul

Fintushel and Stern used this configuration to show that the rational blow-down of
2

E(n)$(p — 1)CP is diffeomorphic to E{n\ p), p-log transform on E{n), and to compute
the Donaldson and Seiberg-Witten invariants of simply connected elliptic surfaces with
multiple fibres. Here E(n) is a simply connected elliptic surface with no multiple fibres
and holomorphic Euler characteristic n, and 'p-log transform on E(n): is the result of
removing a tubular neighbourhood of a torus fibre in E(n), say T2 x D2 , and regluing
it by a diffeomorphism

v : T
2 x dD2 —+ T2 x 3D2

such that the absolute value of the degree of the map

projaD2 0(̂3 : pt x 3D —> 3D
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is p. Note that 'p-log transform on E(p,y is well denned, that is, E(n;p) is uniquely
determined up to diffeomorphism by the fact that if projaD2 o<̂> and projaD2 otp' have
the same degree up to sign, then the resulting two manifolds are diffeomorphic [6,
Proposition 2.1].

CASE p = kq — 1 (k,q ̂  2). We assume q ̂  3 (the q = 2 case is also obtained in a
similar way). The configuration Cp<q is given by

which can be embedded in j(k + q — 2)CP by choosing

eic+q-2-i - ejt+g-i-i i = l , . . . , k - 2

e,_2 - e?_! - eq i = k - 1

ek+q-3-i - ek+q-2-i i = k,... ,k + q - 4.

—2ei — e 2 — • • • — e ? _ i i = A; + <? - 3

e v _ i - e , - • • • - e j t + ? _ 2 i = A; + 9 - 2

where each e, (1 ^ i ^ k + q — 2) is the exceptional divisor in |(fc + q — 2)CP . Fur-
thermore, by using Lemma 2.1, we get its boundary values

{
i i = 1 , . . . ,k- 1

(i+2-k)k-i i = k,... ,k + q-3

pq-1 i = k+q-2
which imply that Ckq-i,q satisfies the condition (*) mentioned in the introduction.

THEOREM 2 . 1 . For a n y integers k a n d q (k,q~^2), there is an embedding
2

Ckq-\,q C E(n)j(k + q — 2)CP such that the rational blow-down is diffeomorphic to
E(n;kq-1).

PROOF: Consider the homology class / of the fibre in E(n) which can be repre-
sented by an immersed 2-sphere with one positive double point and self-intersection 0
(a nodal fibre). Blow up this double point so that / — 2e\ (ej is the exceptional divi-
sor) is represented by an embedded sphere. Since e\ intersects / — 2e\ at two positive
points, blow up one of these points again. By continuing in this way, we get a con-
figuration Ckq-\,q in E(n)$(k + q- 2)CP"2 . We draw the case q ̂  3 (Figure 2) (the

2

q = 2 case is similar). The claim that the rational blow-down of E(n)f(k + q — 2)CP
is diffeomorphic to E(n; kq — 1) can be proved by Kirby calculus on the neighbourhood
of a cusp fibre as in [5, Theorem 3.1]. U
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f- 2 ; .{• 2c • f 2<

f-2<

\ \e.'~*a \-e2

Figure 2

Here are a few remarks on this theorem:
1. The theorem implies that there are many ways to obtain E(n; p), p-log transform

on E(n), from E(n) via a rational blow-down procedure; so one can choose an 'econom-
ical' way to get E(n;p). For example, E(n, 11) is diffeomorphic to the rational blow-
down of Cn,i C £(n)|jlOCP2, of Cii,2 C £(rc)tl6CP2, and of Cn,3 C £(n)J!5CP2.

2. One expects that for any relative prime integers p and q, there is an embedding
2

Cp , in jB(n)j)A;CP , for some k 6 Z, such that the rational blow-down is diffeomorphic
to E{n;p).

