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Arithmetic D-modules on the unit disk

Richard Crew

With an appendix by Shigeki Matsuda

Abstract

Let V be a complete discrete valuation ring of mixed characteristic. We classify
arithmetic D-modules on Spf(V[[t]]) up to certain kind of ‘analytic isomorphism’. This
result is used to construct canonical extensions (in the sense of Katz and Gabber) for
objects of this category.

Introduction

Let k be a perfect field of characteristic p > 0, and V a complete discrete valuation ring of mixed
characteristic with residue field k and fraction field K. This paper has two related objectives:
on one hand, to classify holonomic FD†-modules on Spf(V[[t]]) up to isomorphism; on the other
hand, to construct a theory of ‘canonical extensions’ in the sense of Katz and Gabber for these
objects.

Neither problem is tractable as posed, since there are far too many arithmetic FD†-modules
on Spf(V[[t]]). For example, if M = V[[t]]⊗V K has the D†-module structure given by the
constant connection, then there are infinitely many nonisomorphic extensions of M by itself (the
isomorphism classes of extensions are given by the de Rham cohomology of M) and infinitely
many of these have a Frobenius structure. This shows the difficulty of finding a classification,
and also indicates that there can be no such thing as a canonical extension in this situation.

On the other hand, Matsuda [Mat02] gave a classification of quasi-unipotent isocrystals on
the Robba ring R, and constructed a theory of canonical extensions for them. Roughly speaking,
what makes Matsuda’s result possible is thatR has finite-dimensional de Rham cohomology. This
suggests that the natural object of study is a suitable localization of the category of holonomic
FD†-modules; roughly speaking, we should want to extend scalars from O = V[[t]] to the subring
Oan ⊂K[[t]] of power series convergent for |t|< 1.

This localization is constructed in § 5. Denote by D† Berthelot’s ring of arithmetic differential
operators on V[[t]]. We will construct a flat D†-algebra Dan, the ring of analytic differential
differential operators on V[[t]]. The category of coherentD†-modules up to analytic isomorphism is
the category whose objects are coherent D†-modules, but morphisms are given by Hom(M, N) =
HomDan(Dan ⊗D† M,Dan ⊗D† N). If M is an F -isocrystal on Rb, then Dan ⊗D† M is isomorphic
toR⊗Rb M , an F -isocrystal onR; thus a classification of holonomic FD†-modules up to analytic
isomorphism will include a classification of F -isocrystals on R.

Our classification is modeled on Malgrange’s classification [Mal91] of germs of holonomic
D-modules at a point of a complex curve. In the regular singular case, they are classified by
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R. Crew

pairs of finite-dimensional C-vector spaces (V, W ) endowed with a pair of maps c : V →W ,
v :W → V (the ‘canonical’ and ‘variation’ maps) such that 1 + uv is an automorphism.
The spaces V , W are respectively the spaces of hyperfunction and microfunction solutions of
the D-module, or, alternatively, the spaces of nearby cycles and vanishing cycles of the dual
module. In the irregular case, the classification requires supplementary data (Stokes structure)
on the space of hyperfunction solutions. We will find a similar picture for holonomic FD†-
modules, except that the Stokes structure is replaced by a Galois action, and there is a Frobenius
structure in addition. In the case of F -isocrystals on Rb (which are quasiunipotent by the p-
adic monodromy theorem) we recover Matsuda’s classification. Finally, the techniques behind
the classification allow us to construct a theory of canonical extensions for the holonomic FD†-
modules up to analytic isomorphism.

The first two sections of this paper describe the classification of F -isocrystals on R, following
methods of Fontaine rather than Matsuda, since Fontaine’s procedure is more closely related to
our classification of holonomic FD†-modules. The next section reviews briefly Berthelot’s theory
of arithmetic D-modules, and gives some explanation of how his theory is to be adapted to the
formal scheme Spf(V[[t]]), which falls slightly outside his framework. It also reviews some results
of [Cre06] on the preservation of holonomy by cohomological operations in the one-dimensional
case. Section 5 is devoted to the construction properties of the D†-algebra Dan and the category
of coherent D†-modules up to analytic isomorphism. As an application we give a construction of
i+M when M is a holonomic FD†-module on Spf(V[[t]]) and i is the closed immersion defined by
the divisor t= 0. We show, finally, that certain cohomological operations such as the holonomic
dual, and the inverse image functors i+, i! extend to the analytic category.

The classification itself is carried out in §§ 6 and 7. In § 6 we associate, to any holonomic
FD†-module M , a pair of finite-dimensional vector spaces V(M), W(M) over the maximal
unramified extension Knr of K, endowed with various supplementary data: a ‘canonical’ map
V(M)→W(M), a ‘variation’ map W(M)→ V(M), a Frobenius, and a Galois action, all
satisfying various compatibilities. We call the category of such objects the category of solution
data since the definition of the functors V and W is modeled on the spaces of hyperfunction
and microfunction solutions in Malgrange [Mal91]. The main result of § 6 is that the functor
M 7→ S(M) = (V(M),W(M)) is exact. In § 7, we show how to construct a holonomic FD†-module
M(S) from a solution datum S. For any solution datum S we have S ' S(M(S)), but a holonomic
FD†-module M is not in general isomorphic to M(S(M)). It is here that we need to use the
analytic category: M and M(S(M)) are analytically isomorphic (i.e. their extensions to Dan are
isomorphic).

