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The Oscillatory Hyper-Hilbert Transform
Associated with Plane Curves

Junfeng Li and Haixia Yu

Abstract. In this paper, the bounded properties of oscillatory hyper-Hilbert transform along certain

plane curves y(t),
1 B dt
Topf(ny) = [ f(x=ty=ym)e™

are studied. For general curves, these operators are bounded in L?(R?) if > 3a. Their bounded-
28 28
2p-3a < P <3¢

ness in L? (R?) is also obtained, whenever > 3a and

1 Introduction

Let ['(¢):R — R” be a continuous curve with I'(0) = 0. For an appropriate function
f> the Hilbert transform along curve is defined as

i =pv [ fGe-m(o)

where pv is used to indicate a principal-value integral. A fundamental problem is the
study of its boundedness in L? (R"), which has attracted enormous attention. We list
some of the literature here: [1,3,4,10,11,14,17,18]. Our view of the problem is to set up
the boundedness of singular operator along a general curve I'. More clearly, we want
to know under what conditions the following inequality holds:

(11) HHfHLP(R”) < CHfHU’(]R”)) forl< p <oo.

Stein and Waigner pointed out in [16] that the curvature of the curve plays a crucial
role in this project. In the same paper, they showed that if T'(¢) is well curved,' then
(1.1) holds. In [5], the well-curved condition was used for an odd or even convex curve
where y(t) € C*(0,00), y(0) = 0, and the following doubling condition holds:

(D) There exists 1 < A < oo so that y’(At) > 2y’(t) for every 0 < ¢ < oo.
Let h(t) = ty'(t) —y(t). In [2] condition (D) was replaced by the following infinites-
imally doubling condition.

h(t
(ID) There exists 0 < & < oo so that h'(t) > £0¥ for every 0 < t < co.
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' We refer the reader to the paper [16, p. 1240] for the definition of the well-curved curves.
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Later, in [20] (D) and (ID) were extended to the mixed condition:

(M) Thereexist 0 < gy < o0 and 1< A < oo so that

max{ h;(ot) 1()/'()Lt) —ZL:))} > M

2 t
There exists a curve p(t) that satisfies (D) but not (ID) and also a curve y(t) that
satisfies (ID) but not (D) (see [20]). Condition (M) is weaker than (D) and (ID).
Ziesler in [20] gave an example that satisfies (M), but neither (D) nor (ID).
We now turn to the oscillatory hyper-Hilbert transform associated with plane
curves y(1):

8 dt

TusfGoy) = [ fle=tiy-y(e)e” 2L,

with & > 0, B > 0. We are interested in determining the boundedness in L? (R?) for
some general curves I'(¢) = (¢, y(t)). Werecall the classical Hyper-Hilbert transform,

op dt

(NG = [ fle- e’ L

It is also known as the weakly strongly singular integral operator (see [12]). The in-
terest in this operator is that it does not fall into the category of Calderén-Zygmund
operators and is bounded on some, but not all, of the L? spaces. For its L? bound-
edness we refer the reader to [12], and a simple proof can also be found in [13]. This
operator also has a close relation with the Bochner-Riesz mean operator.

The first result on the bounded property of a hyper-Hilbert transform along plane
curve is due to Zielinski. For I'(¢) = (¢, t*) he showed in [19] that | Ts g f | 12(r2) <
C|flz2(rey if and only if B > 3. L? boundedness was then studied by Chandarana
in [6]. He showed that along T'(¢) = (¢, [¢|*) or T'(t) = (t,|t|*sgnt), k > 2,

(a) H Ttx,[}fHLZ(RZ) < CHf”LZ(RZ) if and only if 8 > 3a;
(b) H Ta)ﬁf”Lp(RZ) < CHfHLp(RZ), when ﬁ > 3a and

. 3a(p+D) B(B+1) + (B -3a)
BB+ + (B-3) B

For the higher dimensional case, for ['(¢) = (¢, tP2, ..., t’*), Chen, Fan, and Zhu [9]
proved that | To, g f | 12(rny < C| f] 12(mny if and only if B > (1 + 1)a, where f > & > 0
and p; < pa < --- < p,. The corresponding L? boundedness was set up in [8]. For
a more general curve, very recently, Chen, Damtew, and Zhu obtained the following
theorem.