3. The key ingredient in the proof of the theorem is to find such a configuration
2

Ckq-\,q- We chose U{ exactly the same as u; embedded in $(k + q — 2 ) C P except

, - 3 = / - 2ex - e2 eq-i (ufc_i = / - 2ei - e2, if 9 = 2)4. One can extend the 'logarithmic transform' procedure to any 4-manifold which
contains a cusp neighbourhood. A cusp in a 4-manifold means a PL embedded 2-sphere
of self-intersection 0 with a single non-locally flat point whose neighbourhood is the
cone on the right-hand trefoil knot, and we define a cusp neighbourhood in a 4-manifold
to be a manifold N obtained by performing 0-framed surgery on the trefoil knot in
the boundary of the 4-ball. Note that since the trefoil knot is a fibred knot with a
genus 1 fibre, N is fibred by tori with one singular fibre which is a cusp. Hence one
can perform 'p-log transform' on a regular torus fibre in N exactly the same way as in
E(n), so that the theorem above is also true for any smooth 4-manifold containing a
cusp neighbourhood.

3. SEIBERG-WITTEN THEORY OF RATIONAL BLOW-DOWNS OF 4-MANIFOLDS

In this section we compute the Seiberg-Witten invariants of rational blow-downs of
4-manifolds. We start by recalling the basics of Seiberg-Witten invariants introduced
by Seiberg and Witten (see [8, 10]).
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Let X be an oriented, closed Riemannian 4-manifold, and let L be a characteristic
line bundle on X, that is, c\(L) is an integral lift of W2(X). This determines a Spinc-
structure on X. We denote the associated C/(2)-bundles by W± := S± (g) Lll2 , where
5 * is a (locally defined) spinor bundle on X. (One may choose a Spinc-structure first,
and associated f/(2)-bundles W± on X. Then L := det(W+) ^ det(W~) is the
associated characteristic line bundle on X.) For simplicity we assume that H2(X;Z)
has no 2-torsion so that the set Spinc (X) of Spinc-structures on X is identified with
the set of characteristic line bundles on X.

Note that the Clifford multiplication c : T*X -4 Rom(W+,W~) leads to an
isomorphism

p: A + ® C —>

taking A+ to su(W+), and the Levi-Civita connection on TX together with a uni-
tary connection A on L induces a connection V^ : F(VF+) —> F(T*X ®W+).
This connection, followed by Clifford multiplication, induces a Spinc-Dirac operator
DA • F(W+) -> T(W~). The Seiberg-Witten equations [10] are the following pair of
equations for a unitary connection A of L and a section ^ of

{ DA<S> = 0
(2) I

\

where F^ is the self-dual part of the curvature of A and (\I> ® ^*)o ' s the trace-free
part of (^ (8) *&*) which is interpreted as an endomorphism of W+ .

The gauge group Q := Aut(L) ^ Map(X, 51) acts on the space AX{L) x F(W+)
by

In particular, if b1(X) = 0, then the gauge group Q is homotopy equivalent to S1 so
that the quotient

B*X(L) := AX(L) x

is homotopy equivalent to CP°° . Since the set of solutions is invariant under the action,
it induces an orbit space, called the (Seiberg-Witten) moduli space, denoted by MX(L),
whose formal dimension is

dim Mx (L) = i (Cl (L)2 - 3a(X) - 2e(X))

where cr(X) is the signature of X and e(X) is the Euler characteristic of X.

DEFINITION: A solution (A,^) of the Seiberg-Witten equation (2) is called irre-
ducible (reducible) if * ^ 0 (* = 0).
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[9] Seibert-Witten invariants 371

Note that if b+(X) > 0 and MX{L) ^ 0, then for a generic metric on X the

moduli space Mx{L) contains no reducible solutions, so that it is a compact, smooth

manifold of the given dimension. Furthermore the moduli space Mx(L) is orientable

and its orientation is determined by a choice of orientation on det (H°(X; R)©.ff1 (X; R )

DEFINITION: The Seiberg-Witten invariant for X with bi(X) = 0 is the function
SWX • Spinc {X) -> Z denned by

if dim MX{L) < 0 or odd

i fd imM x (L)=0

, [Mx (£)]> if dim M x (I) := 2dL > 0 and even

where sign(A,ty) is ±1 whose sign is determined by an orientation on Mx{L), and
/3 is a generator of H2(B*X(L); Z) S #2(CP°°;Z). For convenience, we denote the
Seiberg-Witten invariant for X by SW* = £ SW;c(L) • eL •

L

Note that if b+(X) > 1, the Seiberg-Witten invariant SWX = ^,SWX(L) • eL

is a diffeomorphism invariant, that is, SWx does not depend on the choice of generic
metric on X and generic perturbation of the Seiberg-Witten equation. Furthermore,
only finitely many Spinc-structures on X have a non-zero Seiberg-Witten invariant.