The last section of this paper is a theory of canonical extensions for holonomic FD†-modules
up to analytic isomorphism. First, we show how to associate a holonomic FD†-module on P1/K
to any solution datum S, whose restriction to Spf(V[[t]]) (viewed as the completion of the local
ring at 0 ∈ P1/V) is isomorphic to M(S); this is basically an extension of the methods of § 7.
We then characterize the holonomic FD†-modules on P1 that arise in this way, and then show
that the restriction functor is an equivalence. As an application, we construct a local Fourier
transforms in the manner of Malgrange [Mal91] and Laumon [Lau87].

0.1 Notation and terminology

Throughout this paper, V is a complete mixed characteristic discrete valuation ring of
characteristic (0, p) with maximal ideal m, perfect residue field k, and fraction field K. Choose
once and for all a power q of p such that k contains the field with q elements, and a lifting σ of
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Arithmetic D-modules on the unit disk

the qth-power Frobenius of k to V and K. We also fix a local field F ' k((t)) of characteristic p,
with integer ring A' k[[t]] and residue field k. Fix a lifting O ' V[[t]] of A and an isomorphism
O ⊗V k 'A. Note that t denotes both a local parameter of A and an element of O, and to
increase the confusion we will sometimes use t to denote Spec(A); in context the meaning will
be clear.

As always, the Robba ring R relative to O is the ring of formal Laurent series in t with
coefficients in K, convergent in some annulus r < |t|< 1. The bounded Robba ring Rb ⊂R is the
subring of bounded elements (i.e. represented by formal Laurent series with bounded coefficients,
or equivalently the elements of R representing functions that remain bounded as |t| → 1; some
authors denote this by E†K), while the integral Robba ring R0 is the set of elements of R with
integral coefficients. It is known to be a Henselian discrete valuation ring, having as a uniformizer
any uniformizer of V, and with fraction field Rb (see [Mat95] and the appendix to this paper
for the Henselian property). Finally, we denote by Oan ⊂R the subring of power series over K
convergent for |t|< 1.

We denote by A0 the p-adic completion of R0 or of O[t−1]; this is the ring of formal Laurent
series

∑
n∈Z ant

n with an ∈ V and an→ 0 as n→−∞, and is a Cohen ring for k((t)). The fraction
field of A0 will be denoted by A; it is sometimes called the Amice ring. Note that Rb is naturally
a subring of A, but there is no containment relation between A and R.

We denote by G= Gal(F sep/F ) the absolute Galois group of F , and by I ⊂G the inertia
subgroup; thus G acts on the maximal unramified extension Knr of K via its quotient G/I '
Gal(ksep/k). We will say that a G-module M is discrete if the G-action is continuous for the
discrete topology on M , or, equivalently, if M = lim−→H

MH where H runs throughout the directed
system of open normal subgroups of G. If V is a Knr-vector space of finite dimension and a
discrete G-module, there is an open normal subgroup H ⊆G such that V ' V H ⊗(Knr)H K

nr as
Knr-vector spaces. To see this, it suffices to choose a Knr-basis of V , and an open normal H that
fixes every element of the basis.

Certain common tensor products will be denoted by subscripting, e.g. MQ for M ⊗Z Q and
MK for M ⊗V K.

In any category, the morphisms Hom(V, W )→Hom(V, W ′) and Hom(V ′, W )→Hom(V, W )
induced by f :W →W ′ and g : V → V ′ will be written f∗ and g∗ respectively.

Modules over a noncommutative ring are left modules, unless otherwise indicated.

1. p-adic hyperfunctions

We begin by observing that once the V-algebra O has been fixed, all of the constructions in
the last paragraph (relative to F ) are determined up to canonical isomorphism. For example,
Oan is the function algebra of the rigid analytic space X canonically attached to the adic formal
scheme Spf(O) (for the topology defined by the maximal ideal; see [Ber96b, 0.2.6]), while R is
the direct limit lim−→U

Γ(X − U,OX) where U ⊂X runs through affinoid subspaces. Finally the
bounded Robba ring Rb ⊂R is the subset of functions bounded on some X − U , U affinoid, and
the integral Robba ring R0 ⊂Rb is the set of power-bounded elements of Rb for the natural
topology induced by R (for this latter, and for the characterization of the bounded elements,
see [Cre98, § 5, especially Lemma 5.2]).