1 <p<l+

Theorem A (see [7]) Let B > 3a when 2B/2f —3a < p < 23/3a and 8 > 3a when
p =2 Let y(t) € C*(0,1) be a convex curve with y(0) = y'(0) = 0. If there exists a
positive constant & < 8 + 2 such that t°y" (t) is an increasing function on (0,1), then

I Ta,pf Lo w2y < Clf]Leqrey-
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In this paper, we consider a curve y(t) € C'(0,1) satisfying the following condi-

tions:
. _ . / _
(1.2) tlir(l)l+ y(t) =0, tlir(l]l+ y'(t) =0,
(1.3) Y (£)>0, ()20 on (277,277 for je Z*.

There exists 0 < C; < C, < 00 so that
h(t —
(1.4) Cih' (1) < ¥ < Coh'(t)on (277,274

for each j € Z*, where h(t) = ty'(t) - y(¢).
We now state our main result.

Theorem 1.1 Let B > 3a when 252_1330‘ <p< % and 8 > 3o when p = 2. If y(t)
satisfies (1.2)-(1.4), then

I Ta,pf | 1o (r2y < Cll [l 2o (r2)-

Remark 1.2 Condition (1.4) is not very strong. In fact, if lim,_o+ h(t)/(£?y" (t)) =
C, where t € (277,27/*1), j € Z* and 0 < C < oo, then there exist constant 0 < C; <

C, < o0 and 0 < C; < oo such that Cih’(t) < &tt) < Coh'(t) on (277,27/*1) for each
j>Csand j e Z*. The model example (¢, t*) with k > 2 satisfies this condition.

Remark 1.3  Condition (1.4) is needed only in the case 8 = 3a. For the case > 3a,
we do not assume this condition. This can be seen in Section 2.

Remark 1.4  There exists a curve y(t) satisfying (1.2)-(1.4) but not the assumptions
in Theorem A.

Step 1 The construction of {a,, } and {b,, }.

Set
1 1

> 5t g = A

m>2 M (m - E)
We define the series {a,, } by

1
a;=3+A and am,l—am:—z+712foreachm>1.
m (m -~ 5)

We define series {b,, } by
1
by —am = — for each m > 1.
m

Then we have

lim a,, = lim b,, =3

m-—oo m—0o0
and
3<a, <by,<ami<by,_foreachm>1.
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Step 2 The construction of an oscillatory function y”(t).
Let

(1) - {f“’ <l ).
tom, te (S 3mm)s
where m > 1. From a,, < by, < -1 < by, for each m > 1, we have that "/ (¢) is an
oscillatory function, so there does not exists a positive constant § < 5+ 2 and constant
0 < ® < 1such that t°y”(t) is an increasing function on (0, ®).

Step 3 From the definition of y”/(t), we have y/(t) > 0 on (27/,277/*!) for each j > 2
and je€Z*, and
- fm e
bunt" ™, te (Sh 3m7)-
Thus, p"’(t) > 0 for each j > 2 and j € Z*, and
270+ () | e (ol ).

We also have
t T
y0 = [ [y ()dsdr+1y.(0)+7.(0),

y'(t) = /Ot y"(s)ds +y.(0),

where y’, (0) = lim;_ ¢+ ¥'(¢), y+(0) = lim;_o+ y(¢). The conditions y’, (0) = 0 and
y+(0) = 0 will be checked in Step 5. Noticing that lim,, 0 @ = lim,— 00 by = 3, we
have

h(H) Ly ()ds— fy [y (s)dsde
t—>0+ tZyll(t) >0+ tzyn(t)
" (1) 1

=]im ——— = s
=0+ 29" (t) + ty"'(t) 5

where t € (27/,27/*1), j e Z*. From Remark 1.2, there exists constants 0 < C; < C, <
oo and 0 < C3 < oo such that Cih'(t) < ktt) < Cyh'(t) on (277,277%) foreach j > C;
and je Z".