DEFINITION: Let X be an oriented, smooth 4-manifold with b\ = 0 and b+ > 1.
We say a cohomology class C\{L) € H2(X; Z) is a Seiberg-Witten basic class (for brevity,
SW-basic class) for X if SWX{L) ^ 0.

DEFINITION: An oriented, smooth 4-manifold X is called a Seiberg-Witten simple
type (for brevity, SW-simple type) if SWx{L) = 0, for all L satisfying dimMx(£) > 0.

Next we describe a (Seiberg-Witten) gluing theory for computing Seiberg-Witten
invariants of a smooth 4-manifold X = X+ Uy X- which is separated into two pieces
X+,X- by an embedded 3-manifold Y. Let (Xn,gn) be the Riemannian manifold
obtained from X by cutting along Y and inserting a cylinder [-R, R] x Y on which gR
is a product metric. As in Donaldson theory, if the moduli space MxR(L) is non-empty
for all sufficiently large R, then by stretching the neck along Y in X (that is, R —>• oo)
each solution (A, St) £ Mx{L) is split into three relative solutions

((A+,*+),(ylo,*o),(4-,tf-)) €

and conversely any such three relative solutions (A^., ̂ +), (-<4o, ^o) and (A_,\I>_) in-
duce a global solution (A+,'I'+)tt91(Ao,*o)it92(j4-5^'-) e MX{L), where ^ and g2 are
gluing parameters. (In general, there is an obstruction to construct a global solution
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from relative solutions [3].) In particular, if the embedded 3-manifold Y in X has a

positive scalar curvature metric (for example, Y = S 3 ,L(p 2 , l — pq)), then any such

solution (Ao,^o) € MRXY(L\RXY) is reducible. That is,

MRXY(L\RXY) — {(A),0) : AQ is an ASD U(l) - connection on Y}

For example, if Y = S3 or L(p2,\ — pq) , then MRXY(L\RXY) is a single reducible
solution. Furthermore, since L is a {/(l)-bundle, the gluing parameters are S1 . In
summary, we have

PROPOSITION 3 . 1 . If a smooth 4-manifold X is split into two pieces X+

and X- by an embedded Z-manifold Y = S3 or Lyp2,1 — pq), then each solution

{A,^) 6 MX(L) can be obtained from two relative solutions ((A+, $+), (A_, ^_) ) €
MX+(L\X+) x Mx_(L\xJ) and

dim MX(L) = dimMx+(L\x+) + dimMx_(L\x_) + 1

where MXi\L\Xi) is the set of solutions (modulo the gauge group) which converge

asymptotically to a reducible solution in My(L|y) .

Note that if dimMx_(L\X-) < 0, then MX_(L\X-) consists of reducible solu-
tions. The technical part in the rest of this section is to show that dimMBp q (L\BP q) =

- 1 and dim M C p, , ( i | cp ,J < - 1 , so that both MBpq (l>|sPi,) and MCpi, (L|cp,,) con-
sist of a single reducible solution. Before doing this, as a warm-up, we can get a
well-known blow-up formula [4] for Seiberg-Witten invariants by using index computa-
tions.

PROPOSITION 3 . 2 . If X is a SW-simple type 4-manifold, then the blow-up

X = XjjCP2 is also of SW-simple type, and the Seiberg-Witten invariants of X =

are
SW~ = SWX • (eE + e~E)

2

where E is the exceptional divisor of C P .
,— Q

PROOF: Note that a characteristic line bundle on X = XjjCP is of the form

L + (2k + 1)E, where L is a characteristic line bundle on X and k 6 Z. (We identify

the exceptional divisor E with its corresponding line bundle on C P .) Suppose L : —

L + (2k + l)E is a characteristic line bundle on X such that SW~(Z) ^ 0. Then, when

splitting apart X along S3 , Proposition 3.1 implies that any solution in M~ (LI can be

obtained from two relative solutions which are identified with two (absolute) solutions

in MX(L) x M—2((2fc + 1)JE). (Since stretching the neck along S3 corresponds to2
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[11] Seibert-Witten invariants 373

choosing a sequence of metric so that the neck is pinched down to a point, the last

statement follows from a simple removable singularities argument.) But since

= 2 • mdDA\—2 + ind (d+ + d*)|_2

= 2 [CP2] + (h1 -h°- h+) (CP2)