We will consider pairs u= (F (u),O(u)) where F (u)/F is a finite separable extension, and
O(u) is a formally smooth lifting of the integer ring A(u) of the discretely valued field F (u), i.e. a
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power series ring with coefficients in some finite unramified integral extension V(u) of V. In this
situation we define R(u), Rb(u), K(u), and so forth to be the analogues relative to the pair u of
the various rings constructed in § 0.1. The letter t will denote the ‘base pair’ (F,O). A morphism
of pairs u→ v will be a pair consisting of an F -algebra homomorphism F (u)→ F (v), and an
R0-algebra homomorphism R0(u)→R0(v) reducing modulo the maximal ideal of V to the given
map F (u)→ F (v). Note that a morphism u→ v induces ring homomorphisms Rb(u)→Rb(v),
R(u)→R(v), but not necessarily O(u)→O(v) or Oan(u)→Oan(v).

If F (u)/F is a finite extension we denote by H(u)⊆G the open subgroup corresponding to
F (u); if in addition F (u)/F is normal, we denote by G(u) the Galois group of F (u)/F , so that
G(u)'G/H(u). When F (u)/F is Galois the action of G(u) on F (u) and A(u) lifts uniquely to
R0(u), Rb(u), and R(u); this follows from the Henselian property of R0. The action does not
always lift to O(u) or Oan(u); see [Cre87, 3.5] for an analogous case.

Lemma 1.0.1. If F (u)/F is Galois with group G(u), and R(u)/R, Rb(u)/Rb are the
corresponding ring extensions, then R(u)G =R and (Rb(u))G =Rb.

Proof. For the case of Rb(u)/Rb, which is an unramified extension of discretely valued fields
with residue field extension L/K, this is clear; alternatively, one can deduce it from the case of
R(u), using the equality Rb(u) ∩R(u)G = (Rb(u))G.

Denote by X, Y the open unit disks |t|< 1, |u|< 1, so that R→R(u) corresponds to a
finite map π : Y →X. For any interval I ⊆ [0, 1) with rational endpoints we denote by XI the
rigid-analytic subspace of X defined by |t| ∈ I, and we set YI = π−1(XI). Finally, denote by RI
(respectively R(u)I) the function algebras of XI (respectively YI). We then have

R= lim−→
r→1−

R[r,1), R(u) = lim−→
r→1−

R(u)[r,1)

and for r < 1 sufficiently close to 1, G acts on Y[r,1) with quotient X[r,1) (cf. [Cre87, 3.5]). Since
the quotient map is finite étale, we have R(u)G[r,1) =R[r,1) by standard descent theory, and since
the functor of G-invariants is exact, we find R(u)G =R. 2

1.1 Stable Robba rings
We now formally adjoin a logarithm of t to R, following a method of Fontaine [Fon94]. Denote
by R1 ⊂ (R0)× the subgroup of units congruent modulo the maximal ideal of V to an element
of k[[t]] with constant term 1. For f ∈R1, the usual power series for the logarithm defines a
homomorphism log :R1→Rb, where

log(f) =
∑
n>0

(−1)n+1 (f − 1)n

n
. (1.1.1)

Since k is perfect, there is a canonical embedding of the Witt vector ring W (k) ↪→V inducing
the identity on the quotient rings. Thus if we set R] =K×R1, we can extend the log map (1.1.1)
to a homomorphism log :R]→Rb by requiring that log p= 0 and log x= 0 whenever x is the
Teichmuller lifting of an element of k×.

We now consider the category C whose objects are pairs (S, λ) where S is an Rb-algebra,
and λ : (Rb)×→ S is a homomorphism extending log :R]→Rb. Morphisms (S, λ)→ (S′, λ′)
in C are Rb-algebra homomorphisms S→ S′ sitting in the obvious commutative diagram. Since
(Rb)× = tZ · R], it is clear that this category has an initial object (Rb,st, log), and that Rb,st is
a polynomial ring over Rb in one variable, which can be taken to be log t for any choice of local
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parameter t of O. The universal property asserts the existence and uniqueness, for any (S, λ)
in C, of the dotted arrow in the diagram

R]
log //

��

Rb

��

��

(Rb)×
log //

λ ,,

Rb,st

!!
S

(1.1.2)

making it commutative. Finally we setRst =R⊗Rb Rb,st; sinceR× =Rb,× we can set log :R×→
R equal to the composite of the universal log :Rb,×→Rb with the identification R× =Rb,×. As
before we have Rst 'R[log t] non-canonically, and we could of course have defined Rst directly
in this manner, but this construction makes it clear that Rst is determined canonically by the
original choice of O. The usefulness of this will be evident shortly.

The module of relative one-forms Ω1
Rb,st/Rb is free of rank one, generated by d log t. If t′

is any other choice of local parameter, we have t= ut′ with u ∈R], and thus log t and log t′

differ by an element of Rb which is killed by the exterior derivative d :Rb,st→ Ω1
Rb,st/Rb , so

that d log t= d log t′. It follows that there is a canonical Rb-derivation NR :Rb,st→Rb,st of Rst

defined by NR(log t) = 1. By extension of scalars we get a canonicalR-derivation NR :Rst→Rst.
In either case NR will be called the canonical monodromy operator; it will be important later
that it is surjective.

