Let G be a finite group and let N be a normal subgroup of G. If G/N is solvable and H/N is a nilpotent injector of G/N, then there exists a canonical basis of the complex space of the class functions of G which vanish off the G-conjugates of H.

1. INTRODUCTION

Let G be a finite group and let $\text{cf}(G)$ be the space of complex class functions of G. Let $\text{Irr}(G)$ be the set of irreducible complex characters of G. A subgroup H of G is good if there exists a basis $P(G \mid H)$ of the subspace $\text{cf}(H)^G$ of the class functions of G induced from the class functions of H satisfying:

(I) for each $\eta \in P(G \mid H)$, there is $\gamma \in \text{Irr}(H)$ such that $\eta = \gamma^G$; and

(D) for every $\alpha \in \text{Irr}(H)$, we have α^G is a nonnegative linear combination of $P(G \mid H)$.

This basis (if it exists) is unique and does not depend on H but on its G-conjugacy class.

There are examples of good subgroups. For instance, if $H \triangleleft G$, then it easy to show that H is good (although this is already false if $H \lhd G$.) If G is p-solvable and H is a p-complement of G, then $P(G \mid H)$ exists and it is the set of projective indecomposable characters by Fong theory. If G is π-separable and H is a Hall π-subgroup of G, then $P(G \mid H)$ also exists by Isaacs π-theory. (It is interesting to notice that, in general, a Sylow p-subgroup of a finite group G need not to be good as shown by A_9 and $p = 3$.) If G/N is π-separable and H/N is a Hall π-subgroup of G/N, we have recently proved that $P(G \mid H)$ exists (see [6, Theorem A]). If H is a nilpotent injector of the solvable group G, then $P(G \mid H)$ exists (see [3, Theorem (3.1)]).

In this note we find a new class of good subgroups.

Theorem A. Let $N \lhd G$ and suppose that G/N is a solvable group. If H/N is a nilpotent injector of G/N, then H is good.

As pointed out in [5], good subgroups provide a canonical partition of $\text{Irr}(G)$ which behaves like the Brauer p-blocks of G.

Received 15th November, 1999

Research partially supported by DGICYT.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 $2.00+0.00$.

155
2. PRELIMINARIES: GOOD BASES

In this section we are going to review the notation and terminology of good bases. We refer the reader to [4, Section 2] for more details.

Let G be a finite group and let $\text{cf}(G)$ be the space of complex class functions defined on G. If $H \subseteq G$, let $\text{cf}(H)^G = \{ \gamma^G \mid \gamma \in \text{cf}(H) \}$.

Definition 2.1: Let H be a subgroup of G. We say that H is **good** if there exists a basis $P(G \mid H)$ of $\text{cf}(H)^G$ satisfying:

(I) for each $\eta \in P(G \mid H)$, there is $\gamma \in \text{Irr}(H)$ such that $\eta = \gamma^G$; and

(D) for every $\alpha \in \text{Irr}(H)$, we have

$$\alpha^G = \sum_{\eta \in P(G \mid H)} a_\eta \eta$$

for nonnegative integers a_η.

In this case, we say that $P(G \mid H)$ is the **good basis** of the space $\text{cf}(H)^G$. (Good bases are unique by [3, Theorem (2.2)].)

Now, let N be a normal subgroup of G contained in H. If $\theta \in \text{Irr}(N)$, then we write $\text{Irr}(G \mid \theta)$ for the set of irreducible constituents of θ^G. Also, $\text{cf}(G \mid \theta)$ is the \mathbb{C}-span of the set $\text{Irr}(G \mid \theta)$. We denote by

$$\text{vcf}(G \mid H, \theta) = \text{cf}(H)^G \cap \text{cf}(G \mid \theta).$$

Let Θ be a complete set of representatives of the orbits of the action of G on $\text{Irr}(N)$. We know that

$$\text{cf}(H)^G = \bigoplus_{\theta \in \Theta} \text{vcf}(G \mid H, \theta)$$

by [4, Lemma (2.2)].

We define good bases "over" an irreducible character of a certain normal subgroup.

Definition 2.2: Let $N \trianglelefteq G$, let $\theta \in \text{Irr}(N)$ and let $N \subseteq H \subseteq G$. A basis B of $\text{vcf}(G \mid H, \theta)$ is **good** if satisfies the following conditions:

(I) If $\eta \in B$, then there exists $\alpha \in \text{Irr}(H \mid \theta)$ such that $\alpha^G = \eta$.

(D) If $\gamma \in \text{Irr}(H \mid \theta)$, then $\gamma^G = \sum_{\eta \in B} a_\eta \eta$ for uniquely determined integers a_η.

Good bases "over" irreducible characters are necessarily unique (by the same argument as in [3, Theorem (2.2)]). We shall denote by $P(G \mid H, \theta)$ the unique good basis (if it exists) of $\text{vcf}(G \mid H, \theta)$.