M 8 24

- (4A; 2 + 4A:)

(In case Y = S 3 , indDyi has no boundary terms.) Thus M——2((2A; + 1).E) consists of

a single reducible solution, and M~(L) can be identified with Mx(L). Furthermore,

(Z) = ^{(Cl{L) + (2k + 1)E)2

= \{Cl{Lf - (3<T(X) + 2e(X))} - (fc2 + fc)

the SH^-simple type condition on X and S'lV-fi) 7̂  0 imply that dimM~(L) = 0

and k = 0 or - 1 . Hence X is also of SW-simple type and SWX{L) = SW~(L + E) =

L-£;). D

In order to compute indD^ on Bpq and CP:Q, we need the following two elemen-

tary trigonometric computations.

LEMMA 3 . 1 . For relatively prime integers p and q, and z — e'27n '/p

2i ztPk 2 i

PROOF: There exist integers r and s satisfying rp + sq = 1; so z'p* = zstpqk .

Thus it suffices to show

1 tPqk _ !
TT 7 = °. f o r a11 * € Z-

^k 1)
^x (z k -
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Given t £ Z and setting w = zvq~x,

P - 1
 z(t+l)pqk _ ztpqk

Jt=l ' ^ ~ >\z ~

- l)(wk - 1)} + ztP"k{(wk - 1) + (zk - 1)}
(zk-i)(wk-i)

t,,* , 2 I P ^ f (z'»* - 1) (u,-(^')^* - 1)

2

P
2 - l , . tpq-lP

2-l

{ h}
(=o k=i

P2-1 r . t p ? - l p 2 - l <p? P2-1

{ ^ }= E {*tMt + ^ i ) } + E E - " - E E
k=\ ^ v ^ -1 (=0 it=l /=1 k=\

p 2 - l , . < p 9 - l p 2 - l tpqp2-\

{ A }
1=0 A=l /=1 k=\

= 0.

Hence the lemma follows by induction on t.

LEMMA 3 . 2 . For relatively prime integers p and q, and z = e^2nt^v

2

/ 9\ V ^ fnk\ /Trfcfl — pq)\ 2, , ,
s(l-Pq,P

2) = g cot ^ - J -cot { [
p2

Pq>) = 3(1 -P2),

equivalents g ( ^ _ 1)(z(p,-i). _ l} = I2

Note that this lemma can also be proved by using a different method [7].

PROOF: An easy computation shows that
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Note that for 0 < t ^ p — 1 and w = zp,

p - 1 tk

— w —
^ (iu* - l)(iu-* - 1) ^ ^ (u;-* - 1)
J f c = l V / V ; 1=0 k=l V ;

± * P-1 (* P-1 (,.,lk
w

(The third equality follows from the fact that £} to'* = — 1, for 1 ^ / ^ p — 1.) Hence
P-I *=i

by using the equality ^ w = 0 for 1 ^ k ^ p — 1,

so that

12 ^

(=0

p-ip-i

P - I

z — / (to* — '.

p-1

wtk

• - i x . - * - 1 )

p
l)(m-* - 1)'

p - 1

fc=l ^

1

- ! ) ( « , - * - 1 )

1P p

Finally by using the fact that £ zl^k = 0 if k ^ tp and X) Z'P9*: = P if fc = ip, and

by Lemma 3.1, we have ~ ~

v ^ = w
^ (z* - 1 ) ( 2 ( J>«-D* - 1) ^ ^ (z* - 1)(«(J>«-D* - l)

'V L
^ (ar'P - 1 ) ( 2 ( P « - I ) ' P - l )

p-i

^ («,« - l ) (u;- ' - 1)
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PROPOSITION 3 . 3 . For any characteristic line bundle LB on Bp<q withacylin-
drical end

B+q = Bp,q UL(p2, l-pq)x [1, co)

dimMH+ (LB) = —1; so the moduli space Mn+ (LB) consists of a single reducible
ap,q °P,Q

solution.

P R O O F : I t suff ices t o s h o w t h a t i n d ( D 4 L + 1 = 0 b e c a u s e
V ap,qJ

dimMB+ (LB) = 2-indfDAL+ ) + ind (d+ + d*)\ +
ap,q \ °p,qJ °p,q

where A is a [/(l)-connection on LB -> B+<q. Now compute

/ .

