INDUCING CHARACTERS AND NILPOTENT INJECTORS

LUCÍA SANUS

Let G be a finite group and let N be a normal subgroup of G. If G/N is solvable and H/N is a nilpotent injector of G/N, then there exists a canonical basis of the complex space of the class functions of G which vanish off the G-conjugates of H.

1. INTRODUCTION

Let G be a finite group and let cf(G) be the space of complex class functions of G. Let Irr(G) be the set of irreducible complex characters of G. A subgroup H of G is good if there exists a basis P(G | H) of the subspace $cf(H)^G$ of the class functions of G induced from the class functions of H satisfying:

- (I) for each $\eta \in P(G \mid H)$, there is $\gamma \in Irr(H)$ such that $\eta = \gamma^G$; and
- (D) for every $\alpha \in Irr(H)$, we have α^G is a nonnegative linear combination of P(G | H).

This basis (if it exists) is unique and does not depend on H but on its G-conjugacy class.

There are examples of good subgroups. For instance, if $H \triangleleft G$, then it easy to show that H is good (although this is already false if $H \triangleleft G$.) If G is p-solvable and H is a p-complement of G, then $P(G \mid H)$ exists and it is the set of projective indecomposable characters by Fong theory. If G is π -separable and H is a Hall π -subgroup of G, then $P(G \mid H)$ also exists by Isaacs π -theory. (It is interesting to notice that, in general, a Sylow p-subgroup of a finite group G need not to be good as shown by A_9 and p = 3.) If G/N is π -separable and H/N is a Hall π -subgroup of G/N, we have recently proved that $P(G \mid H)$ exists (see [6, Theorem A]). If H is a nilpotent injector of the solvable group G, then $P(G \mid H)$ exists (see [3, Theorem (3.1)]).

In this note we find a new class of good subgroups.

THEOREM A. Let $N \triangleleft G$ and suppose that G/N is a solvable group. If H/N is a nilpotent injector of G/N, then H is good.

As pointed out in [5], good subgroups provide a canonical partition of Irr(G) which behaves like the Brauer *p*-blocks of G.

Received 15th November, 1999

Research partially supported by DGICYT.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

L. Sanus

2. Preliminaries: Good bases

In this section we are going to review the notation and terminology of good bases. We refer the reader to [4, Section 2] for more details.

Let G be a finite group and let cf(G) be the space of complex class functions defined on G. If $H \subseteq G$, let $cf(H)^G = \{\gamma^G \mid \gamma \in cf(H)\}$.

DEFINITION 2.1: Let H be a subgroup of G. We say that H is good if there exists a basis P(G | H) of $cf(H)^G$ satisfying:

- (I) for each $\eta \in P(G \mid H)$, there is $\gamma \in Irr(H)$ such that $\eta = \gamma^{G}$; and
- (D) for every $\alpha \in Irr(H)$, we have

$$\alpha^G = \sum_{\eta \in P(G|H)} a_\eta \eta$$

for nonnegative integers a_{η} .

In this case, we say that $P(G \mid H)$ is the good basis of the space $cf(H)^G$. (Good bases are unique by [3, Theorem (2.2)].)

Now, let N be a normal subgroup of G contained in H. If $\theta \in \text{Irr}(N)$, then we write $\text{Irr}(G \mid \theta)$ for the set of irreducible constituents of θ^G . Also, $\text{cf}(G \mid \theta)$ is the C-span of the set $\text{Irr}(G \mid \theta)$. We denote by

$$\operatorname{vcf}(G \mid H, \theta) = \operatorname{cf}(H)^G \cap \operatorname{cf}(G \mid \theta).$$

Let Θ be a complete set of representatives of the orbits of the action of G on Irr(N). We know that

$$\operatorname{cf}(H)^G = \bigoplus_{\theta \in \Theta} \operatorname{vcf}(G \mid H, \theta)$$

by [4, Lemma (2.2)].

We define good bases "over" an irreducible character of a certain normal subgroup.

DEFINITION 2.2: Let $N \triangleleft G$, let $\theta \in Irr(N)$ and let $N \subseteq H \subseteq G$. A basis \mathcal{B} of $vcf(G \mid H, \theta)$ is good if satisfies the following conditions:

- (I) If $\eta \in \mathcal{B}$, then there exists $\alpha \in Irr(H \mid \theta)$ such that $\alpha^G = \eta$.
- (D) If $\gamma \in Irr(H \mid \theta)$, then $\gamma^G = \sum_{\eta \in \mathcal{B}} a_\eta \eta$ for uniquely determined integers a_η .

Good bases "over" irreducible characters are necessarily unique (by the same argument as in [3, Theorem (2.2)]). We shall denote by $P(G \mid H, \theta)$ the unique good basis (if it exists) of vcf $(G \mid H, \theta)$.

Next is a key definition in order to find good bases for the subspace $cf(H)^G$.

DEFINITION 2.3: Suppose that $N \triangleleft G$ is contained in $H \subseteq G$. Let $\theta \in Irr(N)$ and and write $T = I_G(\theta)$ for the stabiliser of θ in G. We say that θ is H-good (with respect to G), if for every $g \in G$, we have that $H^g \cap T$ is contained in some T-conjugate of $H \cap T$. Let G be a solvable group. We recall that a nilpotent injector is a maximal nilpotent subgroup of G containing F(G). Any two of them are G-conjugate [2].