Next is a key definition in order to find good bases for the subspace $\text{cf}(H)^G$.

Definition 2.3: Suppose that $N \trianglelefteq G$ is contained in $H \subseteq G$. Let $\theta \in \text{Irr}(N)$ and and write $T = I_G(\theta)$ for the stabiliser of θ in G. We say that θ is H-**good** (with respect to G), if for every $g \in G$, we have that $H^g \cap T$ is contained in some T-conjugate of $H \cap T$.

[156 L. Sanus [2] 0.016468687674744786]
3. PROOF OF THEOREM A

Let G be a solvable group. We recall that a nilpotent injector is a maximal nilpotent subgroup of G containing $F(G)$. Any two of them are G-conjugate [2].

We need the following new property of the nilpotent injectors.

Theorem 3.1. Let G be a solvable group and let T be a subgroup of G. Then there exists a nilpotent injector H of G such that for every $g \in G$

$$H^g \cap T \subseteq (H \cap T)^t,$$

for some $t \in T$.

Proof: We argue by induction on $|G|$. Write $F = F(G)$. We claim that we may assume that $FT = G$. Otherwise, we have that there exists a nilpotent injector J of FT such that for every $x \in FT$

$$J^x \cap T \subseteq (J \cap T)^t,$$

for some $t \in T$. Now, by [2, Theorem 2(b)], we know that there exists a nilpotent injector H of G such that

$$H \cap FT = J.$$

Let $g \in G$. We have that $H^g \cap T = H^g \cap FT \cap T$. Now, by [2, Theorem 2(c)], there exists $y \in FT$ such that $H^y \cap FT \subseteq J^y$. Then, we have that there exists an element $t \in T$ such that

$$H^g \cap T = H^g \cap FT \cap T \subseteq J^y \cap T \subseteq (J \cap T)^t.$$

Now, since $H \cap FT = J$, it follows that $$H^g \cap T \subseteq (J \cap T)^t = (H \cap FT \cap T)^t = (H \cap T)^t,$$

as claimed.

Therefore, we assume that $G = FT$. Let H be a nilpotent injector of G. For every $g \in G$, we write $g = ft$ with $f \in F$ and $t \in T$. We have that

$$H^g \cap T = H^t \cap T = (H \cap T)^t$$

and the proof of the theorem is complete.

Corollary 3.2. Let N be a normal subgroup of a solvable group G. Suppose that $\theta \in \text{Irr}(N)$ and let $T = I_G(\theta)$ be the stabiliser of θ in G. Then there exists a nilpotent injector H/N of G/N such that θ is H-good.

Proof: The proof easily follows from Theorem (3.1).

Now, let $N \triangleleft G$ and let $\theta \in \text{Irr}(G)$ be invariant in G. Under these hypotheses we say that (G, N, θ) is a character triple. For the definition and main properties of isomorphisms of character triples we refer the reader to [1, Chapter 11].
We are now ready to prove Theorem A.

Theorem 3.3. Let G/N be a solvable group. If H/N is a nilpotent injector of G/N, then H is good.

Proof. Given $\theta \in \text{Irr}(N)$, by Corollary (3.2) we know that there exists $x \in G$ such that θ is H^x-good. It follows that $\theta^{x^{-1}}$ is H-good. Hence, we may find a complete set Θ of representatives of the orbits of the action of G on $\text{Irr}(N)$ such that each $\theta \in \Theta$ is H-good. Now, we are going to prove that there exists a good basis of $\text{vcf}(G \mid H, \theta)$ for every $\theta \in \Theta$.

We fix $\theta \in \Theta$. Since there is a "Clifford correspondence" for good bases over $\theta \in \Theta$ [4, Lemma (2.10)], we may assume that θ is G-invariant. Hence (G, N, θ) is a character triple. By [1, Theorem (11.28)], there exists an isomorphic character triple (G^*, N^*, θ^*) such that N^* is a central subgroup of G^*. Since $N^* \subseteq Z(G^*)$, we have that $F(G^*/N^*) = F(G^*)/N^*$. Now, since H^*/N^* is nilpotent if and only if H^* is nilpotent, it easily follows that H^*/N^* is a nilpotent injector of G^*/N^* if and only if H^* is a nilpotent injector of G^*. We know that $P(G^* \mid H^*, \theta^*)$, the good basis of $\text{vcf}(G^* \mid H^*, \theta^*)$ exists by [3, Theorem (3.1)] and [6, Theorem (2.4)]. Now, by [6, Lemma (3.4)], it follows that $P(G \mid H, \theta)$ is the good basis of $\text{vcf}(G \mid H, \theta)$. We conclude that $\bigcup_{\theta \in \Theta} P(G \mid H, \theta)$ is $P(G \mid H)$ by [4, Lemma (2.9)].

References

Departament d'Àlgebra
Facultat de Matemàtiques
Universitat de València
46100 Burjassot. València
Spain
e-mail: lucia.sanus@uv.es