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The response tensor is derived for a relativistically streaming, strongly magnetized,
one-dimensional Jüttner distribution of electrons and positrons, referred to as a pulsar
plasma. This is used to produce a general treatment of wave dispersion in a pulsar plasma.
Specifically, relativistic streaming, the spread in Lorentz factors in a pulsar rest frame and
cyclotron resonances are taken into account. Approximations to the response tensor are
derived by making approximations to relativistic plasma dispersion functions appearing
in the general form of the response tensor. The cold-plasma limit, the highly relativistic
limit and limits related to cyclotron resonances are considered. The theory developed in
this paper has applications to generalized Faraday rotation in pulsars and magnetars.
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1. Introduction

It is widely assumed that the plasma in a pulsar magnetosphere is created in pair
cascades (Hibschman & Arons 2001; Arendt & Eilek 2002; Medin & Lai 2010; Timokhin
& Arons 2013). Due to the extremely strong magnetic field, the electrons and positrons
quickly radiate away all their perpendicular energy, so that they are in one-dimensional
(1-D) motion along the magnetic field lines. These properties favour a model for a 1-D
Jüttner (relativistic Maxwellian) distribution for the pairs in a pulsar plasma (Hibschman
& Arons 2001; Arendt & Eilek 2002; Medin & Lai 2010; Timokhin & Arons 2013). Such
a 1-D distribution is of the form ∝ exp(−ργ ) in its rest frame, where ρ is the inverse
temperature (in units of the rest energy of the electron), γ = (1 − β2)−1/2 is the Lorentz
factor and β is the speed (in units of speed of light c). Arendt & Eilek (2002) also suggested
a value of ρ between approximately 0.1 and 1, with the distribution streaming with
Lorentz factor γs between approximately 102 and 103. We refer to such a plasma, that is, a
relativistically streaming, 1-D Jüttner distribution of electron–positron pairs, as a ‘pulsar
plasma’. In most discussions of the response of a pulsar plasma, the wave frequency ω is
assumed much smaller than the electron cyclotron frequency Ωe = eB/m, where B is the
magnetic field strength, e is the elementary charge and m is the mass of the electron. This
low-frequency limit is relevant to models in which the pulsar radio emission is generated
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at relatively low heights in the magnetosphere, such that the contribution of the cyclotron
resonances to the plasma dispersion is negligible. In this article we present results for the
plasma response, in terms of the components of the dielectric tensor Kij(ω, k), where k
is the wave vector, for a pulsar plasma including the cyclotron resonances, allowing us to
discuss propagation of the radio waves through the outer regions of the magnetosphere.

We follow Rafat, Melrose & Mastrano (2019a,b) in assuming that the streaming motion
is included by assuming a 1-D Jüttner distribution in the plasma rest frame and Lorentz
transforming to the frame in which it is streaming. We assume that the distributions of
electrons and positrons, labelled as species ε = ∓, respectively, have number densities
nε , which may be different, but both have the same streaming speed βs, later relaxing
this assumption to allow for different streaming speeds βε

s . A difference in the number
densities implies a non-zero charge density, η, and a difference in streaming speeds implies
a non-zero current density, J . Both η and J are non-zero in a pulsar magnetosphere, and
both contribute to the ellipticity of the polarization of the wave modes. We denote the
pulsar frame as K′, and the rest frame of species ε as Kε , replaced by the rest frame K of
the plasma when the streaming speeds are the same.

Dispersion in a collisionless plasma is associated with resonances. The gyroresonant
frequencies satisfy ω − sΩe/γ − k‖v‖ = 0, or z − sy/γ − β = 0, with β = v‖/c, z =
ω/ck‖ and y = Ωe/ck‖, where s is the gyroresonant number, and subscripts ‖,⊥ denote
components of wave vector k and particle velocity v parallel and perpendicular to the
magnetic field, respectively. In the 1-D case (v⊥ = 0), the only allowed gyroresonances
are the Cerenkov resonance and the normal and anomalous cyclotron resonances,
corresponding to gyroresonance numbers s = 0 and ±1, respectively. In the absence of
streaming the response tensor for various specific 1-D relativistic distributions, including
a Jüttner distribution, is known (Melrose et al. 1999; Rafat et al. 2019a), with the
Cerenkov and cyclotron resonances contributing terms that involve relativistic plasma
dispersion functions (RPDFs), W(z) and R(z − sy/γ ), S(z − sy/γ ), respectively, where
β = z and β = z − sy/γ satisfy the Cerenkov and cyclotron resonances, respectively.
In the low-frequency approximation x = ω/Ωe � 1, the contribution of the cyclotron
resonances to the response tensor may be neglected. In this case, the allowed wave
modes of a pulsar plasma are referred to as the X-mode and the O-mode, which were
originally defined assuming a cold-plasma model for the distribution function (Arons &
Barnard 1986; Barnard & Arons 1986). These modes are linearly polarized; the O-mode
has a longitudinal component and is referred to as the LO-mode when this is taken
into account. The cyclotron-resonant contributions lead to elliptically polarized wave
modes, and are important when discussing effects associated with observed circularly or
elliptically polarized components of pulsar radio emission.

One motivation for our derivation of the general form of the dielectric tensor here
is to discuss the polarization changes as radio waves escape from pulsars or magnetars
and encounter the cyclotron resonance region. We refer to the polarization changes
as generalized Faraday rotation (GFR), also called Faraday conversion. Astrophysical
applications of GFR have been suggested in connection with the circularly polarized
component in synchrotron sources (e.g. Huang & Shcherbakov 2011), the circularly
polarized component in pulsar radio emission (Melrose 1979; Lyubarskii & Petrova
1998; Petrova 2006; Wang, Lai & Han 2010; Beskin & Philippov 2012) and with more
complicated features of the polarization of radio emission from magnetars (e.g. Kramer
et al. 2007) and fast radio bursts (FRBs) (e.g. Gruzinov & Levin 2019; Vedantham & Ravi
2019). In most of these discussions, the plasma is assumed to be a (cold) magnetoionic
medium.
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The general form of the response tensor for a pulsar plasma is cumbersome, and we
discuss relevant approximations to it. We comment on the cold-plasma (magnetoionic)
limit often assumed in discussions of GFR, and note that it is a poor approximation for the
plasma around pulsars, magnetars and FRBs. The weak-anisotropy approximation (WAA)
is a useful approximation to the general form of the response tensor and particularly
relevant to GFR. In the WAA the waves are assumed to be transverse waves in vacuo
to zeroth order in an expansion in the components of the dielectric tensor. In the WAA,
both the refractive indices and polarization vectors of the two natural wave modes are
determined to first order in this expansion. The polarization changes implied by GFR may
be described in terms of the motion on the Poincaré sphere of a point P representing
the polarization of the wave. Conjugate points on the Poincaré sphere that represent the
orthogonal polarizations of the two wave modes (in the WAA) define an axis, referred
to here as the GFR axis, about which P rotates as the wave propagates. As a wave
with x = ω/Ωe � 1 at the emission point propagates away from the star, Ωe decreases,
implying that x increases. The cyclotron resonance would be encountered at x = 1 in
a cold non-streaming plasma. The inclusion of relativistic streaming, γs � 1, lowers
the frequency at which the cyclotron resonance is encountered by a factor of the order
of the Lorentz factor of the streaming, and inclusion of a relativistic spread, 〈γ 〉 � 1,
with 〈Q〉 denoting the average of Q, in energies in the plasma rest frame smooths the
cyclotron resonance over a range of frequencies. It is important to include the intrinsic
spread in γ in any quantitative theory for GFR (Luo & Melrose 2004b; Melrose &
Luo 2004). Relativistically streaming pulsar plasmas have also been recently investigated
by Manthei et al. (2021) and Benáček et al. (2021, 2023, 2024).

