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Abstract

In a general setting of an ergodic dynamical system, we give a more accurate calculation of the speed
of the recurrence of a point to itself (or to a fixed point). Precisely, we show that for a certain ξ
depending on the dimension of the space, lim infn→+∞(n log log n)ξd(T n x, x) = 0 almost everywhere and
lim infn→+∞(n log log n)ξd(T n x, y) = 0 for almost all x and y. This is done by assuming the exponential
decay of correlations and making a weak assumption on the invariant measure.
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1. Introduction

Let (X, d) be a separable metric space, let T : X→ X be a transformation and let µ be a
T -invariant Borel probability measure. The classical Poincaré lemma in such a setting
may be restated as

lim inf
n→∞

d(T nx, x) = 0 for µ-almost all x.

A natural question follows: how fast is this convergence? A partial answer was given
in a pioneering paper by Boshernitzan [2], namely,

lim inf
n→∞

n1/βd(T nx, x) < +∞, (1.1)

if the Hausdorff measure of the space satisfies Hβ(X) < +∞. Moreover, if Hβ(X) = 0,
then the lower limit equals zero.

Since then, there have been significant developments in this area, leading to the
notion of lower and upper recurrence rates, defined as

R(x) = lim inf
r→0+

log τB(x,r)(x)
−log(r)

and R(x) = lim sup
r→0+

log τB(x,r)(x)
−log(r)

,

where τU(x) is the first-return time of the point x into U and B(x, r) is the ball with
centre x and radius r.
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In several cases, those quantities are connected to the lower and upper pointwise
dimensions of the invariant measure (actually, for various systems, recurrence rates and
pointwise dimensions coincide). For a good introduction to quantitative recurrence,
see [1]. Under assumptions similar to the ones in this paper (although weaker with
respect to the measure), Urbański [9] proved the equality of recurrence rates and
pointwise dimensions.

Calculating (approximating) the limit in (1.1) may be seen as a more exact
calculation of the recurrence rate. However, this estimate can only be one sided,
because taking the upper limit in (1.1) would not make much sense. We shall prove that
if the transformation has good mixing properties (exponential decay of correlations)
and the measure of a ball is at least its radius to some power β, then

lim inf
n→+∞

(n log log n)1/βd(T nx, x) = 0.

Another way of looking at such a limit is to consider the dimension or measure of
so-called shrinking target sets, that is,

E(x, r) = {y ∈ X : d(T nx, y) < rn for infinitely many n},

where r = (rn)∞n=1 is a given decreasing sequence. For example, Persson and Rams [6]
give the formula for the Hausdorff dimension depending on (rn).

Our result applied in this setting states that, for any ε > 0 and the sequence
rn = ε · (n log log n)−1/β, the set E(x, r) has full µ-measure.

2. Basic definitions

Throughout this paper, we will assume that (X, d) is a metric space, T : X → X is a
Borel measurable map and µ is a T -invariant Borel probability measure on X.

Definition 2.1. We say that a dynamical system has an exponential decay of
correlations in Lipschitz continuous functions (denoted by L), if there exist γ ∈ (0, 1)
and C < +∞ such that, for all g ∈ L, all f ∈ L1(µ) and every n ∈ N,

|µ( f ◦ T n · g) − µ(g) · µ( f )| ≤ Cγn||g||Lµ(| f |),

where || · ||L denotes the standard Lipschitz norm.

Remark. Usually, this property is proved with respect to Hölder continuous functions
or functions of bounded variation. Our result works in both these situations. In fact,
the proof of the main theorem only uses the exponential decay for explicitly defined
Lipschitz continuous functions.

We shall now state the necessary property of a measure.

Definition 2.2. The measure µ has the β-property if there exist measurable functions
D(x) > 0 and R(x) > 0 such that, for µ-almost all x ∈ X and for all r < R(x), we have
µ(B(x, r)) ≥ D(x) · rβ.
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Let us denote the packing measure by Πβ and the packing dimension of a measure
µ by PD(µ). (For definitions, see [7, Ch. 8].)

In Euclidean space, we will prove a useful characterisation of the β-property.

