ON SELECTING A SPURIOUS OBSERVATION

RΥ

K. S. MOUNT AND B. K. KALE(1)

1. Consider a life testing experiment in which (X_1, X_2, \ldots, X_n) are such that (n-1) of them are distributed as $f(x, \sigma) = (1/\sigma)e^{-x/\sigma}$, $x \ge 0$, $\sigma > 0$ and one of them is distributed as $f(x, \sigma/\alpha)$, $0 < \alpha < 1$. A priori each X_i has probability 1/n of being a spurious observation distributed as $f(x, \sigma/\alpha)$. For such an experiment Kale and Sinha [2] showed that if u_r denotes the probability that $X_{(r)}$, the r^{th} component of the order statistic, corresponds to the spurious observation, then $u_1 < u_2 < \cdots < u_n$. Generalizing the above model we assume that (X_1, \ldots, X_n) are such that (n-1)of them are distributed with d.f. F(x), and one of them is distributed with d.f. G(x), where F and G are stochastically ordered, i.e., G < F. A priori each X_i has probability 1/n of being a spurious observation distributed as G. Then following Kale and Sinha [2].

(1)
$$u_r = \binom{n-1}{r-1} \int_{R_1} [F(x)]^{r-1} [1-F(x)]^{n-r} \, dG(x).$$

LEMMA. Let $dG/dF = \psi(x)$. We show that if $\psi(x)$ is monotone increasing, then $u_1 < u_2 < \cdots < u_n$.

Proof.

(3)

$$u_{r} = {\binom{n-1}{r-1}} \int_{-\infty}^{\infty} [F(x)]^{r-1} [1 - F(x)]^{n-r} \psi(x) \, dF(x)$$

= ${\binom{n-1}{r-1}} \int_{0}^{1} y^{r-1} (1 - y)^{n-r} \psi[F^{-1}(y)] \, dy$
= $\frac{1}{r} E[\psi_{1}(Y_{r})]$

where
$$Y_r$$
 denotes a beta r.v. with parameters r and $n-r+1$. Note that $\{Y_r\}_1^n$ is
stochastically ordered (increasing) since $[dH(Y_{r+1})/dH(Y_r)]\alpha(y/1-y)$ which is
monotone increasing in y for $0 \le y \le 1$. Further $\psi_1(y) = \psi[F^{-1}(y)]$ is strictly in-

creasing, since $\psi \equiv 1$ for otherwise $G \equiv F$. We apply now the results of Lehmann, [3, p. 112, Problem 11] for strictly increasing functions to conclude that $u_1 < u_2 < \cdots < u_n$.

is strictly in-

Some important families of the d.f.'s (F, G) are $G(x) = [F(x)]^k$, k > 1, i.e., Lehmann alternatives and $G(x) = \sum_{k=1}^{\infty} C_k [F(x)]^k$, $C_k \ge 0$, $\sum C_k = 1$, i.e., a convex

Received by the editors June 22, 1971 and, in revised form, September 9, 1971.

⁽¹⁾ Partially supported by a research grant from the National Research Council of Canada.

[March

combination of Lehmann alternatives. The condition $dG/dF = \psi(x)$ where ψ is monotone increasing implies that G and F belong to a monotone likelihood ratio family. A subclass of this is distributions belonging to one parameter exponential class of densities of the form

$$p_{\theta}(x) = C(\theta)e^{xQ(\theta)}h(x)$$

where $Q(\theta)$ is a monotone increasing function.

Suppose $p_{\theta}(x)$ is of the form

(4)
$$p_{\theta}(x) = C(\theta)e^{T(x)Q(\theta)}h(x)$$

where T(x) is a real valued function of x. We know the p.d.f. of Y=T(X) is of the form

(5)
$$r_{\theta}(y) = C(\theta)e^{yQ(\theta)}s(y).$$

Let us take a sample of size n say (y_1, \ldots, y_n) with n-1 of the observations coming from $f(y)=r_{\theta_0}(y)$ and one observation from $g(y)=r_{\theta_1}(y)$, $\theta_1 > \theta_0$. If u_r is the probability that $Y_{(r)}$ corresponds to the spurious observation, then, by our previous remarks, u_r is a monotone increasing function of r. An example of this is the family of distributions $\{N(0, \theta): \theta > 0\}$. Here $T(x)=x^2$. Finally, we note that if the ψ in the Lemma is monotone decreasing, then u_r would be a monotone decreasing function of r.