_Pi\_ (h + r)(0)\

8 24 2

Since LB is a fiat connection on B+q the first term (CI(LB)2)/8 = 0, and the second

term can be computed by using [1, Proposition 2.12]

^)+^>cot|5Vcot^*(1-M)

P2J V P2

Hence, by Lemma 3.2,

The boundary term, (h + r?(0))/2, can also be computed by using the Atiyah-Singer
fixed point theorem [9, Section 19] for a Spinc-Dirac operator DA on D4/Zp2 =
cone on L[p2,1 - pq):

h + ri(Q) - 1 - ^

96Zp2-{0}

_ p2_x /e,fci/p2 _ e_Tfci/p2\ ^(l-pg)^^/?2 _ e-(l-pq)nki/p2\

Z

^
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where cx (LB\L^2 A_pq)) = mp e H2(L(p2,1 - pq); Z) « Zp2 (Lemma 2.2). Since LB

is a characteristic line bundle, we can always choose an integer m so that m-\-q is even.

(If p and m + q are odd, choose m+p+ q = m + q (mod p). If p is even, then m and

q are odd.) By setting z :— e2n'/p and < := (m + q)/2 € Z, we have

Ph + 77(0) _ - 1 P v ^ e*(m+q)ki/p

2 ~ p2" 4 ^ (e

- 1

T 7 ; 7 , : r (by Lemma 3.1)
P & {zk l)(z("-»k 1)

= 1^2(1 -P2) (by Lemma 3.2).

Combining these computations we get ind \DA\R+ 1 = 0 . D
\ ap,q /

REMARK. In the proof of Proposition 3.3 above, if both p and m are even (in particular
if rn = 0), a similar computation shows that ind DA on Bvq is not an integer. This
contradiction means that BPt9 is not spin for p even (see Lemma 2.3).

COROLLARY 3 . 1 . For any characteristic line bundle Lc on C+g = CPi? U

L[p2,1 — pq) x [1, oo), dimMc+ (Lc) is odd and ^ —1; so the moduli space Mc+ (Lc)

consists of a single reducible solution.

PROOF: Since ind (d+ + d*\c+ j = (bl - b° - 6+)(C+?) = - 1 , in the same way

as the proof above, it suffices to show that ind ( DA\C+ ) ^ 0. Since X = C+g Ui B^q

2

is homeomorphic to (JfcCP with k — 62(Cp>g), for any characteristic line bundle L on

X, C l(L)2 ^ -k and

ind (DA\C+ )+md[DA\-i-)=md(DA\x)= /

Hence ind(£>A|c+ ) < - ind(£> A | B + ) = 0. D

LEMMA 3 . 3 . Let X be a smooth 4-manifold containing a configuration Cp^q,

that is, X — XQ UL/ 2 i_ \ Cp,q> a n c ' ^ ^p,q be its rational blow-down. Then a line

bundle L on Xp<q is characteristic if and only if both L\x0 on XQ and L\BP^ on Bpq

are characteristic.
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PROOF: Since Hl{Bp,q;Z2) -» Hl(L(p2,1 - pq); Z2) is surjective, i* © j * :
H2(XPiq;Z2) -> H2(X0;Z2) ®H2{Bp,q;Z2) is injective. Hence the proof follows from
the following commutative diagram

> ti (J\.pq;Zj) > ti \XQ; L) ® n \DP q;L)

1 . . . . [

h [L[p ,1 — pq); li2) > ti^\Xp<q;L2) >• ti [XQ; L2) ffi n (BPtq; Z2)

THEOREM 3 . 1 . Suppose X is a smooth 4-manifold which contains a config-
uration Cp<q. If L is a characteristic line bundle on X such that SWx(L) ^ 0,

(L|C p, ,)2 = -b2(Cp,q) and cx ( i | t ( , » , , _ M ) ) = rnp € Zp2 S if2(L(p2 ,1 - P<?); Z) with

m = (p — 1) (mod 2), then L induces a characteristic line bundle L on Xp^q such that

PROOF: The condition ci(L\Llp2 1_pq\) = mp with m = ( p - 1 ) (mod 2) and

Lemma 2.2 imply that the characteristic line bundle L\x0 on XQ extends uniquely to

a characteristic line bundle L on XPt<J. Then the rest of proof is the same argument as

the proof of [5, Theorem 8.2]. That is, first we study the solutions of Seiberg-Witten

equations on X for L by pulling apart X = Xo UL/ 2 i-pq) Cp,? along L(jp2,1 - pq) .