2. Dielectric tensor for a pulsar plasma

The dielectric tensor for a pulsar plasma may be deduced from the general forms for
the response tensor Kij(ω, k), which are derived using plasma kinetic theory. In this
section, two general forms for Kij(ω, k), derived using the Vlasov method and the
forward-scattering method (Melrose 2013), are written down and the 1-D approximation
is made to them.

2.1. Vlasov form of the response tensor
The Vlasov method gives the response tensor Kij(ω, k) as

Kij(ω, k) = δij +
∑ q2

ε0ω2

∫
d3p
[

bibj
v‖
v⊥

(
v⊥

∂

∂p‖
− v‖

∂

∂p⊥

)

+
∞∑

s=−∞

Vi(k, p; s)V∗
j (k, p; s)

ω − sΩ − k‖v‖

(
ω − k‖v‖

v⊥

∂

∂p⊥
+ k‖

∂

∂p‖

)]
f (p), (2.1)

where δij is the Kronecker delta; the unlabelled sum is over all (unlabelled) species
of particles with charge q, mass m, relativistic gyrofrequency Ω = Ωe/γ , distribution
function f (p), velocity v and 3-momentum p = γ mv; the parallel and perpendicular
components, with respect to unit vector b along the magnetic field, of vector quantities
are denoted respectively by subscripts ‖ and ⊥; and

V (k, p; s) =
(

v⊥
s

k⊥R
Js(k⊥R),−iεv⊥J′

s(k⊥R), v‖Js(k⊥R)

)
, (2.2)
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where Js(k⊥R) is a Bessel function of the first kind with argument k⊥R, where R = p⊥/|q|B
is the radius of gyration, and J′(x) = dJ(x)/dx. Here, it is assumed that there are only two
species, electrons and positrons, labelled ε = ∓, respectively.

2.1.1. Anti-Hermitian part of Kij(ω, k)

The anti-Hermitian part of (2.1) is given by

KA
ij(ω, k) = −

∑ iπq2

ε0ω2

∫
d3p

∞∑
s=−∞

Vi(k, p; s)V∗
j (k, p; s)δ(ω − sΩe/γ − k‖v‖)

×
(

sΩe

γ v⊥

∂

∂p⊥
+ k‖

∂

∂p‖

)
f (p), (2.3)

and describes dissipation due to gyroresonant interactions satisfying

ω − sΩe/γ − k‖v‖ = 0, (2.4)

where the gyroresonant number, s, is an integer. For a 1-D distribution, only s = 0,±1
contribute.

2.1.2. One-dimensional assumption
In the 1-D case, the perpendicular momentum, p⊥, of all particles is identically zero,

and the 3-D distribution function f (p) may be replaced by the 1-D distribution function
g(u), where u = p‖/mc = γβ is the 4-speed (in units of c). Due to v⊥ = 0, the argument
of the Bessel functions in (2.2) is zero, and one has

V (k, p; 0) = v‖b, V (k, p;±1) = 1
2v⊥ζ (±1), ζ (s) = (1,−isε, 0), (2.5a–c)

with V being zero for all |s| > 1 and where we choose b = (0, 0, 1) so that the magnetic
field is along the 3-axis. Note that although the terms V (k, p;±1) are zero for v⊥ = 0
in the 1-D case, these terms need to be retained in the Vlasov form (2.1), because the
p⊥-derivative in (2.3) acts on δ( p⊥) and hence one needs to partially integrate this term to
evaluate it. One sets v⊥ = 0 only after this partial integration. One has, for s = ±1,∫

d3p Vi(k, p; s)V∗
j (k, p; s)δ

(
ω − sΩe/γ − k‖v‖

) sΩe

γ v⊥

∂

∂p⊥

[
δ( p⊥)

2πp⊥
g(u)

]

= − sy
2m

ζi(s)ζ ∗
j (s)

∫
du δ (u + sy − γ z) g(u), (2.6)

with z = ω/k‖c and y = Ωe/k‖c.

2.2. Forward-scattering form for the dielectric tensor
An alternative general form for the dielectric tensor Kij(ω, k) is obtained using the
forward-scattering method (Melrose 1987). This form is given by

Kij(ω, k) = δij −
∑ ∞∑

s=−∞

q2

ε0mω2

∫
d3p

f (p)

γ

{
J2

s (k⊥R)τij(ωs)

+ Js(k⊥R)

ωs

[
τim(ωs)kmV∗

j (k, p; s) + Vi(k, p; s)klτlj(ωs)
]

+ 1
ω2

s

[
klkmτlm(ωs) − ω2

c2

]
Vi(k, p; s)V∗

j (k, p; s)
}

, (2.7)
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where repeated subscripts l and m imply sums from 1 to 3 and with ωs = ω − sΩe/γ −
k‖v‖,

τij(ωs) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ω2
s

ω2
s − Ω2

iεωsΩ

ω2
s − Ω2

0

−iεωsΩ

ω2
s − Ω2

ω2
s

ω2
s − Ω2

0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.8)

As in (2.1), the sum in (2.7) is over all unlabelled species, with only electrons and
positrons, ε = ∓, relevant here. The form (2.7) may also be obtained from (2.1) by a
tedious calculation involving partially integrating and using recursion relations and sum
rules for the Bessel functions.

2.3. Averages over a 1-D distribution
Consider a pulsar plasma, composed of electrons, ε = −, and positrons, ε = +. The
average of an arbitrary function Q over the 1-D distribution function, gε(u), for electrons
or positrons is given by

nε〈Q〉ε =
∫

du Q gε(u) =
∫

dβ γ 3Q gε(u), (2.9)

which defines the number density, nε , for Q = 1.1 The average of Q over the combined
distribution g(u) = g+(u) + g−(u) is given by n 〈Q〉 = n+〈Q〉+ + n−〈Q〉− with combined
number density n = n+ + n−. When electron and positron number densities are equal we
have n+ = n− = n/2. The charge and current densities are then given by

η =
∑

ε

εenε, J = c
∑

ε

εenε〈β〉ε. (2.10a,b)

Averages over primed quantities in the primed frame can be somewhat counter-intuitive.
For example, setting X = 1, the average 〈1/γ ′〉ε′ = γ −1

s 〈1/γ 〉ε is much narrower than the
average 〈1/γ 〉ε in the unprimed frame, and, setting X = γ ′2, the average of γ ′ in the primed
frame is much larger than the average of γ in the unprimed frame, specifically, 〈γ ′〉ε′ =
γs
〈
γ (1 + β2β2

s

〉ε ≈ 2γs〈γ 〉ε for γ, γs � 1.