Set ∂ = d/dt and denote by D the ring R[∂] of (usual) differential operators with coefficients
in R. The canonical D-module structure of R extends to Rst via the formula

∂ log t=
1
t

(1.1.3)

(note that this definition is independent of the choice of parameter). It is clear that NR commutes
with ∂, and so respects the D-module structure. Similarly, if we set Db =Rb[∂], then the
Db-module structure of Rb extends to Rb,st as before, and NR is a Db-module endomorphism.

Suppose finally that ϕ :R0→R0 is a lifting of the qth-power Frobenius map of F , and let ϕ
also denote its (unique) extensions to Rb and R. Since ϕ preserves the set of Teichmuller liftings
of elements of k×, it commutes with the logarithm log :R]→Rb. Denote by ϕ∗Rb,st the ring
Rb,st viewed as an algebra over itself via ϕ; since ϕ commutes with the inclusion R]→ (Rb)×,
the pair (ϕ∗Rb,st, log ◦ ϕ) belongs to the category C. Denoting by i :Rb→Rb,st the structure
morphism and applying the universal property (1.1.2) yields a commutative diagram

R]
log //

��

Rb

i

�� i◦ϕ

��

(Rb)×
log //

log◦ϕ ,,

Rb,st

ϕ

##
Rb,st

(1.1.4)

in which the commutative triangle on the right shows that the dotted arrow marked ϕ is indeed
an extension of ϕ :Rb→Rb, while the commutative triangle on the bottom shows that this
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extension commutes with log : (Rb)×→Rb,st. By extension of scalars we get an extension of
ϕ to Rst commuting with the logarithm. Explicitly, if t is a lifting of a local parameter, then
ϕ(t) = tqu for some u ∈R1, and the extension is determined by

ϕ(log t) = log(ϕ(t)) = q log t+ log u.

Since NR(log u) = 0 we find that NRϕ(log t) = qNR(log t) = q, and the Rb-linearity of NR yields

NRϕ= qϕNR (1.1.5)

on Rb,st and Rst.

If u= (F (u),O(u)) is a pair of the sort defined above, then we can define Rst(u) relative
to R(u) just as before. Since R(u)0 is a finite étale R0-algebra, the lift ϕ of Frobenius extends
uniquely to R0(u), Rb(u), and R(u) (though not necessarily to O(u)), and for the same reason
the Db-module structure of Rb (respectively R) extends uniquely to Rb(u) (respectively R(u)).

The universal property of Rb→Rb,st shows that the composite

R] −→R](u)
log−−−→R(u)b,st

factors through an R-algebra homomorphism

Rb,st −→Rb,st(u) (1.1.6)

and we have the following proposition.

Proposition 1.1.1. The Rb-algebra homomorphisms

Rb(u)⊗Rb Rb,st −→Rb,st(u),
R(u)⊗R Rst −→Rst(u)

induced by (1.1.6) are isomorphisms, and if Nt and Nu denote the canonical monodromy
operators of Rst and Rst(u), then Nu|R= (deg(F (u)/F ))Nt.

Proof. In R0(u), we have

t= aung(u)

with a ∈K(u), g ∈R1(u), and n= deg(F (u)/F ). Therefore

log t= n log u+ (element of Rb(u)),

and the assertion follows easily. 2

It follows, in particular, that Rst is canonically identified with a (ϕ, N)-stable subring of
Rst(u). From Proposition 1.1.1 and Lemma 1.0.1, we see that if G(u) is the Galois group
of F (u)/F , then

(Rb,st(u))G(u) =Rb,st and (Rst(u))G(u) =Rst. (1.1.7)

We note, finally, that since Rb(u) is an étale Rb-algebra, the Db-module structure on Rb
extends uniquely to a Db-module structure on Rb(u), and by (1.1.3) it extends to Rb,st(u) as
well; similar considerations show that there are natural D-module structures onR(u) andRst(u).
Explicitly, the inclusion Rb→Rb(u) corresponds to an expression for t= t(u) as a power series
in u, such that t′(u) is invertible in Rb(u); then the Db-module structure on Rb(u) is determined
by ∂f(u) = f ′(u)t′(u)−1, where the prime denotes differentiation with respect to u.
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1.2 Hyperfunctions
If u→ v is a morphism of pairs, then the induced map R(u)→R(v) extends by Proposition 1.1.1
to anR-algebra homomorphismRst(u)→Rst(v). Since the category of pairs u has a small cofinal
subcategory, we can define the rings of hyperfunctions B and bounded hyperfunctions Bb by

B = lim−→
u

Rst(u) and Bb = lim−→
u

Rb,st(u). (1.2.1)

From the preceding discussion, the following properties are clear.

– The ring Bb (respectively B) has a natural Db-module (respectively D-module) structure,
and the natural maps Rb,st(u)→Bb, Rst(u)→B are morphisms of differential modules.

– The canonical monodromy operators of Rst,b and Rst induce derivations NB : Bb→Bb,
NB : B →B which are surjective morphisms of differential modules.