Lemma 2.3. If X is a Borel bounded subset of Rn, then µ (a Borel probability measure
on X) has the β-property if and only if there exists a set A of full measure such that the
packing measure Πβ is σ-finite on A.

In particular, if Πβ is σ-finite on X, then the β-property holds for µ (in fact, for every
probability measure) and if the measure µ has the β-property, then PD(µ) ≤ β.

We will use another property of measure; this one is well known.

Definition 2.4. A measure ν is called a doubling measure, if there exist constants η > 1
and c > 0 such that ν(B(x, ηr)) ≤ cν(B(x, r)) for every x ∈ X and r > 0. It is obvious
that if a measure is doubling for some η, then it is also doubling for any η > 1.

3. Main result

We shall prove the following theorem.

Theorem 3.1. Let (X, d) be a metric space and let (X, µ,F , T ) be a Borel-probability-
measure-preserving dynamical system with an exponential decay of correlations
whose measure µ has the β-property. In addition, assume that either µ is a doubling
measure or that X is a subset of a Euclidean space. Then, for µ-almost all x ∈ X,

lim inf
n→∞

n log log n · (d(T nx, x))β = 0 (3.1)

and, for every y ∈ supp(µ) such that D(y) < +∞ and R(y) > 0 (see Definition 2.2),

lim inf
n→∞

n log log(n) · (d(T nx, y))β = 0. (3.2)

Using Lemma 2.3, we can obtain a version which is easier to apply.

Corollary 3.2. Let X be a bounded Borel subset of Rn such that the packing measure
Πβ is σ-finite on X. Let T be a mapping on X preserving a Borel probability measure
µ with an exponential decay of correlations. Then (3.1) and (3.2) hold with respect to
the metric used to define the packing measure.

4. Examples

The main result is general enough to be applicable to many different dynamical
systems. We give several classes of examples.

(1) A hyperbolic rational function of degree greater than or equal to two on the
complex sphere has an invariant probability measure which is equivalent (up to a
constant factor) to some β-Hausdorff measure, where β = HD(J f ) (see [8]). This
proves the β-property. The needed decay of correlations is another well-known
fact, so we may apply Theorem 3.1.
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(2) A piecewise expanding transformation f : [a, b]→ [a, b] with g(x) = 1/| f ′(x)|
having bounded variation admits an absolutely continuous invariant measure
whose density is of bounded variation (see [3, Theorem 5.2.1]). The density can
be redefined on a countable set to become lower semicontinuous and positive on
an open set [3, Theorem 8.1.2] and also bounded away from zero on its support,
which gives the β-property. If, in addition, the system is weakly mixing, then we
have an exponential decay of correlations in the functions of bounded variation
[3, Theorem 8.3.1]. Thus all the assumptions of Theorem 3.1 are satisfied.

(3) One can also apply the result to some conformal graph directed Markov systems
(or just to conformal iterated function systems). Definitions and necessary results
cited here may be found in [5, Ch. 4]. The systems have an appropriate conformal
measure [5, Theorem 3.2.3; check also Lemma 4.2.2] and exhibit the exponential
decay of correlations [5, Theorem 2.4.6]. The only assumption we need to check
is the β-property. All finite conformal systems have this property [5, Theorem
4.2.11], as do infinite systems with finite packing measure of the limit set. We
may also extend the result to some finite parabolic iterated function systems
[5, Ch. 8], again if the packing measure is finite. Additionally, [4, Theorem
1.6] shows that if the limit set has dimension less than or equal to one, then the
packing measure is always finite.

5. Proofs

Proof of lemma 2.3. We shall use the following volume lemma of Frostman type (see
[7, Theorem 8.6.2]). Suppose A is a bounded subset of Rn and 0 < D < +∞.

(a) If, for all x ∈ A,

lim inf
r→0

µ(B(x, r))
rβ

≤ D,

then µ(E) ≤ b(n)DΠβ(E) for every Borel subset E ⊂ A, where b(n) is a constant
depending only on the dimension.

(b) If, for all x ∈ A,

lim inf
r→0

µ(B(x, r))
rβ

≥ D,

then µ(E) ≥ DΠβ(E) for every Borel subset E ⊂ A.

We first assume the β-property holds on a set Aβ (of full measure) and we construct
a set A of σ-finite Πβ measure.