2.4. Response tensor for a 1-D distribution
In the 1-D case, the only contributions to the sum over s in (2.7) are for s = 0,±1,
corresponding to resonant denominators 1/ω2

0 and 1/(ω2
0 − Ω2), with ω0 = ω − k‖v‖ =

ω(z − β)/z and Ω = Ωe/γ = ωy/zγ . Assuming, without loss of generality, the magnetic
field along the 3-axis and the wave vector in the 1–3 plane, one has

k = (k⊥, 0, k‖) = ω

zc
(tan θ, 0, 1). (2.11)

With this notation, the dielectric tensor (2.7) for a pulsar plasma may be written in the
form

Kij(ω, k) = δij + Πij(ω, k)

ε0ω2
, with Πij(ω, k) = −

∑
ε

e2nε

m

〈
Aij(ω, k;β)

γ

〉ε
, (2.12)

1The number density is written nε to avoid confusion with the refractive indices, n±, of the two orthogonal modes.
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with Aij(ω, k; β) → Aij given by

A11 = A22 = ω2
0

ω2
0 − Ω2

, A33 = ω2

γ 2ω2
0

+ ω2

ω2
0 − Ω2

(
β tan θ

z

)2

,

A12 = −A21 = iε
ω0Ω

ω2
0 − Ω2

, A13 = A31 = ω0ω

ω2
0 − Ω2

(
β tan θ

z

)
,

A23 = −A32 = −iε
ωΩ

ω2
0 − Ω2

(
β tan θ

z

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

Writing the dielectric tensor in the form (2.12) facilitates Lorentz transforming of it, due
to the tensor Πij being the space components of a 4-tensor, as discussed in § 4.2.

2.5. Response tensor for a cold pair plasma
If the spread in energy in the pair plasma is neglected, the resulting model corresponds to
a cold streaming pair plasma. In the rest frame K, the response tensor for such a model
follows by making the replacement dugε(u) → dunεδ(u) when evaluating the average in
(2.12). Assuming that electron and positron distributions have a common rest frame, K,
we obtain

Πij(ω, k) = −
∑

ε

e2nε

m
τij (ωs)

∣∣
β=0 . (2.14)

3. Solutions of resonance conditions

The dielectric tensor for a magnetized plasma has resonances when the gyroresonance
condition

ω − sΩ − k‖v‖ = 0, or z − sy/γ − β = 0, (3.1)

is satisfied, where s is the harmonic number and Ω = Ωe/γ is the relativistic
gyrofrequency, and in the second form, z = ω/k‖c, y = Ωe/k‖c. In a 1-D electron gas, the
perpendicular component of the velocity is zero, v⊥ = 0, and only the Cerenkov resonance
s = 0 and the cyclotron resonances s = ±1 are allowed. The Cerenkov resonance is at
β = z. The two cyclotron resonances are at solutions of

(β − z)2 = y2(1 − β2), (3.2)

which is a quadratic equation for β. The two solutions, β = β± say, of the quadratic
equation (3.2) for the cyclotron resonances are

β± = z ± |y|(1 + y2 − z2)1/2

1 + y2
. (3.3)

From the resonance condition (3.1) we have z − β± = sy/γ±, which implies that

γ± = s sgn( y)
1 + y2

|y|z ∓ (1 + y2 − z2
)1/2 , u± = s sgn( y)

z ± |y|(1 + y2 − z2)1/2

|y|z ∓ (1 + y2 − z2
)1/2 ,

(3.4a,b)
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FIGURE 1. Contour plots of β+ (a) and β− (b) as a function of y and z for |β±| = 1 (vertical
dotted), 0 (dash-dotted) and 0.19, 0.38, 0.57, 0.76, 0.95 (decreasing dash length). The negative
contours are in thin blue and positive contours are in thick green. The thin grey curves indicate
the line 1 + y2 − z2 = 0. The shaded regions correspond to the anomalous Doppler effect.

where u± = γ±β± is the corresponding 4-speed. We may also write (3.4a,b) as

γ± = s sgn( y)
|y|z ± (1 + y2 − z2

)1/2

z2 − 1
, u± = s sgn( y)

|y| ± z(1 + y2 − z2)1/2

z2 − 1
. (3.5a,b)

3.1. Interpretation of the ±-solutions
In interpreting the ±-solutions β = β± and γ = γ±, first consider the symmetry
properties between upgoing and downgoing waves. Let upgoing (downgoing) waves
and particles be identified as k‖ > 0 (k‖ < 0) and β > 0 (β < 0), respectively. The
transformation z, y → −z,−y interchanges the role of upgoing and downgoing waves
and particles. The solutions β± reverse sign under z, y → −z,−y, whereas γ± and
the resonance conditions z − β± = sy/γ± are unchanged. In the following discussion
z, y > 0 is assumed with solutions for z, y < 0 following from these symmetry
properties.

Figure 1 shows contour plots of β+ (a) and β− (b) as a function of y and z for |β±| = 1
(vertical dotted), 0 (dash-dotted) and 0.19, 0.38, 0.57, 0.76, 0.95 (decreasing dash length).
The negative contours are in thin blue and positive contours are in thick green. The thin
grey curves indicate the line 1 + y2 − z2 = 0.

The ±-solutions in (3.3) are real only for z2 ≤ 1 + y2. Equations (3.4a,b) imply that the
anomalous Doppler resonance, s = −1, may be satisfied only for the β = β+ solution over
0 ≤ z < 1, which is shown as a shaded region in figure 1; and the Doppler resonance, s =
+1, may be satisfied for the β = β+ solution over 1 < z <

√
1 + y2, and for the β = β−

solution over 0 ≤ z <
√

1 + y2. For the +-solution the transition between solutions for s =
+1 and s = −1 occurs for γ+ = ∞, β+ = +1 (vertical dotted green line). It follows that,
for the normal Doppler effect, s = +1, there is a solution β = β− for subluminal waves,
z < 1, and two solutions, β = β+, β = β− for superluminal waves, 1 ≤ z <

√
1 + y2. The
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FIGURE 2. Contour plots of β+ (a) and β− (b) as a function of x and z for |β±| = 1
(vertical dotted), 0 (dash-dotted) and 0.17, 0.33, 0.5, 0.66, 0.83, 0.99 (decreasing dash length).
The negative contours are in thin blue and positive contours are in thick green. The thin grey
curves indicate the line x2(1 − z2) + z2 = 0. The shaded region corresponds to the anomalous
Doppler effect.

anomalous Doppler effect, s = −1, requires subluminal waves, z < 1, and then only for
β = β+.

3.2. Plots of β± as functions of z for fixed x = ω/Ωe

The resonant solutions, β±, as functions of z for fixed x = ω/Ωe are of specific interest in
the low-frequency limit, x � 1, and around the cyclotron resonance, where x is of order
unity. The dependence on x may be shown by writing (3.3) and (3.4a,b) in the form

β± = zx2 ± |z| [x2(1 − z2) + z2
]1/2

x2 + z2
, γ± = s sgn (z)

z|z| ± [x2(1 − z2) + z2
]1/2

x(z2 − 1)
.

(3.6a,b)

Figure 2 shows contour plots of β+ (a) and β− (b) as a function of x and z for |β±| = 1
(vertical dotted), 0 (dash-dotted) and 0.17, 0.33, 0.5, 0.66, 0.83, 0.99 (decreasing dash
length). The negative contours are in thin blue and positive contours are in thick green.
The thin grey curves indicate the line x2(1 − z2) + z2 = 0. The shaded region corresponds
to the anomalous Doppler effect.