– The map ϕ extends to ϕ : Bb→Bb, ϕ : B →B, and the extension satisfies NBϕ= qϕNB.

– The absolute Galois group G of F acts on Bb and B, and we have (Bb)H(u) =Rb,st(u) and
BH(u) =Rst(u) (recall that H(u)⊆G is the open subgroup of G corresponding to F (u)/F ).
It follows that the action of G on Bb and B is discrete in the sense of § 0.1.

Lemma 1.2.1. There are canonical isomorphisms HomD(R, B) =Knr and ExtiD(R, B) = 0 for
i > 0.

Proof. Since R has the free resolution D ∂−−→D we have RHom(R, B) = [B ∂−−→B], so we must
show that ∂ is surjective, with kernel Knr. Since B is the inductive limit of the Rst(u), it suffices
to prove that ∂ is surjective on Rst(u), with kernel K(u). As above we have ∂f(u) = f ′(u)t′(u)−1.
This makes it clear that Ker ∂ =K(u), and that ∂ will be surjective if the endomorphism f 7→ f ′

of R(u)[log u] is so. In fact, u−1(log u)n is obviously integrable, and for any formal Laurent series
f(u) with no term u−1, f(u)(log u)n can be integrated by repeated integration by parts. 2

If we put

Rb,stn (u) = KerNn
R|Rst,b(u), Rst

n (u) = KerNn
R|Rst(u) (1.2.2)

then Rb,stn (u) is a finite free Rb(u)-module, and in fact is a finite free Rb-module since Rb(u) is
itself finite free over Rb; the same goes for Rst

n (u). They are stable under the action of G, ϕ,
and NR. Note that Rst

0 =R and Rst,b
0 =Rb. We can also define Bn = KerNn+1

B |B, and then
B0 = lim−→u

R(u). Finally, since B = B0[log t], we have

Bb = lim−→
n

Bbn = lim−→
u,n

Rb,stn (u) and B = lim−→
n

Bn = lim−→
u,n

Rst
n (u). (1.2.3)

2. F -isocrystals on R

2.1 An application of the monodromy theorem
As always, an isocrystal on R is a pair (M,∇) consisting of a finite free R-module M and a
connection ∇ :M →M ⊗ Ω1

R/K (or equivalently a D-module structure on M). An F -isocrystal
on R is a triple (M,∇, F ) where (M,∇) is an isocrystal onR and F is a Frobenius structure, i.e. a
ϕ-linear isomorphism F : ϕ∗M →M commuting with ∇. Morphisms of isocrystals (respectively
F -isocrystals) are R-linear maps horizontal for the connections (respectively and commuting
with the Frobenius structure). The category of isocrystals on R (respectively F -isocrystals on
R) will be denoted Isoc(R) (respectively F -Isoc(R)). We will often omit explicit mention of ∇
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and F , and speak, for example, of ‘the F -isocrystal M ’. Later on we will need the notion of
an F -isocrystal on Rb (respectively on the Amice ring A), which is a finite-dimensional Rb-
vector space (respectively A-vector space) endowed with a connection and a Frobenius structure
as above.

The structure of quasi-unipotent isocrystals on R was determined by Matsuda [Mat02],
and his results can be combined with the p-adic monodromy theorem of André, Kedlaya and
Mebkhout [And02, Ked04, Meb02] to obtain a classification of F -isocrystals on R. Here we
will use a more direct approach based on ideas of Fontaine; the essential ideas are doubtless
well known by now but it will nonetheless be useful to go through it in some detail, if only to
establish notation.

One form of the monodromy theorem asserts that for any F -isocrystal M there is a finite
separable extension F (u)/F such that the D-module M ⊗R Rst(u) has a full set of horizontal
sections. Equivalently, there is a finite-dimensional Knr-vector space V and an isomorphism
M ⊗R B ' V ⊗Knr B (in the terminology of Fontaine [Fon94], M is B-admissible) and we can
recover V as the Knr-space of horizontal sections V ' (M ⊗R B)∇, which is then endowed
with a discrete Galois action, a Frobenius action, and a nilpotent operator, all coming from
the corresponding structures on B. However, for the purposes of § 6, it is more convenient to
work with a contravariant formulation than a covariant one, so we proceed as follows: for any
F -isocrystal M on R, we set

V(M) = HomD(M, B) (2.1.1)

and observe that the mononodromy theorem implies that

HomR(M, B)' V ⊗Knr B

for some finite-dimensional Knr-vector space V whose dimension is the rank of M . Taking
horizontal sections yields an isomorphism V 'HomD(M, B), so we may rewrite the above as

HomR(M, B)' V(M)⊗Knr B (2.1.2)

which is a canonical isomorphism of D-modules. The left-hand side is endowed with a ϕ-linear
isomorphism, a linear endomorphism arising from the canonical monodromy, and an action of
the Galois group G arising from the action of G on B. The right-hand side is endowed with
corresponding maps and actions, and as these are compatible with the D-module structure, we
see that V = V(M) is naturally endowed with the following structures:

(i) a σ-linear isomorphism F : V → V ;

(ii) a linear endomorphism N : V → V satisfying NF = qFN (because of the NBϕ= qϕNB in
B); and

(iii) an action ρ of the Galois group G that is semilinear with respect to the natural action of
G on Knr, and discrete in the sense of § 0.1.