Fix λ > 0. There exists a set Aλ ⊂ Aβ and a constant Dλ > 0 such that µ(Aλ) ≥ 1 − λ
and D(x) ≥ Dλ for all x ∈ Aλ, where D(x) comes from the definition of the β-property.
Take a Borel subset Eλ ⊂ Aλ of measure µ(Eλ) = 1 − λ (µ is regular). By part (b) of
the volume lemma, Πβ(Eλ) ≤ D−1

λ µ(Eλ) < +∞. Take A =
⋃+∞

k=1 E1/k. Observing that
Πβ(E1/k) < +∞ for all k and µ(A) = 1 ends this part of the proof.
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To prove the converse, assume that the β-property does not hold. This means that
there exists a set H with µ(H) > 0 such that, for every x ∈ H,

lim inf
r→0

µ(B(x, r))
rβ

= 0.

The assumption means that we may write A =
⋃+∞

n=1 An, where Πβ(An) < +∞. Define
sets Hn = H ∩ An. Since µ(H) > 0, there exists n such that µ(Hn) > 0. Fix a Borel
subset E ⊂ Hn of positive µ measure. For any D > 0, part (a) of the volume lemma
shows that Πβ(E) ≥ (Db(n))−1µ(E) and so Πβ(E) = +∞, which is a contradiction. �

Proof of theorem 3.1. The proof of the second part of the theorem (limit with fixed y)
is contained in the first part. We will give the necessary changes in the proof.

Fix ε > 0. We will show that there exists an infinite sequence nk, such that

(nk log log nk)1/βd(T nk x, x) < ε

for all k. In the proof, we will write A′ = X \ A.
Set

rn =
ε

(n log log n)1/β

and observe that this sequence is decreasing. Define sets Cn = {x ∈ X : d(T nx, x) < rn}.
It suffices to prove that almost all x ∈ X belong to an infinite number of sets Cn. This
is equivalent to proving that

∀k>1 µ
( ∞⋃

n=k

Cn

)
= 1.

Taking the complements of the sets Cn and because the sequence of sets is monotonic,
we only need to show that, for some large W,

∀k>W µ
( ∞⋂

n=k

C′n
)

= 0.

Summing up, we want to show that

∀ε>0 ∀k>W ∀δ>0 ∃N µ
( N⋂

n=k

C′n
)
< δ. (5.1)

It should be emphasised that we will only find one (a few) such N. Certainly, it follows
that for all bigger N the statement remains true, but the method fails. The correct N
will be calculated at the end of the proof.

First, let us work with the β-property. For fixed λ > 0, there exists a measurable set
Fλ and finite positive values Dλ and Rλ such that µ(X \ Fλ) ≤ λ and D(x) ≥ Dλ for all
x ∈ Fλ and r ≤ Rλ. (For brevity, we shall write F, D, R instead of Fλ, Dλ, Rλ.) We
may assume that F is bounded and Borel. We denote by A′n the good part of C′n, that
is, A′n := C′n ∩ F.
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We will now prove (5.1) with A′n instead of C′n, which will show that almost every
point x ∈ F has the desired recurrence speed (3.1). As λ can be made arbitrary small
(so that the measure of F can be made arbitrarily close to one), this will be sufficient.

Fix some N (presumably quite large) and cover the set F with balls of radius 1
2 rN

centred in the set F. We need this covering to have the property
∑

i µ(B(xi, rN)) ≤ α,
where α does not depend on N.

Lemma 5.1. If X is Euclidean space or if the measure is doubling, then, for any Borel
set F ⊂ X, there exists a covering of F by balls B(x, r) of equal radius, centred at F
such that

∑
µ(B(x, 2r)) ≤ α, where α does not depend on r.

Proof. If the measure is doubling, then we take any covering of F by B(xi,
1
5 r), where

xi ∈ A ⊂ F for a set A. Using the Vitali 5r-lemma, there is a set A′ ⊂ A such that
{B(xi, r)}i∈A′ is a covering while the balls {B(xi,

1
5 r)}i∈A′ are disjoint. Set α = c[logη 10],

where c and η come from the definition of the doubling measure. We easily estimate∑
i∈A′

µ(B(xi, 2r)) ≤ α
∑
i∈A′

µ
(
B
(
xi,

1
5

r
))
≤ αµ(X) ≤ α.