Figure 3 shows plots of β± (a) and corresponding γ± (b) as a function of z for x = 0.1
(solid) and 0.4, 1.2, 5 (decreasing dash length). Contours of β+, γ+ are in thick green and
those of β−, γ− are in thin blue. The curves β+ and β− extend to z = ∞ for x < 1, and they
form single closed curves for x > 1 meeting at |z| = x/(x2 − 1)1/2. For x � 1, illustrated
by x = 5, the closed curve approaches the line β = z for z ≤ 1, which corresponds to the
Cerenkov resonance. The shaded regions correspond to the anomalous Doppler effect, and
are bounded on the right by β± = z and γ± = (1 − z2)−1/2, which are the limits of β± and
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FIGURE 3. Contour plots of β± (a) and corresponding γ± (b) as a function of z for x = 0.1
(solid) and 0.4, 1.2, 5 (decreasing dash length). Contours of β+, γ+ are in thick green and those
of β−, γ− are in thin blue. The curves β+ and β− extend to z = ∞ for x < 1, and they form
single closed curves for x > 1 meeting at z2 = x2/(x2 − 1). For x � 1, illustrated by x = 5, the
closed curve approaches the line β = z (thin grey) for z ≤ 1, which corresponds to the Cerenkov
resonance. The shaded regions correspond to the anomalous Doppler effect.

γ± as x → ∞. In the low-frequency limit, x � 1, the solutions may be approximated by

β± =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

±|z|(
x2 + z2

)1/2 , if |z| � 1,

± (2 + z) |z|, if |z + 1| � 1,

± (2 − z) |z|, if |z − 1| � 1,

(3.7)

with corresponding Lorentz factors

γ± =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−s
z|z| ± (x2 + z2

)1/2

x
, if |z| � 1,

s
(z − 1) (|z| ∓ 1)

4x (z + 1)
, if |z + 1| � 1,

s
(z + 1) (|z| ± 1)

4x (z − 1)
, if |z − 1| � 1,

(3.8)

and there is no restriction on z. For x > 1 real solutions exist only for z2 ≤ x2/(x2 − 1),
with the curves for the ±-solutions joining smoothly at z2 = x2/(x2 − 1).
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3.3. Three RPDFs
We may write Aij, using (2.13) and (3.3), as

A11 = A22 = (z − β)2

(1 + y2)(β − β+)(β − β−)
,

A33 = z2

γ 2(z − β)2
+ β2 tan2 θ

(1 + y2)(β − β+)(β − β−)
,

A13 = A31 = (z − β)β tan θ

(1 + y2)(β − β+)(β − β−)
,

A12 = −A21 = iε
y(z − β)

γ (1 + y2)(β − β+)(β − β−)
,

A23 = −A32 = −iε
yβ tan θ

γ (1 + y2)(β − β+)(β − β−)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

Writing

1
(β − β+)(β − β−)

⎡
⎢⎢⎢⎢⎢⎣

1
β

β2

z − β

(z − β)2

(z − β)β

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0
0
1
0
1

−1

⎤
⎥⎥⎥⎥⎥⎦+ 1

β+ − β−

∑
α=±

α

β − βα

⎡
⎢⎢⎢⎢⎢⎣

1
βα

β2
α

z − βα

(z − βα)
2

(z − βα)βα

⎤
⎥⎥⎥⎥⎥⎦ ,

(3.10)

allows us to write the averages in (2.12) in terms of the three RPDFs

Wε(z) =
〈

1
γ 3(β − z)2

〉
ε

, Rε(βα) =
〈

1
γ (β − βα)

〉
ε

, Sε(βα) =
〈

1
γ 2(β − βα)

〉
ε

,

(3.11a–c)

with the averages to be understood as defined by (2.9). The RPDF Wε(z) arises from the
Cerenkov resonance, and RPDFs Rε(βα) and Sε(βα) arise from the cyclotron resonances,
β = βα. An alternative form for Wε(z) is

Wε(z) = 1
nε

∫
dβ

1
β − z − i0

dgε(u)

dβ
, (3.12)

which may be written as (Rafat et al. 2019a)

Wε(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈
1

γ 3(β − z)2

〉
ε

, for |z| > 1,

1
nε

[
iπ

dgε(u)

dβ

∣∣∣∣
β=z

+ ℘

∫
dβ

1
β − z

dgε(u)

dβ

]
, for |z| ≤ 1,

(3.13)

where ℘ indicates a Cauchy principal value integral. The imaginary parts of these RPDFs
follow using the Landau prescription, which gives the term −i0 in (3.12); the singularity
contributes a semi-residue, found by replacing the resonant denominator by +iπδ(β − z)

https://doi.org/10.1017/S0022377824001235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001235


Response of a relativistically streaming pulsar plasma 11

FIGURE 4. Plots of real (thick) and negative of the imaginary (thin) of RPDFs z2Wε(z) (a),
−βαRε(βα) (b) and −βαSε(βα) (c) for ρε = 3.16 (blue, dotted), 1 (orange, short dashed), 0.316
(green, long dashed) and 0.1 (red, solid). The real parts of the RPDFs are scaled to unity and the
imaginary parts are scaled relative to the real parts.

in the numerator. The resonant parts of Rε(βα) and Sε(βα) follow by replacing 1/(β − βα)
by 1/(β − βα − i0)

Rε(βα) = 1
nε

∫
dβ

γ 2

β − βα − i0
gε(u), Sε(βα) = 1

nε

∫
dβ

γ

β − βα − i0
gε(u),

(3.14a,b)

with the semi-residues giving the imaginary parts. We note that |βα| < 1 which implies
that

Rε(βα) = 1
nε

[
iπ γ 2gε(u)

∣∣
β=βα

+ ℘

∫
dβ

γ 2

β − βα

gε(u)

]
, (3.15)

Sε(βα) = 1
nε

[
iπ γ gε(u)|β=βα

+ ℘

∫
dβ

γ

β − βα

gε(u)

]
. (3.16)

Figure 4 shows plots of real (top row) and imaginary (bottom row) of RPDFs Wε(z) (a),
Rε(βα) (b) and Sε(βα) (c) for ρ = 1 (solid), 5 (long dashed) and 25 (short dashed). The
magnitudes of real and imaginary components of the RPDFs have been scaled to unity
while preserving their signs.