The relation NF = qFN implies that N decreases the slopes of F , and since V has
finite dimension this means that N is nilpotent. The Galois action is discrete because
HomD(M,Rst(u))' V ⊗Knr Rst(u) for some finite extension t→ u.

We denote by ModK(G, F, N) the category of objects (V, F, N, ρ), V being a Knr-vector space
of finite dimension endowed with F , N , ρ satisfying conditions (i)–(iii). Thus (2.1.1) defines a
functor

V : F − Isoc(R)−→ModK(G, F, N). (2.1.3)
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Later on we need the category ModK(G, F ) consisting of triples (V, F, ρ) with V , F , ρ as above;
it can be considered a full subcategory of ModK(G, F, N) consisting of objects with N = 0.

Suppose now that V = (V, F, n, ρ) is an object of ModK(G, F, N), and set

M(V ) = HomKnr(V, B)G,N (2.1.4)

where the ( )G,N denotes the intersection of the G-invariants with the kernel of N∗ −NB∗, where
NB∗ and N∗ are the induced actions of NB and N . This is evidently an R-module, endowed with
a connection and Frobenius structure. For later use we define the Rb-module

Mb(V ) = HomKnr(V, Bb)G,N (2.1.5)

which likewise is an Rb-module with connection and Frobenius.

Lemma 2.1.1. For any V in ModK(G, F, N), M(V ) (respectively Mb(V )) is an F -isocrystal
on R (respectively Rb).

Proof. It suffices to show that Mb(M) is a finite-dimensional Rb-vector space, since M(V ) =
Mb(V )⊗Rb R. We first observe that in (2.1.4) and (2.1.5), the G-action factors through some
finite quotient G(u) attached to some finite extension F (u)/F . By (1.1.7), we have

Mb(V ) = HomKnr(V,Rst,b(u))G(u),N

for this u. Furthermore Nn = 0 on V for some n, so we have

Mb(V ) = HomKnr(V,Rst,b
n (u))G(u),N

where Rst,b
n (u) is defined by (1.2.2). Since Rst,b

n (u) is a finite-dimensional Rb-vector space, we
see that the same is true for Mb(V ). 2

It is clear that the construction V 7→M(V ) defines a functor

M : ModK(G, F, N)→ F − Isoc(R) (2.1.6)

and our goal is to show that the functors (2.1.3) and (2.1.6) are inverse equivalences.

Lemma 2.1.2. Suppose V and W are Knr-vector spaces with a discrete G-action. If V has finite
dimension, HomKnr(V, W ) is discrete.

Proof. Since V has finite dimension there is an open normal subgroup H ⊆G such that
V ' V H ⊗(Knr)H K

nr. Via the adjunction isomorphism we can identify an f ∈HomKnr(V, W )
with a (Knr)H -linear map f : V H →W ; since H is normal in G, V H is G-stable and the action
of G on f is (σf)(v) = σ(f(σ−1(v))). If v1, . . . , vr is a basis of V H , there is an open normal
subgroup H ′ ⊆G fixing each of the f(vi), and then that f is fixed by the open normal subgroup
H ∩H ′. Since f was arbitrary, the action of G on HomKnr(V, W ) is discrete. 2

The category of Knr-vector spaces with a discrete G-action is abelian, and the functor of
G-invariants is exact. This is actually a general fact about the category of K-vector spaces with
a discrete G-action, where G is any profinite group and K is a field of characteristic 0. The
exactness of the functor of G-invariants is of course well known if G is finite, and in general it
follows from the isomorphisms

H i(G, V ) = lim−→
H

H i(G/H, V H) = 0 for i > 0.

We will need the following elementary observation.
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Lemma 2.1.3. If N and A are elements of an associative algebra such that N is nilpotent and
A has a right inverse commuting with N , then A−N has a right inverse.

Proof. If AB = I and BN =NB, then NB is nilpotent, I −NB is invertible, and the right
inverse is B(I −NB)−1. 2

Lemma 2.1.4. The functors V, M are exact.

Proof. We first consider V. Since M is a free R-module, there are isomorphisms

Ext1D(M, B) = Ext1D(R,HomR(M, B)) = Ext1D(R, V(M)⊗Knr B).

Since Ext1D(R, B) = 0 by Lemma 1.2.1, Ext1D(M, B) = 0 for any M in F -Isoc(R), and the
exactness of (2.1.6) follows.