2. Slippage tests for detecting spurious observations. We can phrase the problem of detecting spurious observations as a slippage problem. Suppose X_i has d.f. $F_i(x)$, $i=1, \ldots, n$ and the X_i are independent. We wish to test

(6)
$$H_0: F_1 = \ldots = F_n = F_0 \qquad F_0 - \text{completely specified d.f.}$$

vs. $H_i: F_1 = \ldots = F_{i-1} = F_{i+1} = \ldots = F_n = F_0 \qquad F_i = G < F_0$
 $i = 1, \ldots, n$

In line with the usual criteria for such tests, [1], we are interested in a test such that:

(7)
$$P\{\text{rej. } H_0 \mid H_0 \text{ true}\} = \alpha$$
$$P\{\text{acc. } H_i \mid H_i \text{ true}\} \text{ does not depend on } i$$
$$P\{\text{acc. } H_i \mid H_i \text{ true}\} \text{ is maximized.}$$

We assume that if a distribution has slipped, it is equally likely to be any F_i . If the d.f.'s F_0 and G have p.d.f.'s f_0 and g respectively, the joint p.d.f. of X_1, \ldots, X_n is $\overline{\prod}_{i=1}^n f_0(x_i)$ if H_0 is true and $1/n \sum_{i=1}^n g(x_i) \overline{\prod}_{i \neq i} f_0(x_i)$ if H_0 is not true. The test satisfying the criteria in display (7) will accept H_0 if

(8)
$$\max_{j} \frac{g(x_{j})}{f_{0}(x_{j})} < C_{n,\alpha}$$

and will accept H_i if

(9)
$$\frac{g(x_i)}{f_0(x_i)} = \max_{j} \frac{g(x_j)}{f_0(x_j)} \ge C_{n,\alpha}$$

where the constant $C_{n,\alpha}$ is chosen to satisfy the level α restriction. It is well known [1, p. 307] that if f_0 and g are members of a family which has monotone likelihood ratio in x, then the acceptance regions (8) and (9) become

(10)
$$x_{(n)} < C_{n,a}$$

and

(11)
$$x_i = x_{(n)} \ge C_{n,\alpha}$$

This test is often used for detecting spurious observations.

LEMMA. If $G < F_0$, and has p.d. f. g(x), the test with critical region $x_{(n)} > C_{n,a}$ is unbiased.

Proof. We know that

$$\alpha = P\{\text{rej. } H_0 \mid H_0\}$$

= $P\{(\text{accept one of the } H_i \mid H_0\}$
= $\sum_{i=1}^{n} P\{\text{acc. } H_i \mid H_0\}$
= $nP\{\text{acc. } H_1 \mid H_0\}.$

To show this test is unbiased we must show: $P\{\text{acc. } H_i \mid H_i\} \ge P\{\text{acc. } H_i \mid H_i\}, i \ne j$. First we show that $P\{\text{acc. } H_i \mid H_i\} = P\{\text{acc. } H_1 \mid H_1\} \ge P\{\text{acc. } H_1 \mid H_0\} (=\alpha/n)$. The point $C_{n,\alpha}$ is chosen so that

$$n\int_{C_{n,\alpha}}^{\infty} [F_0(x)]^{n-1} f_0(x) \, dx = \alpha.$$

We know that $P\{\text{acc. } H_1 \mid H_1\} = \int_{C_{n,\alpha}}^{\infty} [F_0(x)]^{n-1}g(x) \, dx$. Finally, the inequality

(12)
$$\int_{C_{n,\alpha}}^{\infty} [F_0(x)]^{n-1} g(x) \, dx \ge \int_{C_{n,\alpha}}^{\infty} [F_0(x)]^{n-1} f_0(x) \, dx$$

can be seen to hold by integrating both sides by parts. For j>0

$$P\{\text{acc. } H_i \mid H_j\} = \int_{C_{n,\alpha}}^{\infty} [F_0(x)]^{n-2} G(x) f_0(x) \, dx$$
$$\leq \int_{C_{n,\alpha}}^{\infty} [F_0(x)]^{n-1} f_0(x) \, dx \left(=\frac{\alpha}{n}\right)$$

Similarly, $P\{\text{acc. } H_0 \mid H_0\} \ge P\{\text{acc. } H_0 \mid H_i\}, i=1, 2, ..., n.$

ACKNOWLEDGEMENT. We wish to thank the referee for his helpful comments and suggestions.

K. S. MOUNT AND B. K. KALE

References

1. T. Ferguson, Mathematical statistics, a decision theoretic approach, Academic Press, 1967.

2. B. K. Kale, and S. K. Sinha, Estimation of expected life in the presence of an outlier observation. Technometrics, 13 (1971), 755-759.

3. E. L. Lehmann, Testing statistical hypotheses, Wiley, New York, 1959.

University of Manitoba, Winnipeg, Manitoba