Figure 5 shows colour plots of Re Rε(βα) (first column), Re Sε(βα) (second column),
Im Rε(βα) (third column) and Im Sε(βα) (fourth column) for α = + (first and second
rows) and α = − (third and fourth rows) with βα = βα(z, y) (first and third rows) and
βα = βα(z, x) (second and fourth rows). We use ρ = 1 and contours of βα from figures 1
and 2 are superimposed (transparent white). The magnitudes of real and imaginary
components of the RPDFs have been scaled to unity while preserving their signs. We
note that, when βα = βα(z, y), a single point on the (βα, Rε(βα)) 2-D curve maps to a
3-D path in the (z, y, Rε(βα(z, y))) space. Projecting this path onto the (z, y) plane and
indicating the corresponding value of Rε(βα(z, y)) by a colour map results in mapping of a
single point from (βα, Rε(βα)) to a curve in the (z, y) plane. These curves correspond to a
single value of βα(z, y) and hence the value of (βα, Rε(βα)) is constant along these curves.
The inclusion of contours of constant βα from figures 1 and 2 are meant to serve as aids.
The 2-D curve (βα, Rε(βα)) is thus mapped to the 3-D surface (z, y, Rε(βα(z, y))) (or to
its projection onto a (z, y) 2-D plane). The same comments apply to Sε(βα) and also when
βα = βα(z, x) is considered.
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12 M.Z. Rafat, D.B. Melrose and V.M. Demcsak

3.4. The components of Πij(ω, k) for a stationary Jüttner distribution
The components of the polarization tensor in the rest frame, K, of a pulsar plasma are
(Melrose et al. 1999; Kennett, Melrose & Luo 2000)

Π 11 = Π 22 = −
∑

ε

e2nε

m
1

1 + y2

[〈
1
γ

〉
ε

+
∑
α=±

α(z − βα)
2Rε(βα)

β+ − β−

]
,

Π 33 = −
∑

ε

e2nε

m

{
z2Wε(z) + tan2 θ

1 + y2

[〈
1
γ

〉
ε

+
∑
α=±

αβ2
αRε(βα)

β+ − β−

]}
,

Π 13 = Π 31 = −
∑

ε

e2nε

m
tan θ

1 + y2

[
−
〈

1
γ

〉
ε

+
∑
α=±

α(z − βα)βαRε(βα)

β+ − β−

]
,

Π 12 = −Π 21 = −i
∑

ε

εe2nε

m
y

1 + y2

∑
α=±

α(z − βα)Sε(βα)

β+ − β−
,

Π 23 = −Π 32 = i
∑

ε

εe2nε

m
y tan θ

1 + y2

∑
α=±

αβαSε(βα)

β+ − β−
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.17)

The terms in (2.12) involving Rε(βα) describe the contribution of the cyclotron
resonances to non-gyrotropic dispersion and the terms involving Sε(βα) describe the
contribution of the cyclotron resonances to gyrotropic dispersion.

4. Lorentz transformation between frames

In this section we discuss the Lorentz transformation between the rest frame Kε of
species ε and the pulsar frame K′, in which the species is streaming at speed βε

s away from
the star (positive direction).

4.1. Lorentz transformation to the streaming frame
Consider the Lorentz transformation between the rest frame K of the plasma and the pulsar
frame K′. We use 4-tensor notation with Greek indices μ running over (0, 1, 2, 3) where
μ = 0 denotes the time component and μ = i denotes the ith spatial component. An event
is described by the (contravariant) 4-vector (in natural units with c = 1) xμ = [t, x] in K
and xμ′ = [t′, x′] in K′. The wave 4-vector is kμ = [ω, k], with k = (k⊥, 0, k‖), in K and
kμ′ = [ω′, k′] in K′. The covariant components are xμ = [t,−x] and kμ = [ω,−k].

The Lorentz transformation matrices between the frames are

Lμ′
μ(−βs) =

⎛
⎜⎝

γs 0 0 γsβs
0 1 0 0
0 0 1 0

γsβs 0 0 γs

⎞
⎟⎠ , Lμ

μ′(−βs) =

⎛
⎜⎝

γs 0 0 −γsβs
0 1 0 0
0 0 1 0

−γsβs 0 0 γs

⎞
⎟⎠ ,

(4.1a,b)

with γs = (1 − β2
s )

−1/2. The non-zero components of Lμ′
μ = Lμ′

μ(−βs) and Lμ
μ′ =

Lμ
μ′(−βs) are

L0′
0 = L3′

3 = L0
0′ = L3

3′ = γs, L1′
1 = L2′

2 = L1
1′ = L2

2′ = 1,

L0′
3 = L3′

0 = γsβs, L0
3′ = L3

0′ = −γsβs.

}
(4.2)

https://doi.org/10.1017/S0022377824001235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001235


Response of a relativistically streaming pulsar plasma 13

0
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0.5

-0.5

FIGURE 5. Colour plots of Re Rε(βα) (first column), Re Sε(βα) (second column), Im Rε(βα)
(third column) and Im Sε(βα) (fourth column) for α = + (first and second rows) and α = −
(third and fourth rows) with βα = βα(z, y) (first and third rows) and βα = βα(z, x) (second
and fourth rows). We use ρ = 1 and contours of βα from figures 1 and 2 are superimposed
(transparent white). The magnitudes of real and imaginary components of the RPDFs have been
scaled to unity while preserving their signs.

The frequency ω and the components k‖ and k⊥, parallel and perpendicular, respectively,
to the magnetic field transform to

ω′ = γs(ω + k‖cβs), k′
‖c = γs(k‖c + ωβs), k′

⊥ = k⊥. (4.3a–c)

In terms of the variables z = ω/k‖c and θ = arctan(k⊥/k‖) in the unprimed frame, K,
and z′ = ω′/k′

‖c and θ ′ = arctan(k′
⊥/k′

‖) in the primed frame, K′, (4.3a–c) and the inverse
transforms imply

z′ = z + βs

1 + βsz
, z = z′ − βs

1 − βsz′ , tan θ ′ = tan θ

γs(1 + βsz)
, tan θ = tan θ ′

γs(1 − βsz′)
.

(4.4a–d)
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14 M.Z. Rafat, D.B. Melrose and V.M. Demcsak

4.2. Lorentz transformation of the response tensor
Several steps are involved in Lorentz transforming the dielectric tensor (e.g. Melrose
1973), as discussed by Rafat et al. (2019b) in the case where the cyclotron resonances
are neglected.

The first step is to write the dielectric tensor in the form (2.12) and to note that the
3-tensor Πij may be interpreted as the space components of the 4-tensor Πμ

ν(k) that relates
the 4-current, Jμ(k), to 4-potential, Aν(k); specifically, the space components of Jμ(k) =
Πμ

ν(k)Aν(k) imply the relation between the 3-current and the vector potential (in the
temporal gauge), Ji(k) = Π i

j(k)A j(k), where the argument k denotes the components of
kμ. The 3-tensor Πij is term by term equal to the mixed components of the 4-tensor Πμ

ν

with μ = i, ν = j.2
The next step is to construct the full 4-tensor Πμ

ν from the space components Π i
j

using the charge-continuity and gauge-invariance relations, kμΠμ
ν = 0 and kνΠμ

ν = 0,
respectively. The 4-tensor components Π 0

0, Π i
0, Π 0

j are given in terms of the mixed
tensor components by

Πμ
0 = − tan θ

z
Πμ

1 − 1
z
Πμ

3, Π 0
ν = tan θ

z
Π 1

ν + 1
z
Π 3

ν. (4.5a,b)

The third step is to apply the Lorentz transformation to Πμ
ν(k) in K, to find Πμ′

ν ′(k′) =
Lμ′

μΠμ
ν(L−1[k])Lν

ν ′ in K′, where k′ = L−1[k] denotes the components ω′, k′ expressed in
terms of ω, k. The transformed components Π i′

j′ are then identified (term by term) as the
components of the (polarization) 3-tensor Π ′

ij in K′. Finally, the dielectric tensor in K′ is
identified as

K′
ij(ω

′, k′) = δij +
Π ′

ij(ω
′, k′)

ε0ω′2 , (4.6)

which is interpreted as the dielectric tensor for the streaming distribution in the primed
frame.