Then Proposition 3.1 and Corollary 3.1 imply that each solution in Mx(L) can be

obtained by gluing a solution (Ax0, ^x0) £ Mx0 (L\x0) with a unique reducible solution

(ACp,,,0) = MCpiq(L\Cp,q)- But, not every solution in MXo(L\Xo) produces a global

solution in Mx(L). Explicitly, using Corollary 3.1, the inequality

2dL = dimMX(L) = d i m M x 0 ( I U 0 ) + dimMCp,, {L\cf,t) + 1

implies that there is an obstruction bundle £ of rank < ẑ,|x — <IL associated to the

basepoint fibration over Mx o (£ |x o ) such that the zero set of a generic section of £ is

homologous to Mx{L) in BX(L) [3, Theorem 4.53], or [4, Section 4]. Hence

SWX(L) = ((3^,[Mx(L)}) = (f3^,0dL^o-dLn[MXo(L\xo)}) = </?'L|*o, [MXo(L\Xo)])

where (3 is a generator of H2(BX(L); Z). Similarly, since d i m M B P 7 ( £ | B P I 9 ) = — 1 by
Proposition 3.3, the same argument as above shows

SWXp<q(L) = (pdL^o ,[Mxo(L\Xo)})

so that SWXp,q ( I ) = SWX{L). D
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COROLLARY 3 . 2 . If two characteristic line bundles L and L' on X satisfying

the hypothesis in Theorem 3.1 induce the same characteristic line bundle L on Xpq,

then SWX(L) = SWX{L').

Freedman's classification of simply connected topological 4-manifolds implies that
22

X = Cp<q Uz, BPtq is homeomorphic to ftfcCP with k = 62 (Cp,?)- Each generator
e, of H2(X;Z) when restricted to Bpq has the boundary value 5 (e , | a p ? ) = mp £
H2 (L(p2,1 — pq); Z) for some m. We impose the following condition (*) on CPtq :

= {mp : — (p — 1) ̂  m ^ (p — 1) and m = (p — 1) (mod 2)}.

All known configurations CPiq satisfy the condition (*) above. (One expects that all
relatively prime integers (p,q) satisfy the condition (*).) Under this assumption, we
prove

LEMMA 3 . 4 . Suppose X is a simply connected smooth A-manifold which con-

tains a configuration Cp,q satisfying the condition (*), and let XPiq be its rational

blow-down. If L is a characteristic line bundle on XPiq, there exists a characteristic

line bundle L on X such that L\x0 — L\x0
 an<^ c\{L\cp,q) — —k, where k — b2(CPiq).

PROOF: The condition (*) on CVA implies that there exists e, = ± 1 , for 1 ^

i ^ k, such that d( E e^i'lsp,,) = mP — 5 c i ( L | s p 9 ) . Since the corresponding line

k

bundle, denoted by the same notation E £iei> is characteristic on CPiq UL Bpq which

2 *
is homeomorphic to jjfcCP , its restriction £) £ i e i | c p , , is also characteristic on CPA

. k s 2 / k , 2 / *: \ 2 / k ^ 2

a n d I E £ i e ' l c p , , ) = ( E £ i e 0 - ( E £ ' e i l B — ) = ( E e > e i ) = - f c - N o w d e f i n e a

l ine b u n d l e L o n X b y

!

L\x0 on Xo

k

Then L has the desired properties except (possibly) characteristic, that is, if p is odd,

then L is automatically a characteristic line bundle on X, so we are done. If p is

even, we can change L (see below) so that L is characteristic on X satisfying the same

properties.
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H2(X0;Z)®H2(Cp,q;Z)

Suppose

HHUp2

p is

, 1 -

even.

pq);Z

o —

2) —

—> H2{X-

V
U H2(X-

Z)

*

z2 H2(X0;Z2)®H2(Cp,q;Z2)

Since X is simply connected, Hi(Xo', Z) = Zt for some t dividing p2 . If t is even, then
i*®j* : H2(X;Z2) -> H2(X0;Z2)@H2(CPtq;Z2) is injective so that L is characteristic.
If t is odd, then i* © j * is not injective, and in this case ht(ci(L)) = w2(X) or
w2{X)+S(l).