Step 4 To show that y(t) € C*(0,1), we define y’(t) as

1 jap+l 11
y'(t) = it st (a2 )
1 b+l 11
T, te (e ).
To keep the continuity, the series {a’, } and {b/, } will be chosen such that

lim a, = lim b), =0,

n—+oo n—+oo
1 1 , 1 1 ,
A +122m(an+1) * = by +122m(bmtl) * by
1 1 1 1

b, -

A
by +120m D Burt) "M = T p0m D aeh) Tt
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In fact, a/, satisfies

, 1 1 1 1
m-17 by +122m(bm+1) B Ay +122m(am+1)
. 1 1 B 1 1
Am-1 +1 2(2m-1)(am-1+1) by +1 2(2m=1)(bm+1)

!
Ay, —a

for each m > 1. Noticing that 3 < a,,, < by, < am-1 < by— for each m > 1, we have that
{a;,} is a decreasing series and there exists —oco < V < 0 such that

1 =1 1
bpt+l) Z A +122m(an+1)

2
i ZZ: Ay +12@m=1)(an-1+1) B ZZ: by +12@m=1)(bn+1) "

= 1
V_Zz:bmﬂzm(

We now choose a; = -V and take b}, such that

oo L 1 1
" +122mGane) T T gam(ba)

for each m > L.
Step 5 From the definition of series {a/, } and {b/,}, we have

/ 4 ! 4
0<a, <b, <a,_ <b,,_;foreachm>1,

lim a,, = lim b, =0.

n—>+oo n—+o0o

And from the definition of y’(t), noticing that
3<a, <b, <am_1<b,,_foreachm > 1,

we have

1 1 1
0<y’(t)£ Zt4+b;n fOrtE (W,W)
Thus, 9’ (0) = lim;¢+ y'(¢) = 0 and y(¢) = fot y'(s)ds +y,(0) for every 0 < £ < 3.
Then lim;_,o+ () = 0.
We finish this section by recalling Van der Corput’s well known lemma, which is a
key tool for setting up the L* boundedness.

Lemma 1.5 (Van der Corput’s lemma [15, p. 334]) Let y and ¢ be two real-valued
smooth functions on the interval (a,b) and k € N. If y satisfies [y (¢)| > 1 for all
t € (a,b) and either k = 1, y'(t) is monotone on (a, b) or k > 2, then

| [ e O < cat(low)+ [ 19 wn).
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2 The Proofs
2.1 The L* Bounds

For f € L*(R?), we have

o6 dt

Teaf o) =3 [ fGty-y)e ™ 2 e S nf(y),
j=1 j=1
(TiN(&, &) = mi(&, &) F (6, &),

where f denotes the Fourier transform of f, and m (&1, &) is the multiplier given by

2 e dt
mj(El)fz) = L—i e [P-&t-&y(1)] B4

t1+ot :

From the Plancherel theorem, the oscillatory hyper-Hilbert transform T, g is
bounded on L*(R?) if and only if m (&, &) = ¥32, m;(&, &) is a bounded func-
tion. For t € (27/,277*1) where j e Z*, let £ = (&, &) and ye(t) = t P - &t = Ep(2).
Then

ve(t) =Bt P =& - &y'(1),
ve (1) = BB+ 1P = &y (1) = P2 (B(B+1) - &1772y" (1)),
(1) = BB+ 1)(B+2)t P = &y (1)

Casel ¢, <0.

For t € (27/,277*1) with j € Z* and noticing y”(¢) > 0, we then have
yi(t) > BB+1)tF 2 >27F2B(B+1)2/ P2,
From Lemma 1.5, we have
mj (&, &) < €29,

for each j € Z*. Then, noticing 3 > 3a, we have

(&) < 3 my(6 £ < 3 2D <

j=1 j=1
Case2 &, > 0.
For t € (27/,277*1) with j € Z*, from C;h'(t) < &tt) < Cyh'(t), we have
LR o L)
———=< t) < — .
o e SV 0sg
Then
" . 1
1) yi(t)y <t F 2(ﬁ(ﬁ+1)—£zc—tﬁh(t)),
2
" —B- 1
2.2) HOE 2(ﬁ(ﬁ+1)—£26tﬁh(t)).
1
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Noticing that h’(t) = ty”(t) > 0 on (277,277*1) for each j € Z* and y(t) €
C'(0,1), for any &, > 0, we have that h(t) and Ezciltﬁh(t) are increasing functions
about ¢ € (0,1). Then the equation

