ON SELECTING A SPURIOUS OBSERVATION

BY
K. S. MOUNT AND B. K. KALE(${ }^{1}$)

1. Consider a life testing experiment in which $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ are such that $(n-1)$ of them are distributed as $f(x, \sigma)=(1 / \sigma) e^{-x / \sigma}, x \geq 0, \sigma>0$ and one of them is distributed as $f(x, \sigma / \alpha), 0<\alpha<1$. A priori each X_{i} has probability $1 / n$ of being a spurious observation distributed as $f(x, \sigma / \alpha)$. For such an experiment Kale and Sinha [2] showed that if u_{r} denotes the probability that $X_{(r)}$, the $r^{\text {th }}$ component of the order statistic, corresponds to the spurious observation, then $u_{1}<u_{2}<\cdots<u_{n}$. Generalizing the above model we assume that $\left(X_{1}, \ldots, X_{n}\right)$ are such that ($n-1$) of them are distributed with d.f. $F(x)$, and one of them is distributed with d.f. $G(x)$, where F and G are stochastically ordered, i.e., $G<F$. A priori each X_{i} has probability $1 / n$ of being a spurious observation distributed as G. Then following Kale and Sinha [2],

$$
\begin{equation*}
u_{r}=\binom{n-1}{r-1} \int_{R_{1}}[F(x)]^{r-1}[1-F(x)]^{n-r} d G(x) \tag{1}
\end{equation*}
$$

Lemma. Let $d G / d F=\psi(x)$. We show that if $\psi(x)$ is monotone increasing, then $u_{1}<u_{2}<\cdots<u_{n}$.

Proof.

$$
\begin{gather*}
u_{r}=\binom{n-1}{r-1} \int_{-\infty}^{\infty}[F(x)]^{r-1}[1-F(x)]^{n-r} \psi(x) d F(x) \\
=\binom{n-1}{r-1} \int_{0}^{1} y^{r-1}(1-y)^{n-r} \psi\left[F^{-1}(y)\right] d y \tag{2}\\
=\frac{1}{n} E\left[\psi_{1}\left(Y_{r}\right)\right] \tag{3}
\end{gather*}
$$

where Y_{r} denotes a beta r.v. with parameters r and $n-r+1$. Note that $\left\{Y_{r}\right\}_{1}^{n}$ is stochastically ordered (increasing) since $\left[d H\left(Y_{r+1}\right) / d H\left(Y_{r}\right)\right] \alpha(y / 1-y)$ which is monotone increasing in y for $0 \leq y \leq 1$. Further $\psi_{1}(y)=\psi\left[F^{-1}(y)\right]$ is strictly increasing, since $\psi \equiv 1$ for otherwise $G \equiv F$. We apply now the results of Lehmann, [3, p. 112, Problem 11] for strictly increasing functions to conclude that $u_{1}<u_{2}<\cdots<u_{n}$.

Some important families of the d.f.'s (F, G) are $G(x)=[F(x)]^{k}, k>1$, i.e., Lehmann alternatives and $G(x)=\sum_{k=1}^{\infty} C_{k}[F(x)]^{k}, C_{k} \geq 0, \sum C_{k}=1$, i.e., a convex

[^0]combination of Lehmann alternatives. The condition $d G / d F=\psi(x)$ where ψ is monotone increasing implies that G and F belong to a monotone likelihood ratio family. A subclass of this is distributions belonging to one parameter exponential class of densities of the form
$$
p_{\theta}(x)=C(\theta) e^{x Q(\theta)} h(x)
$$
where $Q(\theta)$ is a monotone increasing function.
Suppose $p_{\theta}(x)$ is of the form
\[

$$
\begin{equation*}
p_{\theta}(x)=C(\theta) e^{T(x) Q(\theta)} h(x) \tag{4}
\end{equation*}
$$

\]

where $T(x)$ is a real valued function of x. We know the p.d.f. of $Y=T(X)$ is of the form

$$
\begin{equation*}
r_{\theta}(y)=C(\theta) e^{y Q(\theta)} s(y) . \tag{5}
\end{equation*}
$$

Let us take a sample of size n say $\left(y_{1}, \ldots, y_{n}\right)$ with $n-1$ of the observations coming from $f(y)=r_{\theta_{0}}(y)$ and one observation from $g(y)=r_{\theta_{1}}(y), \theta_{1}>\theta_{0}$. If u_{r} is the probability that $Y_{(r)}$ corresponds to the spurious observation, then, by our previous remarks, u_{r} is a monotone increasing function of r. An example of this is the family of distributions $\{N(0, \theta): \theta>0\}$. Here $T(x)=x^{2}$. Finally, we note that if the ψ in the Lemma is monotone decreasing, then u_{r} would be a monotone decreasing function of r.
2. Slippage tests for detecting spurious observations. We can phrase the problem of detecting spurious observations as a slippage problem. Suppose X_{i} has d.f. $F_{i}(x), i=1, \ldots, n$ and the X_{i} are independent. We wish to test

$$
\begin{array}{ll}
& H_{0}: F_{1}=\ldots=F_{n}=F_{0} \quad F_{0}-\text { completely specified d.f. } \\
\text { vs. } & H_{i}: F_{1}=\ldots=F_{i-1}=F_{i+1}=\ldots=F_{n}=F_{0} \quad F_{i}=G<F_{0} \tag{6}\\
& \\
& i=1, \ldots, n
\end{array}
$$