k

Since CPi? satisfies the condition (*), there exists 5i = ±1 satisfying ^2 &iel\cJ>, —

(p — m)p. Then setting 7; = (e, + ^i)/2 we have

(1) ( ^

(2) a ^ (£l - 270e,-|cp,,) = df^e.dc^) = mp,

it it

(3) ] [ ] ( £ l -27i )e , | c p , , = ^ e " e ' l c P . 9 ' for some e - = ± 1 .
! = 1 Z= l

Hence there exists a bundle Z/ on X such that L'\\o = L\x0 and L'\cpq =
k

53 (E; — 27i)ei|crPi, • Then we claim either L or V is ch Tacteristic: Suppose nei-
i=i

ther L nor 1/ is characteristic, that is, /i,(ci(L)) = ht(ci(L')) = w2(X) + 5(1). Then
h,(L — L') = 0, so that there exists an element a £ H2(X; Z) satisfying 2a = L — L'.
Since both H2(Xo;Z) and H2(Cp<q;Z) are 2-torsion free,

2{a\x,Mcp,q) = {^ ® 3l{^) = (i* ® J*){L - L') =

implies a\Xo = 0 and a|Cp_9 = £) 7.ei|cp,, which contradicts 9 ( X) 7»ei|cPl,) =
i=i 1̂=1 '

(P/2W0. D

Finally, by using the same argument as in the proof of Theorem 3.1 with the
characteristic line bundle L on X constructed in the Lemma 3.4 above, we get our
main theorem.

THEOREM 3 . 2 . If a simply connected smooth 4-manifold X contains a config-
uration CP]q satisfying the condition (*), then the Seiberg-Witten invariants of Xp<q
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are completely determined by those of X . That is, for any characteristic line bundle L
on Xpg with SWxp q(L^ ^ 0, there exists a characteristic line bundle L on X such
that SWx(L) = SWxp , (L) . Furthermore, if X is of SW- simple type, then Xp<q is
also of SW-simple type.

4. EXAMPLES

In this section we apply the result of the previous section to several examples of
rational blow-downs. We compute the Seiberg-Witten invariants of a manifold con-
structed from E(n) via blowing up and rationally blowing down.

2

EXAMPLE 1. Consider a 4-manifold X = £(3)jt2CP constructed by the following
blowing up process (Figure 3):

f-: f-2

A

e,-

Figure 3

Then we get a configuration 65,2 C X

- 3 - 5 - 2

- 2ei - e2 - e2

where s is a section in E(3) and e; (i = 1,2) is the exceptional divisor in CP . Since
SW-basic classes in E(3) are ± / , up to sign the SH^-basic classes of X are of the
form

L = f + eid +e2e2 (e< = ±1).

By using boundary values (see equation (1)), compute L\c5 2 and d(L\c5 2)

L\Cb2 = (L • ui)7i + (L • 1*2)72 + (L • 1*3)73

= (£2 -£1)71 + (2ei +£2)72 +73 ,

d(L\c5<2) = (£2 - £1) + 2(2£l + £2) + 9

= 3(£i+£2) + 9.

Then d(L\c$ 2) is a multiple of p = 5 if and only if E\ = £2 = 1 • Hence by Theorem 3.1.
only L — f + e\ + e2 descends to a 5W-basic class L of Xs,2, and by Theorem 3.2, L
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is the only SW-basic class of X5 i 2 . Since ci(L)2 — ci(L)2 - c i ( I | c 5 2 ) 2 = - 2 + 3 = 1,

X*,p is a SW-simple type 4-manifold with c\ = 1 which has one basic class L =

/ + ei + e2 (up to sign) and its Seiberg-Witten invariant is SW\h 2 (•£) = SWx(L) = 1.

Next, let us consider a configuration C±q-\tq

- 4 - ( g + 2) - 2 - 2 - 3 - 2 - 2

U, U4 «3 «2 "1

whose boundary values (see equation (1)) are given by

<l 2 = 1 , 2

d-yi = I 4z - 9 i = 3 , . . . , q + 1

i ( 4 g - l ) g - l i = q + 2 .