As for the functor M, we first observe that the functor V 7→HomKnr(V, B) on K-vector
spaces is exact. We claim that V 7→HomKnr(V, B)N is exact; recall that HomKnr(V, B)N denotes
the kernel of N∗ −NB∗ on HomKnr(V, B). As NB has a right inverse on B, NB∗ has a right
inverse on HomKnr(V, B) which commutes with N∗. By Lemma 2.1.3, N∗ −NB∗ is surjective
on HomKnr(V, B) for any V , and a simple argument using the snake lemma shows that
V 7→HomKnr(V, B)N is exact. By Lemma 2.1.2 the G-action on HomKnr(V, B) is discrete; then
HomKnr(V, B)N is a discrete G-module, and consequently V 7→HomKnr(V, B)N,G = V(M) is
exact.

Theorem 2.1.1. The functors (2.1.3), (2.1.6) are inverse equivalences of categories.

Proof. The canonical isomorphism (2.1.2) can be rewritten

M∨ ⊗R B = V(M)⊗Knr B.

Since this has been shown for all M , and V(M∨)' V(M)∨ canonically, we get

M ⊗R B = HomKnr(V(M), B)

and thus
M = HomKnr(V(M), B)G,N = M(V(M))

since BG,N =R.
Suppose, on the other hand, that V is an object of ModK(G, F, N). We want to show

that the canonical map ev : V 7→ V(M(V )) given by evaluation is an isomorphism for all V .
By Lemma 2.1.4 the functor V 7→ V(M(V )) is exact, so it is enough to check that V 7→ V(M(V ))
is an isomorphism for irreducible objects V . When (V, F, N, ρ) is irreducible, N = 0 and ρ is an
irreducible representation of G. For such V we have

M = HomKnr(V, B)G,N = HomKnr(V, B0)G = HomKnr(V,R(u))G(u)

for some F (u)/F . As in the proof of Lemma 2.1.1, this M arises from

M b = HomKnr(V,Rb(u))G(u) (2.1.7)

by extension of scalars from Rb to R. Since Rb(u) is an étale extension of Rb, there is an
isomorphism

Rb(u)⊗Rb Rb 'Rb[G(u)]
of Galois bimodules; here the Galois action in (2.1.7) corresponds to the standard action on the
group ring, while the other is the natural action of G(u) on the scalars. Extending scalars to B,
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we see that there are isomorphisms

B ⊗RM 'HomKnr(V, B[G(u)])G(u) 'HomKnr(V, B)

which imply that V(M)' V .

Corollary 2.1.1 (Matsuda [Mat02]). An indecomposable F -isocrystal on R is the tensor
product of a twist of a unit-root isocrystal corresponding to an irreducible representation of G,
and an indecomposable unipotent F -isocrystal.

Remark . Actually, Matsuda in [Mat02] treats the slightly more general case of isocrystals on R
which are not assumed to have a Frobenius structure, but which are assumed to be quasi-
unipotent.

3. D†-modules on Spf(V[[t]])

Berthelot’s theory of arithmetic D-modules is set in the context of a scheme X smooth over a
base S on which p is nilpotent, or of a smooth morphism X→S of p-adic formal schemes. As
such it does not apply to Spf(V[[t]]) with the adic topology defined by the maximal ideal of V[[t]];
nonetheless Berthelot’s theory extends virtually without modification to this case. The purpose
of this section is to review some aspects of this theory, and explain when needed the modifications
for the case of Spf(V[[t]]). A more complete summary of these ideas can be found in [Ber02b],
and the full story is in [Ber96a, Ber02a] and work of Berthelot currently in preparation.

3.1 Arithmetic differential operators

If S is a Z(p)-scheme and X/S is smooth, then module D(m) of partially divided power differential
operators of level m is the direct limit

D(m) = lim−→
n

HomOX (Pn(m),OX) (3.1.1)

where Pn(m) is the divided power neighborhood of level m and order n of the diagonal X ⊂
X ×S X, and the Hom is taken with respect to the left OX -algebra structure (cf. [Ber96a, 2.2.1]
for this). A D(m)-module structure on an OX -module M is the same as an m-PD-stratification,
i.e. a compatible collection of isomorphisms

Pn(m) ⊗OX M
∼−−→M ⊗OX P

n
(m) (3.1.2)

which restrict to the identity on the diagonal and satisfy a cocycle condition (see [Ber96a,
2.3.1–2]). For example, M =OX has an natural D(m)-module structure for all m, corresponding
to the identity in (3.1.2). It is by means of this description that one proves that the structure
sheaf of certain blowups of X have a natural D(m)-module structure.