4.3. Transformed polarization tensor
The Lorentz transformation applied to the polarization 3-tensor Πij gives the transformed
3-tensor Π ′

ij

Π ′
11 = Π11, Π ′

12 = Π12, Π ′
21 = Π21, Π ′

22 = Π22,

Π ′
13 = γs

[
βs tan θ

z
Π11 + z + βs

z
Π13

]
, Π ′

31 = γs

[
βs tan θ

z
Π11 + z + βs

z
Π31

]
,

Π ′
23 = γs

[
βs tan θ

z
Π21 + z + βs

z
Π23

]
, Π ′

32 = γs

[
βs tan θ

z
Π12 + z + βs

z
Π32

]
,

Π ′
33 = γ 2

s

[(
βs tan θ

z

)2

Π11 +
(

z + βs

z

)(
βs tan θ

z

)
(Π13 + Π31) +

(
z + βs

z

)2

Π33

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

2Note that in 4-tensor notation it is conventional to distinguish components in the primed frame, in which the plasma
is streaming, by primes on the indices, such that Πμ′

ν′ are the transformed mixed tensor components in K′. Although the
corresponding space components are Π i′

j′ , in 3-tensor notation it is conventional to denote the transformed components
by a prime on the kernel symbol, so that Π i′

j′ is term-by-term equal to the 3-tensor Π ′
ij.

https://doi.org/10.1017/S0022377824001235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001235


Response of a relativistically streaming pulsar plasma 15

With Πij given by (3.17), the transformed tensor (4.7) becomes

Π ′
11 = Π ′

22 = −
∑

ε

e2nε

m
1

1 + y2

[〈
1
γ

〉
ε

+
∑
α=±

α(z − βα)
2Rε(βα)

β+ − β−

]
,

Π ′
33 = −γ 2

s

∑
ε

e2nε

m

{
(z + βs)

2Wε(z) + tan2 θ

1 + y2

[〈
1
γ

〉
ε

+
∑
α=±

α(βs + βα)
2Rε(βα)

β+ − β−

]}
,

Π ′
13 = Π ′

31 = −γs

∑
ε

e2nε

m
tan θ

1 + y2

[
−
〈

1
γ

〉
ε

+
∑
α=±

α(z − βα)(βs + βα)Rε(βα)

β+ − β−

]
,

Π ′
12 = −Π ′

21 = −i
∑

ε

εe2nε

m
y

1 + y2

∑
α=±

α(z − βα)Sε(βα)

β+ − β−
,

Π ′
23 = −Π ′

32 = iγs

∑
ε

εe2nε

m
y tan θ

1 + y2

∑
α=±

α(βs + βα)Sε(βα)

β+ − β−
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.8)

The result (4.8) is the polarization tensor in the frame K′, expressed in terms of the plasma
parameters in the (unprimed) rest frame K of the streaming distribution. An alternative
form for this tensor is obtained by re-expressing (4.8) in terms of plasma parameters and
RPDFs in the primed frame.

4.4. Lorentz-transformed RPDFs
In order to rewrite (4.8) in terms of variables in K′, one need to relate the three RPDFs
Wε(z), Rε(βα), Sε(βα) as defined in K to the corresponding RPDFs in K′. The latter are
defined as

W ′
ε(z

′) =
〈

1
γ ′3(β ′ − z′)2

〉′
ε

, R′
ε(β

′
α) =

〈
1

γ ′(β ′ − β ′
α)

〉′
ε

, S′
ε(β

′
α) =

〈
1

γ ′2(β ′ − β ′
α)

〉′
ε

.

(4.9a–c)

The averages of any quantity X in the two frames are defined by (2.9), which implies〈
X
γ ′

〉′
ε

= 1
γs

〈
X
γ

〉
ε

. (4.10)

Using (4.10) and the relations (4.4a–d), one finds

W ′
ε(z

′) = γs(1 + βsz)2Wε(z),

R′
ε(β

′
α) = γs(1 + βsβα)

[
(1 + βsβα)Rε(βα) + βs

〈
1
γ

〉
ε

]
,

S′
ε(β

′
α) = (1 + βsβα)Sε(βα),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.11)

and the inverse transforms

Wε(z) = γ 3
s (1 − βsz′)2W ′

ε(z
′),

Rε(βα) = γ 3
s (1 − βsβ

′
α)

[
(1 − βsβ

′
α)R

′
ε(β

′
α) − βs

〈
1
γ ′

〉′
ε

]
,

Sε(βα) = γ 2
s (1 − βsβ

′
α)S

′
ε(β

′
α).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.12)
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The identity (4.10) implies γs〈1/γ ′〉′
ε = 〈1/γ 〉ε .

4.5. The polarization tensor in the primed frame
The response tensor Π ′

ij(ω
′, k′) in K′ is only partly determined by the equalities (3.17);

one also needs to express the unprimed parameters in terms of the primed parameters. In
addition to the identities (4.3a–c), (4.4a–d), (5.1a–d) and (4.12) the following identities
are useful in this context:

γs(1 − z′βs) = 1
γs(1 + zβs)

, y = y′

γs(1 − z′βs)
, 1 + y′2 − z′2 = 1 + y2 − z2

γ 2
s (1 + zβs)2

,

β ′
± = z′ ± y′[1 + y′2 − z′2]1/2

1 + y′2 = β± + βs

1 + β±βs
, z − β± = z′ − β ′

±
γ 2

s (1 − z′βs)(1 − β ′±βs)
,

β+ − β− = β ′
+ − β ′

−
γ 2

s (1 + β+βs)(1 + β−βs)
, (1 + y2)(β+ − β−) = (1 + y′2)(β ′

+ − β ′
−)

γ 2
s (1 − z′βs)2

,

β+β− = z2 − y2

1 + y2
,

1
(1 − β ′+βs)(1 − β ′−βs)

= γ 2
s (1 − z′βs)

2 + y′2

γ 2
s (1 + y′2)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.13)

Using these expressions, a lengthy calculation leads to the following expression for
Π ′

ij(ω
′, k′):

Π ′
11 = −

∑
ε

e2nε′

γsm(1 + y′2)

[〈
1
γ

〉
ε

+
∑
α=±

α(z′ − β ′
α)

2R′
ε(β

′
α)

β ′+ − β ′−

]
,

Π ′
12 = −i

∑
ε

εe2nε′

γsm
y′

1 + y′2
∑
α=±

α(z′ − β ′
α)S

′
ε(β

′
α)

β ′+ − β ′−
,

Π ′
23 = i

∑
ε

εe2nε′

γsm
y′ tan θ ′

1 + y′2
∑
α=±

αβ ′
αS′

ε(β
′
α)

β ′+ − β ′−
,

Π ′
13 = −

∑
ε

e2nε′ tan θ ′

γsm(1 + y′2)

[
−
〈

1
γ

〉
ε

+
∑
α=±

α(z′ − β ′
α)β

′
αR′

ε(β
′
α)

β ′+ − β ′−

]
,

Π ′
33 =

∑
ε

e2nε′

γsm

{
z′2W ′

ε(z
′) + tan2 θ ′

1 + y′2

[〈
1
γ

〉
ε

+
∑
α=±

αβ ′2
α R′

ε(β
′
α)

β ′+ − β ′−

]}
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.14)

where the substitution 〈1/γ 〉ε = γs〈1/γ ′〉′
ε is not made explicitly.