(2.3) B(B+1) = »:zciltﬁha)

can have at most one solution on (0, 1).
Case 2.1 Equation (2.3) has no solution on (0, 1).
For t € (0, i) we have
1 1 /1\A /1
—tPh(t)<&—(=) k(=) <BB+1);
S <b(5) H(3) <pE+D
then

BB+~ Ea 002 BB+ - £ (£) (5) 8(5)

2 2
> BB+ B+ (5)"
=88 +0(1-(3)"):

From (2.2) and Lemma 1.5, we have
i(a—B
|m;(&1, &) < Cc2/(¢=3)
for each j € Z* \ {1,2}. Then noticing 8 > 3, we have
[} oo i _E
|m(fl, 52)| < 2j=1|mj(€1, 52)| < 2]-:1(:21(“ 3) <C.

Case 2.2 Equation (2.3) has a solution t¢ € (0, %)
We have

(2.4) B(B+1) = zzcila.s)ﬂh(te).

Case2.2.1t < %
From (2.4) we have

BB+~ Ea 00 2 BB+ 1) - () ko)
> BB+ B+ (5)"
~p+n(1-(2)").

From (2.2) and Lemma 1.5, we have
(2.5) Imj (&, &2)| < C2D),
for each j € Z* and 2!/ < %

Case 2.2.2 t > Cst, where C; = (%clz)% > 1L
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From (2.4) we have
BB+1) = Er (1) < (B +1) - - (Cat) (to)

C
<B(B+1) - (G B(B+1)
=-p(B+1).
Then from (2.1) and Lemma 1.5, we have
(B
(2.6) |m;(&, &) < c2i(e-3),
for each j € Z* and 277 > Csty.

Case2.23t¢€ (%, Csty).

In this case, we only care about those j € Z* that satisfy % <2 or 277 < Gyt
Then we have

Loie tg <227,
G

For t € (277,277*1), we have
V(1) < =B(B+1)(B+2) 7 < —p(B+1)(B+2)2 A2/,
From Lemma 1.5, we have
2.7) (&, &)| < €215,
Thus, from (2.5), (2.6), (2.7), noticing f8 > 3, we have
Im (&1, &)

< i|m;’(fl’fz)|
j=1

< X Imian &)+ X ImiGn &)+ X Imi(&, &)
21,1»3’75 27/>Cst; C—132*J'§t5§22*1

< 3 cie=5) | 3 Cc2i(a=%) 3 (= 5)
21*13% ji27I>Cstg C—ISZ*J'SQSZZ*J'

<C.

We obtain the L? boundedness.

2.2 The L? bounds

From

2!
i dt

TesfCen) =3 [ f(x-ty=y(0)e S 2 S 1if(x ),
j=1 j=1
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for any j large enough, we have

2 8 dt
ITif oy = [L1 [ fe=ty=y@)e*" Tldxdy
217
L b dt
< [ Gty =y(o)e" axdy

< C2* If 1 2 (mey-

From Subsection 2.1, we have

mj(&, &)] < C29),
for each j € Z*. Then
(a—bB
IT;f |2 (mey < c2/@ 3)HfHL2(R2)~
By interpolation, for 1 < p < 2 we have
i(9a+(a—L)(1-9
1T fllp oy < C2OEDED) gy,

where%:9+%and0£9£1.

Since 3 > 3a, for - < p <2,wehave da + (a - g)(l— 9) < 0. Thus,

2B-3a
ad el il zx—ﬁ -9
I Tapflirs € S ITif (20 9) 1o ey < 3 €A @DD) gy o
j=1 j=1
< C| flle(r2y-

When2 < p < %, we have the trivial estimate

I ij||L°°(R2) <C2® ||fHL°°(R2)~

An interpolation with the L? boundedness give
i(9 -8ya-9
ITiflusgaey < PO DO 7,

with % = % and 0 < 9 < 1. Then summation according to j € Z* with 2 < p < %
gives the inequality

I Tapf lLe(re) < Cllfllze ()
This finishes our proof. ]
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