If X = Rd, we take a maximal r-separated set E ⊂ F. Maximality means that⋃
i∈E B(x, r) is a covering. Also, there exists a constant α (depending only on d) such

that E can be decomposed as a union E =
⋃α

k=1 Ek, where each set Ek is a 2r-separated
set. This can be seen by dividing the space into boxes of side 2r and dividing each of
those boxes into 4d boxes of sides 1

2 r. Take any ordering of the small boxes (from 1
to 4d) in each big box. Put all points from E that belong to the first of the small boxes
(in any big box) into E1, those in the second small box into E2, and so on. As every
small box has at most one of the points from E and the distance between boxes with
the same number is equal to 2r, this is enough. So for i, j ∈ Ek, the sets B(xi, 2r) and
B(x j, 2r) are disjoint, giving the estimate∑

i∈E

µ(B(xi, 2r)) =

α∑
k=1

∑
i∈Ek

µ(B(xi, 2r)) ≤
α∑

k=1

µ(X) ≤ α. �

This covering will be called B. By definition, B = {B(xi,
1
2 rN)}Mi=1 for some xi ∈ F,

where M depends on ε, N and λ. Put Bi = B(xi,
1
2 rN).

We will need the inclusion

A′n ∩ Bi ⊂ Bi ∩ T−nB′(xi,
1
2 rn). (5.2)

We prove this by the following sequence of simple implications (where we use the
triangle inequality, the monotonicity of rn and the fact that n ≤ N).

y ∈ A′n ∩ B(xi,
1
2 rN) =⇒ d(T ny, y) > rn and d(xi, y) < 1

2 rN

d(xi,T ny) + d(xi, y) ≥ d(y,T ny) =⇒ d(xi,T ny) ≥ d(y,T ny) − d(xi, y)

=⇒ d(xi,T ny) ≥ rn −
1
2 rN ≥

1
2 rn,
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and the last inequality proves (5.2). Summing over the covering,

A′n =

M⋃
i=1

Bi ∩ A′n ⊂
M⋃

i=1

Bi ∩ T−nB′
(
xi,

1
2

rn

)
,

giving an estimate for the measure of the set in (5.1) with C′n replaced by A′n, namely,

µ
( N⋂

n=k

A′n
)
≤ µ

( M⋃
i=1

(
Bi ∩

N⋂
n=k

A′n
))
≤

M∑
i=1

µ
(
Bi ∩

N⋂
n=k

T−nB′
(
xi,

1
2

rn

))
. (5.3)

At this point, we note that the proof of the second part of the theorem is similar
(with return to a fixed point y), but with the following changes.

(i) Instead of the whole covering with Bi, we just take sets B(y, 1
2 rn), that is, the only

centre is x1 = y.
(ii) Instead of Dλ, Rλ, we take D(y) and R(y).

Although the proof follows that of the first part, it can, in fact, be simplified, for the
following reasons.

(a) We do not need the set Fλ, so that part of the proof may be removed.
(b) The covering B consists only of one set so we do not really need it at all.
(c) This means that we can skip the subsequent part of the proof involving the bound

on N.
(d) This, in turn, simplifies the estimates on the sum at the end of the proof

(Lemma 5.2) because the series is infinite instead of finite.

Now let us define two classes of Lipschitz functions: gn,i(z) approximating the
characteristic function of the ball B(xi, rn) and hn,i(z) approximating the characteristic
function of the complement B′(xi, rn). These functions depend on a parameter κ > 1,
radius r > 0 and x ∈ X. First, we define the auxiliary functions

φr,κ(t) =


1 for 0 ≤ t ≤ r,
r−κ(r + rκ − t) for r ≤ t ≤ r + rκ,
0 for t ≥ r + rκ,

ψr,κ(t) =


0 for 0 ≤ t ≤ r − rκ,
r−κ(t − r + rκ) for r − rκ ≤ t ≤ r,
1 for t ≥ r.