5. Alternative evaluation of the response tensor in the primed frame

An alternative method of including the streaming involves evaluating the response
tensor directly in the primed frame. This involves Lorentz transforming both the
distribution function and the tensor Aij(ω, k;β) to the primed frame.

5.1. Lorentz transforming the distribution function
Any distribution function, fε(p) is a Lorentz invariant. In the 1-D case, the distribution
function in K may be written as gε(u), with uμ = pμ/m = (γ, ub), where b is the unit
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vector along the magnetic field and u = γβ is the 4-speed. The Lorentz transformation
implies

γ ′ = γ γs(1 + ββs), β ′ = β + βs

1 + ββs
; γ = γ ′γs(1 − β ′βs), β = β ′ − βs

1 − β ′βs
.

(5.1a–d)

The distribution function in K′ may be written as g′
ε(u

′), with u′ = γ ′β ′. The
normalizations in the two frames are∫ ∞

−∞
du gε(u) = nε,

∫ ∞

−∞
du′ g′

ε(u
′) = nε′. (5.2a,b)

A 1-D Jüttner distribution is gε(u) = nε exp(−ργ )/2K1(ρ) where ρ = mc2/T is the
inverse temperature in units of the electron rest energy. Transforming to K′ gives

g′
ε(u

′) = nε′

γs

exp(−ργsγ
′(1 − βsβ

′))
2K1(ρ)

, nε′ = γsnε. (5.3a,b)

This result follows, for gε(−u) = gε(u), from du′ = d(β ′γ ′) = γ ′3 dβ ′, du = γ 3 dβ and
dβ ′/dβ = γ 2/γ ′2 implying du′/du = γ ′/γ , with γ ′ and β ′ given in terms of γ and β

by (5.1a–d). The distribution function (5.3a,b) may be interpreted as a streaming Jüttner
distribution function in the primed frame.

5.1.1. Response tensor for streaming Jüttner distribution
The response tensor for the streaming Jüttner distribution function (5.3a,b), evaluated

in the frame K′, is

Π ′
ij(ω, k) = −

∑
ε

e2

m

∫ ∞

−∞
du′ g′

ε(u
′)

A′
ij(ω

′, k′;β ′)

γ ′ , (5.4)

where A′
ij/γ

′ is related to Aij/γ by the Lorentz transformation that relates Π ′
ij to Πij, cf.

(4.7).
The integral in (5.4) may be reduced to the same form as the integral in the

non-streaming case by changing the variable of integration from u to u′, with du′/du =
γ ′/γ and replacing du′ g′

ε(u
′)γ ′ by dugε(u)γ , where gε(u) is the non-streaming distribution

function. The resulting expression for the response tensor reproduces the form (4.14).
The primed frame, K′, may be interpreted as the pulsar frame, provided that the

electrons and positrons stream at the same speed (and that the rotation of the pulsar plasma
is neglected). The transformed polarization tensor, in either form (4.8) or (4.14), may
then be interpreted as the polarization tensor in the pulsar frame, expressed in terms of
the unprimed and primed variables, respectively. The form (4.14) in terms of the primed
variables might appear to be the more convenient because all quantities are defined in the
frame of relevance to the observer. However, we find the form (4.8) to be more convenient
because the RPDFs are usually defined in the rest frame of the distribution of particles.
Alternatively one may use a mixed notation: starting from the form (4.14) one may use
the relations (4.11) to rewrite the RPDFs in the primed frame in terms of the RPDFs in
the unprimed frame, with the unprimed variables, including the arguments of the RPDFs,
rewritten in terms of the primed variables using (5.1a–d).
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6. Approximate and limiting cases

Limiting cases of the response tensor include limits related to the distribution function,
and limits related to the wave dispersion. Two limits of the Jüttner distribution are the
cold-plasma case, ρ � 1, and the high-energy limit, ρ � 1.

6.1. Cold-plasma limit
The cold-plasma limits of the RPDFs follow from the definitions (3.11a–c), with
du gε(u) → du nε δ(u). The limiting forms are

Wε(zε) → 1
zε2

, Rε(β
ε
α) → − 1

βε
α

, Sε(β
ε
α) → − 1

βε
α

. (6.1a–c)

For a cold streaming plasma, these are replaced by

W ′
ε(z

ε′) → 1
γ ε3

s (zε′ − βε
s )

2
, R′

ε(β
ε′
α ) → − 1

γ ε
s (βε′

α − βε
s )

, S′
ε(β

ε′
α ) → − 1

γ ε2
s (βε′

α − βε
s )

,

(6.2a–c)

using the limit du′ g′
ε(u

′) → du′ nε′ δ(u′ − uε′).
The cold-plasma limit of the polarization tensor (2.12) for a non-streaming Jüttner

distribution reduces to

Πij(ω, k) → −
∑

ε

e2nε

m
Aij(ω, k; 0), (6.3)

with Aij(ω, k; β) given by (2.13). The result (6.3) is reproduced by setting g(u) → nεδ(u)
in (2.12).

The cold-plasma limit for a streaming Jüttner distribution reduces to

Π ′
ij(ω, k) →

∑
ε

e2nε

γsm
Aij(ω

′, k′;βs), (6.4)

with ω′ = γs(ω − k‖βsc), k′
⊥ = k⊥, k′

‖ = γs(k‖ − ωβs/c). The result (6.4) is implied
directly by setting g(u) → nεδ(u − us) in (2.12).

6.2. The highly relativistic limit ρ � 1
In the highly relativistic limit, ρ � 1 the RPDFs by be approximated by
exponential-integral functions. One finds (Luo & Melrose 2004a; Melrose & Luo 2004)

W(z, ρ) = −ργ 2
φ

{
1 − 1

2ργφz2 [e−ργφ Ei(ργφ) − eργφ Ei(−ργφ)
]}

,

R(z, ρ) = − 1
2ργ 2

φ z
[
e−ργφ Ei(ργφ) + eργφ Ei(−ργφ)

]
,

S(z, ρ) = − 1
2ργφz

[
e−ργφ Ei(ργφ) − eργφ Ei(−ργφ)

]
.

⎫⎪⎪⎬
⎪⎪⎭ (6.5)
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For ργφ = ρ(1 − z2)−1/2 � 1 one has

W(z, ρ) ∼ −ργ 2
φ

{
1 − z2

∞∑
k=0

(2k)!
(ργφ)2k

}
≈ −ργ 2

φ

{
1 − z2

[
1 + 2

(ργφ)2

]}
, (6.6)

R(z, ρ) ∼ − z
ρ

∞∑
k=0

(2k + 1)!
(ργφ)2k

≈ − z
ρ

[
1 + 6

(ργφ)2

]
, (6.7)

S(z, ρ) ∼ −z
∞∑

k=0

(2k)!
(ργφ)2k

≈ −z
[

1 + 2
(ργφ)2

]
. (6.8)

6.3. Approximations to the arguments of RPDFs
The arguments of the RPDFs R and S in (4.8) may be approximated in two ways: by
making the WAA and by assuming highly relativistic streaming, γs � 1. The first of these
approximations follows from z′ ≈ 1/ cos θ ′ and y′ ≈ 1/x′ cos θ ′, giving

β ′
α ≈ x′2 cos θ ′ + α

[
1 − x′2 sin2 θ ′]1/2

1 + x′2 cos2 θ ′ , γ ′
α ≈ s

1 + α|cos θ ′| [1 − x′2 sin2 θ ′]1/2

x′ sin2 θ ′ ,

(6.9a,b)

where x′ = ω′/Ωe is the ratio of the wave frequency to the cyclotron frequency in K′. The
second approximation follows by assuming βs ≈ 1 − 1/2γ 2

s , giving

β ′
α − βs

1 − β ′
αβs

≈ −1 + 1
2Γ 2

α

, Γ 2
α = 2γ 2

s
1 − β ′

α

1 + β ′
α

, (6.10a,b)

where γ 2
s � (γ ′

α)
2 is assumed. These approximations may be applied to the

exponential-integral approximation (6.8) to the RPDFs with z → (β ′
α − βs)/(1 − β ′

αβs)
and γφ → Γα.