In line with the usual criteria for such tests, [1], we are interested in a test such that:

$$
\begin{align*}
& P\left\{\text { rej. } H_{0} \mid H_{0} \text { true }\right\}=\alpha \\
& P\left\{\text { acc. } H_{i} \mid H_{i} \text { true }\right\} \text { does not depend on } i \tag{7}\\
& P\left\{\text { acc. } H_{i} \mid H_{i} \text { true }\right\} \text { is maximized. }
\end{align*}
$$

We assume that if a distribution has slipped, it is equally likely to be any F_{i}. If the d.f.'s F_{0} and G have p.d.f.'s f_{0} and g respectively, the joint p.d.f. of X_{1}, \ldots, X_{n} is $\bar{\Pi}_{j=1}^{n} f_{0}\left(x_{j}\right)$ if H_{0} is true and $1 / n \sum_{i=1}^{n} g\left(x_{i}\right) \bar{\Pi}_{j \neq i} f_{0}\left(x_{j}\right)$ if H_{0} is not true. The test satisfying the criteria in display (7) will accept H_{0} if

$$
\begin{equation*}
\max _{j} \frac{g\left(x_{j}\right)}{f_{0}\left(x_{j}\right)}<C_{n, \alpha} \tag{8}
\end{equation*}
$$

and will accept H_{i} if

$$
\begin{equation*}
\frac{g\left(x_{i}\right)}{f_{0}\left(x_{i}\right)}=\max _{j} \frac{g\left(x_{j}\right)}{f_{0}\left(x_{j}\right)} \geq C_{n, \alpha} \tag{9}
\end{equation*}
$$

where the constant $C_{n, \alpha}$ is chosen to satisfy the level α restriction. It is well known [1, p. 307] that if f_{0} and g are members of a family which has monotone likelihood ratio in x, then the acceptance regions (8) and (9) become

$$
\begin{equation*}
x_{(n)}<C_{n, \alpha} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{i}=x_{(n)} \geq C_{n, \alpha} \tag{11}
\end{equation*}
$$

This test is often used for detecting spurious observations.

Lemma. If $G<F_{0}$, and has p.d.f. $g(x)$, the test with critical region $x_{(n)}>C_{n, \alpha}$ is unbiased.

Proof. We know that

$$
\begin{aligned}
\alpha & =P\left\{\text { rej. } H_{0} \mid H_{0}\right\} \\
& =P\left\{\text { accept one of the } H_{i} \mid H_{0}\right\} \\
& =\sum_{i=1}^{n} P\left\{\text { acc. } H_{i} \mid H_{0}\right\} \\
& =n P\left\{\text { acc. } H_{1} \mid H_{0}\right\} .
\end{aligned}
$$

To show this test is unbiased we must show: P \{acc. $\left.H_{i} \mid H_{i}\right\} \geq P$ acc. $\left.H_{i} \mid H_{j}\right\}$, $i \neq j$. First we show that $P\left\{\right.$ acc. $\left.H_{i} \mid H_{i}\right\}=P\left\{\right.$ acc. $\left.H_{1} \mid H_{1}\right\} \geq P\left\{\right.$ acc. $\left.H_{1} \mid H_{0}\right\}(=\alpha / n)$. The point $C_{n, \alpha}$ is chosen so that

$$
n \int_{C_{n, \alpha}}^{\infty}\left[F_{0}(x)\right]^{n-1} f_{0}(x) d x=\alpha .
$$

We know that $P\left\{\right.$ acc. $\left.H_{1} \mid H_{1}\right\}=\int_{C_{n, \alpha}}^{\infty}\left[F_{0}(x)\right]^{n-1} g(x) d x$. Finally, the inequality

$$
\begin{equation*}
\int_{C_{n, \alpha}}^{\infty}\left[F_{0}(x)\right]^{n-1} g(x) d x \geq \int_{C_{n, \alpha}}^{\infty}\left[F_{0}(x)\right]^{n-1} f_{0}(x) d x \tag{12}
\end{equation*}
$$ can be seen to hold by integrating both sides by parts. For $j>0$

$$
\begin{aligned}
P\left\{\text { acc. } H_{i} \mid H_{j}\right\} & =\int_{C_{n}, \alpha}^{\infty}\left[F_{0}(x)\right]^{n-2} G(x) f_{0}(x) d x \\
& \leq \int_{C_{n, \alpha}}^{\infty}\left[F_{0}(x)\right]^{n-1} f_{0}(x) d x\left(=\frac{\alpha}{n}\right) .
\end{aligned}
$$

Similarly, $P\left\{\right.$ acc. $\left.H_{0} \mid H_{0}\right\} \geq P\left\{\right.$ acc. $\left.H_{0} \mid H_{i}\right\}, i=1,2, \ldots, n$.
Acknowledgement. We wish to thank the referee for his helpful comments and suggestions.

1. T. Ferguson, Mathematical statistics, a decision theoretic approach, Academic Press, 1967.
2. B. K. Kale, and S. K. Sinha, Estimation of expected life in the presence of an outlier observation. Technometrics, 13 (1971), 755-759.
3. E. L. Lehmann, Testing statistical hypotheses, Wiley, New York, 1959.

University of Manitoba, Winnipeg, Manitoba

[^0]: Received by the editors June 22, 1971 and, in revised form, September 9, 1971.
 ${ }^{1}$) Partially supported by a research grant from the National Research Council of Canada.