The approximating functions are gn,i(z) = φ(1/2)rn,κ(d(z, xi)), hn,i(z) = ψ(1/2)rn,κ(d(z, xi)).
These functions have a Lipschitz constant equal to(1

2
rn

)−κ
=

(2
ε

)κ
(n log log n)κ/β

and Lipschitz norm ||g||L = ||h||L = 1 + 2κ(rn)−κ ≤ 3κ(rn)−κ (for rn small enough).
From this point on, we will assume that

3κCr−κN γ
k ≤ DrβN , (5.4)
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which, after transformation, gives a bound on N by

rN ≥

(
3κ

C
D
γk

)1/(κ+β)
. (5.5)

Take N to be the largest integer which satisfies the inequality (5.5). Setting E := Bi
and F :=

⋂N−k
n=0 T−nB′(xi,

1
2 rn+k) leads to the key estimate

µ
(
Bi ∩

N⋂
n=k

T−nB′
(
xi,

1
2

rn

))
= µ(1E · 1F ◦ T k) ≤ µ(gN,i · 1F ◦ T k). (5.6)

Using the exponential decay of correlations and then assumption (5.4), the above is

≤ µ(gN,i)µ(F) + µ(F) ·Cγk · 3κr−κN ≤ µ(F)
(
µ(B(xi, rN)) + DrβN

)
.

Then, from the β-property and D(xi) ≥ D, we arrive at the estimate that the above
quantity is

≤ µ
( N−k⋂

n=0

T−nB′
(
xi,

1
2

rn+k

))
· 2µ(B(xi, rN)).

Applying this to (5.3),

µ
( N⋂

n=k

A′n
)
≤

M∑
i=1

2µ(B(xi, rN)) · µ
( N−k⋂

n=0

T−nB′
(
xi,

1
2

rn+k

))
.

Because of the way in which we defined our covering (Lemma 5.1), we can estimate
the measure further by

µ
( N⋂

n=k

A′n
)
≤ 2α sup

1≤i≤M
µ
( N−k⋂

n=0

T−nB′
(
xi,

1
2

rn+k

))
.

Thus it suffices to show (with the condition set on N) that

µ
( N−k⋂

n=0

T−nB′
(
xi,

1
2

rn+k

))
<

δ

2α
for i = 1, . . . ,M. (5.7)

Fix any i. We will show that, for N = N(k), which is the largest integer satisfying the
inequality (5.5), the measure of the set in equation (5.7) tends to zero as k→∞. This
will complete the proof.

Now, define a function l(p) as the smallest number satisfying the inequality

γl(p)C · 3κr−κp ≤
D

2 · 4β
rβp. (5.8)

Transforming this inequality gives the formula for l(p),

l(p) =
(κ + β)
log(γ)

log(rp) −logγ
(4β3κ · 2C

D

)
. (5.9)
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Next, define a finite sequence a j by the recurrence scheme

a0 = k,
a j+1 = a j + l(a j).

The sequence ends at Ω (depending on N) such that aΩ+1 > N ≥ aΩ. Clearly,

µ
( N⋂

n=k

T−nB′
(
xi,

1
2

rn

))
≤ µ

( Ω⋂
j=0

T−a j B′
(
xi,

1
2

ra j

))
.

We proceed to deal with the set on the right-hand side as in the sequence of inequalities
starting with (5.6) (the only difference is that we take the function h instead of g). For
brevity, set B′ = B′(xi,

1
2 ra0 ). Then

µ
( Ω⋂

j=0

T−a j B′
)

= µ
(
T−a0 B′ ∩

Ω⋂
j=1

T−a j B′
)

= µ
(
B′ ∩

Ω⋂
j=1

T−a j+a0 B′
)

= µ(B′ ∩ T−l(a0)F1), (5.10)

where F1 =
⋂Ω

j=1T−a j+a1 B′. Using again the decay of correlations and then the
definition of l in (5.8),

µ(B′ ∩ T−l(a0)F1)
= µ(1B′ · 1F1 ◦ T l(a0)) ≤ µ(ha0,i · 1F1 ◦ T l(a0))
≤ µ(F1) · (Cγl(a0)||ha0,i||L + µ(ha0,i))