7. Discussion and conclusions

Our primary purpose in this article is to derive the response tensor for a relativistically
streaming Jüttner distribution, which we argue is the preferred model for a pulsar
plasma. The expression (4.14) for the polarization tensor, Π ′

ij, is the desired result. The
corresponding dielectric tensor, K′

ij, follows by inserting this expression into (2.12),
modified by adding superscripts s to Kij and Πij. Using the general form (4.14) for the
response tensor allows a general treatment of wave dispersion in a pulsar plasma that
includes the relativistic streaming, the intrinsic spread in Lorentz factors in the plasma rest
frame and the cyclotron resonances. We plan to discuss the details of the wave dispersion
elsewhere.

The response tensor (4.14) involves three RPDFs, defined in the rest frame of the Jüttner
distribution. Approximations to the response tensor involve relevant approximations
to these RPDFs. We note two opposite limits of the three RPDFs: the well-known
cold-plasma limit (6.1a–c), and the highly relativistic limit (6.5). Another type of
approximation involves the arguments of the RPDFs R, S that describe the effect of the
cyclotron resonances. In the absence of streaming these arguments are β±, given by (3.3)
and plotted in figure 1. The arguments of R, S when the streaming is included are Lorentz
transformed to β ′

±, given by (A4a,b). For highly relativistic streaming β ′
± are highly
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relativistic γ ′
± � 1 except for a tiny range of parameters corresponding β± ≈ βs. Then

R, S may be approximated by their highly relativistic limits, as discussed in § 6.3, leading
to substantial simplification.

A particular motivation for the theory developed here is an application to GFR in pulsars
and magnetars. Such GFR occurs in a region where the frequency of the escaping radiation
is much greater that the plasma and cyclotron frequencies. and the wave dispersion may
then be treated in the WAA, in which the refractive indices are assumed close to unity
and the polarization close to transverse. In the WAA, both the refractive indices and
polarizations of the two natural wave modes, and hence the GFR axis and the rate of
rotation per unit length (of the ray path) of the polarization point about it, are determined
to first order in this expansion. Based on the general form of the response tensor derived
here, we discuss GFR in the WAA in a separate paper.

Acknowledgements

Editor Dmitri Uzdensky thanks the referees for their advice in evaluating this article.

Declaration of interests

The authors report no conflict of interest.

Appendix A. Different streaming speeds, βε
s

Elliptical polarization in a pulsar plasma can be due to either a net charge density, η,
or a net current density, J . In order to include the effect of the pulsar current on the wave
dispersion, we generalize the foregoing model to allow for different streaming speeds for
the electrons and positrons, βs → βε

s say, with β+
s �= β−

s . Then one has

η =
∑

ε

εenε, J =
∑

ε

εecnεβε
s b. (A1a,b)

Writing

nε = n̄ + 1
2εδn, βε

s = β̄s + 1
2εδβs, (A2a,b)

(A1a,b) become

η = eδn, J = ec(n̄δβs + δnβ̄s)b. (A3a,b)

We introduce two rest frames, Kε , one for each of the two species ε = ±. To avoid
confusion we continue to denote the pulsar frame by K′. The response tensor (dielectric or
polarization tensor) in K′ is assumed to be the sum of the contributions found by Lorentz
transforming the response tensor for each species from its rest frame to the pulsar frame.

A.1. Inclusion of the pulsar current
With this relabelling the primes on z′, y′, β ′

±, θ ′ are retained, as in the original notation.
However, unprimed parameters in the original rest frame K are now different in each of the
two frames Kε . Relevant parameters in the two frames are denoted by adding a superscript
ε to indicate the frame. Specifically, we make the replacements z, y, βα, θ → zε, yε, βε

α, θ
ε .

The Lorentz transformations between the rest frames and the pulsar frame imply

zε = z′ − βε
s

1 − z′βε
s

, βε
± = β ′

± − βε
s

1 − β ′±βε
s

, yε = y′

γ ε
s (1 − z′βε

s )
, tan θε = tan θ ′

γ ε
s (1 − z′βε

s )
.

(A4a–d)
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A.2. Response tensor including the pulsar current
The response tensor in the form (4.8) involves functions and RPDFs defined in the original
rest frame K, in the case where both distributions have the same streaming speed. The
generalization to the case where the two rest frames Kε are different follows by adding
a subscript ε to the relevant parameters in each frame. The response tensor in this case
generalizes to

Π ′
11 = Π ′

22 = −
∑

ε

e2nε

m
1

1 + yε2

[〈
1
γ

〉
ε

+
∑
α=±

α(zε − βε
α)2Rε(β

ε
α)

βε + −βε−

]
,

Π ′
33 = −γ ε2

s

∑
ε

e2nε

m

{
(zε + βε

s )2Wε(zε) + tan2 θε

1 + yε2

[〈
1
γ

〉
ε

+
∑
α=±

α(βε
s + βε

α)2Rε(β
ε
α)

βε + −βε−

]}
,

Π ′
13 = Π ′

31 = −γ ε
s

∑
ε

e2nε

m
tan θε

1 + yε2

[
−
〈

1
γ

〉
ε

+
∑
α=±

α(zε − βε
α)(βε

s + βε
α)Rε(β

ε
α)

βε + −βε−

]
,

Π ′
12 = −Π ′

21 = −i
∑

ε

εe2nε

m
yε

1 + yε2

∑
α=±

α(zε − βε
α)Sε(β

ε
α)

βε + −βε− ,

Π ′
23 = −Π ′

32 = iγ ε
s

∑
ε

εe2nε

m
yε tan θε

1 + yε2

∑
α=±

α(βε
s + βε

α)Sε(β
ε
α)

βε + −βε− .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A5)

Using the relations (A4a,b) the response tensor (A5) may be rewritten in terms of the
parameters zε′, yε′, βε′

α , θε′ in the pulsar frames K′.
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BENÁČEK, J., MUÑOZ, P.A., BÜCHNER, J. & JESSNER, A. 2023 Linear acceleration emission of pulsar
relativistic streaming instability and interacting plasma bunches. Astron. Astrophys. 675, A42.

BENÁČEK, J., MUÑOZ, P.A., BÜCHNER, J. & JESSNER, A. 2024 Streaming instability in neutron star
magnetospheres: No indication of soliton-like waves. Astron. Astrophys. 683, A69.
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