We need the following new property of the nilpotent injectors.

THEOREM 3.1. Let G be a solvable group and let T be a subgroup of G. Then there exists a nilpotent injector H of G such that for every $g \in G$

$$H^{g} \cap T \subseteq (H \cap T)^{t}$$
,

for some $t \in T$.

PROOF: We argue by induction on |G|. Write $F = \mathbf{F}(G)$. We claim that we may assume that FT = G. Otherwise, we have that there exists a nilpotent injector J of FT such that for every $x \in FT$

$$J^x \cap T \subseteq (J \cap T)^t,$$

for some $t \in T$. Now, by [2, Theorem 2(b)], we know that there exists a nilpotent injector H of G such that

$$H \cap FT = J.$$

Let $g \in G$. We have that $H^g \cap T = H^g \cap FT \cap T$. Now, by [2, Theorem 2(c)], there exists $y \in FT$ such that $H^g \cap FT \subseteq J^y$. Then, we have that there exists an element $t \in T$ such that

$$H^{g} \cap T = H^{g} \cap FT \cap T \subseteq J^{y} \cap T \subseteq (J \cap T)^{t}.$$

Now, since $H \cap FT = J$, it follows that

$$H^{g} \cap T \subseteq (J \cap T)^{t} = (H \cap FT \cap T)^{t} = (H \cap T)^{t},$$

as claimed.

Therefore, we assume that G = FT. Let H be a nilpotent injector of G. For every $g \in G$, we write g = ft with $f \in F$ and $t \in T$. We have that

$$H^g \cap T = H^t \cap T = (H \cap T)^t$$

and the proof of the theorem is complete.

COROLLARY 3.2. Let N be a normal subgroup of a solvable group G. Suppose that $\theta \in Irr(N)$ and let $T = I_G(\theta)$ be the stabiliser of θ in G. Then there exists a nilpotent injector H/N of G/N such that θ is H-good.

PROOF: The proof easily follows from Theorem (3.1).

Now, let $N \triangleleft G$ and let $\theta \in Irr(G)$ be invariant in G. Under these hypotheses we say that (G, N, θ) is a *character triple*. For the definition and main properties of isomorphisms of character triples we refer the reader to [1, Chapter 11].

0

П

We are now ready to prove Theorem A.

THEOREM 3.3. Let G/N be a solvable group. If H/N is a nilpotent injector of G/N, then H is good.

PROOF Given $\theta \in \operatorname{Irr}(N)$, by Corollary (3.2) we know that there exists $x \in G$ such that θ is H^x -good. It follows that $\theta^{x^{-1}}$ is *H*-good. Hence, we may find a complete set Θ of representatives of the orbits of the action of *G* on $\operatorname{Irr}(N)$ such that each $\theta \in \Theta$ is *H*-good. Now, we are going to prove that there exists a good basis of $\operatorname{vcf}(G \mid H, \theta)$ for every $\theta \in \Theta$.

We fix $\theta \in \Theta$. Since there is a "Clifford correspondence" for good bases over $\theta \in \Theta$ [4, Lemma (2.10)], we may assume that θ is *G*-invariant. Hence (G, N, θ) is a character triple. By [1, Theorem (11.28)], there exists an isomorphic character triple (G^*, N^*, θ^*) such that N^* is a central subgroup of G^* . Since $N^* \subseteq \mathbb{Z}(G^*)$, we have that $\mathbb{F}(G^*/N^*) = \mathbb{F}(G^*)/N^*$. Now, since H^*/N^* is nilpotent if and only if H^* is nilpotent, it easily follows that H^*/N^* is a nilpotent injector of G^*/N^* if and only if H^* is a nilpotent injector of G^* . We know that $P(G^* \mid H^*, \theta^*)$, the good basis of $vcf(G^* \mid H^*, \theta^*)$ exists by [3, Theorem (3.1)] and [6, Theorem (2.4)]. Now, by [6, Lemma (3.4)], it follows that $P(G \mid H, \theta)$ is the good basis of $vcf(G \mid H, \theta)$. We conclude that $\bigcup_{\theta \in \Theta} P(G \mid H, \theta)$ is $P(G \mid H)$ by [4, Lemma (2.9)].

References

- [1] I.M. Isaacs, Character theory of finite groups (Dover Publications, New York, 1994).
- [2] A. Mann, 'Injectors and normal subgroups of finite groups', Israel J. Math. 9 (1971), 554-558.
- [3] G. Navarro, 'Bases for induced characters', J. Austral. Math. Soc. Ser. A 61 (1996), 369-376.
- G. Navarro, L. Sanus, 'Partial characters with respect to a normal subgroup', J.Austral. Math. Soc. Ser. A 66 (1999), 104-124.
- G. Navarro, L. Sanus, 'A partition of characters associated to nilpotent subgroups', Israel J. Math. 114 (1999), 359-381.
- [6] L. Sanus, 'Blocks relative to a normal subgroup in π -separable groups', J. Algebra (to appear).

Departament d'Àlgebra Facultat de Matemàtiques Universitat de València 46100 Burjassot. València Spain e-mail: lucia.sanus@uv.es