Then we have

PROPOSITION 4 . 1 . Suppose X is a simply connected smooth 4-manifold con-

taining a configuration CPiq (p = 4q — 1). If each w; satisfies \L • U{\ + u\ ^ —2, for

eacia basic class L in X, then the Seiberg-Witten invariants of XPiq are given by

( SWx(L) ifLu3=e, L • uq+i — eq and L • uq+2 = 2e (e = ±1)

0 otherwise .

REMARK. The hypothesis, \L • Ui\ +u? ^ —2, in Proposition 4.1 above comes from the

adjunction inequality in [4]. Our assumption is that the u< are generic in the sense that

they do not fall into the special case of [4, Theorem 1.3].

PROOF: The condition \L • Ui\ + U? ^ —2 implies L • m = 0 (i\ — 1, 2,4, . . . , q), so

that

L\cp,q = (L • u3)73 + (L • uq+1)-/q+1 + {L • uq+2hq+2

d{L\Cp,q) = 3(L • u3) + (4? - 5)(i • u ,+ 1) + (pq - 1)(L • uq+2)

= 3{L • u3) - 4(L • uq+1) - (L • uq+2) (mod p).

Since L\cPi, is characteristic, the condition d(L\cp^) = 0 (mod p) in Theorem 3.1

implies that only basic class L in Xp<q comes from L of X satisfying

L • «3 = e, L • uq+\ = eq and L • w,+2 = 2e (e = ±1).

The rest of the proof follows from Theorem 3.2. D

2

EXAMPLE 2. Let X = E(q + 2)|)2CP be a manifold constructed as follows: Consider

the following configuration in E{q + 2)

-(q + 2) - 2 - 2

Sq+i Sq Si
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where / - s g + 1 = 1 and f -Si = 0, for i = 1, • • • ,q. (One can choose such a configuration

lying in the canonical resolution Q of a singularity of z\ + z\q+z + z^9+5 = 0 in C 3 .
Note that an elliptic surface E(q + 2), as a genus q + 1 Lefschetz fibration, can be
constructed as follows:

E(q + 2 ) S Q Us(2,2g+3i4<?+5) C(2,2g + 3)tfEC(2,2q + 3) Us(2,2g+3,4q+5) Q

where C(2, 2q + 3) is a blow-up of the manifold obtained from +1 surgery on the

(2,2<7 + 3) torus knot and E is an embedded surface of genus q+1 and self-intersection

0 in C(2,2g + 3).) By blowing up the double point of a nodal fibre / in E(q + 2) and

a regular point in s3, we have a configuration C ^ - i , , C X such that

Uq+2 — f - 2ei, u3 = s3 - e2 and Uj = Sj, z ̂  3, g + 2.

Since the SW-basic classes of X have the form

L = kf + eid + e2e2 {\k\ ^ q, k = q (mod 2) and e{ = ±1)

this example satisfies the hypothesis of the Proposition 4.1 above. It follows that Xpq

has one basic class L = qf + e\ + e2 (up to sign) with c\ (X) = q. Hence Xpq is a

SW-simple type irreducible smooth 4-manifold lying in c\ = x — 2 which has one basic

class and cannot admit a complex structure.

EXAMPLE 3. (p-log transform) As we see in [5] (or Theorem 2.1), E(n;p) is obtained
by blowing up and rational blow-down from E(n), so that the Seiberg-Witten invariants
of E(n;p) can be computed explicitly as the same way as in Example 1:

THEOREM 4 . 1 . ([5].) The Seiberg-Witten invariants of E(n;p) are

SWE{n,p) - SWE(n)

where fp is a multiple fibre obtained by p-log transform on E{n).

Furthermore, by extending the notion of 'p-log transform' to any smooth 4-
manifold containing a cusp neighbourhood, we extend this result.

COROLLARY 4 . 1 . Let X(p) be the result of p-log transform in the neighbour-

hood of a cusp, say f, in a SW-simple type irreducible 4-manifold X. Then the

Seiberg-Witten invariants of X(p) are

SWx{p) = SWX

where fp is a multiple fibre in X(p) obtained by p-log transform on X.

PROOF: It suffices to show that / • L = 0 for each basic class L of X. Since
genus (/) = 1 and f2 — 0, this is implied by the adjunction inequality

f2 + \f • L\ s? 2 • genus (/) - 2. D

We close this paper by suggesting that Corollary 4.1 allows us to answer partially
the uniqueness problems of irreducible 4-manifolds.
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