≤ µ(F1) · (Cγl(a0)3κr−κa0
+ µ(ha0,i)) ≤ µ(F1) ·

( D
2 · 4β

rβa0 + µ(ha0,i)
)
. (5.11)

Now we repeat the calculation (5.10), but this time for F1, giving

µ(F1) = µ
( Ω⋂

j=1

T−a j+a1 B′
)

= µ
(
B′ ∩

Ω⋂
j=2

T−a j+a1 B′
)

= µ(B′ ∩ T−l(a1)F2),

where F2 =
⋂Ω

j=2T−a j+a2 B′. Repeating (5.11) yields

µ(B′ ∩ T−l(a1)F2) ≤ µ(F2) ·
( D
2 · 4β

rβa1 + µ(ha1,i)
)
.

Repeating those two calculations for a1, a2 . . . aΩ,

µ
( Ω⋂

j=0

T−a j B′
(
xi,

1
2

ra j

))
≤

Ω∏
j=0

(
µ(ha j,i) +

D
2 · 4β

rβa j

)

≤

Ω∏
j=0

(
µ
(
B′

(
xi,

1
4

ra j

))
+

D
2 · 4β

rβa j

)

≤

Ω∏
j=0

(
1 − D

(ra j

4

)β
+

D
2 · 4β

rβa j

)
≤

Ω∏
j=0

(
1 −

D
2 · 4β

rβa j

)
.
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The penultimate inequality follows from the β-property (definition of D). The only
thing remaining to prove is that

Ω∑
i=0

D
2 · 4β

rβa j → +∞ as k→∞.

We state this below as a separate technical lemma. It follows that the measure of the
intersection may be arbitrary small, which ends the proof of Theorem 3.1. �

Lemma 5.2. For any D > 0 and ε > 0 (note that Ω and the sequence (a j) depend on k),

lim
k→+∞

Ω∑
i=0

D
2 · 4β

rβa j = lim
k→+∞

Dεβ

2 · 4β

Ω∑
i=0

1
a j log log a j

= +∞.

Proof. We begin by simplifying the conditions on N (5.5) and l(p) (5.9). Write
a = γ−β/(κ+β) > 1. After using the definition of rn and collecting all the constants into
one number Z, (5.5) becomes N log log N) ≥ Zak, which, by simple estimates, gives

N(k) ≥ Z̃
ak

log(k)
. (5.12)

We may take N(k) equal to the right-hand side above (after rounding to an integer).
Doing the same for (5.9) yields (with another constant called S )

l(p) = loga(p) + loga(log log p) − S .

For clarity, let us assume that every logarithm is to base a and written just as log (this
just changes the constants). The elements of the sequence a j are contained in the
interval [k,N(k)]. Divide this interval into subintervals In = [ank, an+1k], where n takes
values 0, 1, . . . , M. It is easy to estimate M, that is, the number of the last subinterval,
because aMk ≤ N ≤ aM+1k, which, after applying the definition of N (5.12), becomes

M ≈ k −log k −log log k + S̃ . (5.13)

On each subinterval In, we can estimate the function l(p) from above by

l(p) ≤ l(an+1k) = n + log k + log log(n + log k) + Ŝ .

This means that the number of elements a j in In is not less than
length of interval In

increment of a j on In
≥

ank

n + log k + log log(n + log k) + Ŝ
.

Now we can estimate the sum from below by estimating on each In separately.
Ω∑

i=0

1
a j log log a j

≥

M∑
n=0

(number of a j in interval In) · (min of (a j log log a j)−1 in In)

≥

M∑
n=0

ank

n + log k + log log(n + log k) + Ŝ
·

1
an+1k log(n + log k)

≥
1
a

M+blog kc∑
n=dlog ke

1

n + log log n + Ŝ

1
log n

.
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Dropping the negligible constants a and Ŝ , using the integral approximation and
ignoring the floor and ceiling notation (which changes the value by at most ±1) shows
that the sum is

≥ log log(M + log k) −log log log(M + log k) − log log(log k) + log log log(log k).

Finally, by inserting the estimate for M (5.13), we see that the sum is

≥ log log(k −log log k) − log log log(k −log log k) −log log log k + log log log log k,

and this expression goes to +∞ as k→ +∞. �
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