Lemma 3.1.1. Suppose f ∈ Γ(X,OX) and

B(f, r) =OX [T ]/(f rT − p), C(f, r) =OX [T ]/(pT − f r). (3.1.3)

If pm+1 divides r, then the natural D(m)-module structure on OX extends to B(f, r) and C(f, r)
compatibly with the OX -module structure. If m′ >m and pm

′+1 divides r, then the natural
D(m)-module structure on B(f, r) and C(f, r) coincides with the restriction of the
natural D(m′)-module structure. Finally, for any multiple r′ = ar of r, the morphisms B(f, r)→
B(f, r′), C(f, r′)→ C(f, r) induced by T 7→ faT are D(m)-linear.
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Proof. For B(f, r) this is [Ber96a, 4.2.1], so we shall just sketch the proof. We can reduce to the
universal case X = Spec(Z(p)〈t〉) and f = t. The condition on m guarantees that there is a level
m divided power polynomial ϕ(m)(s, t) such that tr − sr = pϕ(m)(s, t) and ϕ(m)(t, t) = 0. If we
set P = Pn(m), then we can identify P ⊗OX B(t, r) and B(t, r)⊗OX P with OP [T ]/((1⊗ tr)T − p)
and OP [T ]/((tr ⊗ 1)T − p) respectively, and similarly for C(t, r). With these identifications, the
stratification is given by

T 7→ T (1 + Tϕ(m)(t⊗ 1, 1⊗ t))−1

in the case of B(t, r), and

T 7→ T + ϕ(m)(t⊗ 1, 1⊗ t)

in the case of C(f, r); for B(f, r) the map is a well-defined isomorphism since ϕ(m)(s, t) is
nilpotent in Pn(m), and for C(f, r) this is obvious. The cocycle condition follows from the identity

ϕ(m)(s, t) + ϕ(m)(t, u) = ϕ(m)(s, u), the above maps restrict to the identity on the diagonal since
ϕ(m)(t, t) = 0. The remaining assertions are just as in [Ber96a]; we will just remind the reader
that the linearity of the maps B(f, r)→B(f, r′), C(f, r′)→ C(f, r) follow from the homogeneity
of ϕ(m). 2

We are mainly interested in the case S = Spf(V), X = Spf(V[[t]]); here the B(t, r) are used in
defining the rings of differential operators with overconvergent coefficients, and the C(t, r) will
be used to construct the analytification functor and the ring Dan in § 5.

If S is a p-adic formal Zp-scheme and X/S is smooth, we set Si = Z/pi+1Z⊗S, Xi =
Z/pi+1Z⊗ X, and

D̂(m)
X = lim←−

i

D̂(m)
Xi/Si

, D̂(m)
XQ = D̂(m)

X ⊗Q.

A D̂(m)-module structure on a p-adically complete and separated OX-module M is the same as
a formal level m stratification

Pn(m) ⊗̂OX
M

∼−−→M ⊗̂OX
Pn(m), (3.1.4)

just as before.

Both D̂(m)
X and D̂(m)

XQ are noetherian. The ring D†XQ of overconvergent differential operators
is the direct limit

D†XQ = lim−→
m

D̂(m)
XQ

and is coherent, but not noetherian.

When X = Spf((V/pnV)[[t]]), we modify Pn(m) in the definition (3.1.1) by taking X ×S X to
be the product in the category of (t)-adic formal schemes. The remaining constructions are
unchanged. In the case of X = Spf(V[[t]]) we will drop the subscripts, at least until § 8, and write
D̂(m), D̂(m)

Q , and D† for D̂(m)
X , D̂(m)

XQ , and D†XQ (this differs from the notation of [Ber96a], where

D†X is a proper subring of D†XQ). Since V[[t]] is noetherian, the proof that D̂(m) is noetherian
works in the present case without modification. If ∂ is the element of D(m) dual to dt and ∂[k] is
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the usual divided-power differential operator (1/k!)∂k, then these rings are

D̂(m) =
{∑
k>0

ak∂
[k]

∣∣∣∣ ak ∈ O, and ak is divisible by [k/pm]!
}

D† =
{∑
k>0

ak∂
[k]

∣∣∣∣ ak ∈ OK , and there exist positive constants C,
η < 1 such that |ak|6 Cηk for all k

} (3.1.5)

where | | is the p-adic valuation. Note, in the first equality, that the condition [k/pm]!|ak implies
ak→ 0 as k→∞.

The same construction can be made for X = Spf(A0) where A0 has the p-adic topology.
The resulting rings analogous to those in (3.1.5) will be denoted by D̂(m)

A0 and D†A respec-
tively; they are given explicitly by formulas like (3.1.5), but now ak is element of A0 or A
respectively. There are natural O-algebra homomorphisms D̂(m)

A0 → D̂(m), D†→D†A.

Suppose X is a formally smooth p-adic formal scheme and Z ⊂ X is a closed subset defined by
a section f ofOX. Let us briefly recall the construction of the ring D†XQ(Z) of differential operators

with overconvergent singularities around Z (in [Ber96a] this is denoted D†XQ(†Z)). By (3.1.3),
the ring B(f, pm+1) has a natural D(m)-module structure, so that B(f, pm+1)⊗OX

D(m) has a
natural OX-algebra structure. Denote by D̂(m)(Z)Q its p-adic completion, tensored with Q. For
variable m, the D̂(m)(Z)Q naturally form an inductive system, and one defines

D†XQ(Z) = lim−→
m

D̂(m)(Z)Q

which like D†XQ is a coherent, but not noetherian, OXQ-algebra. Up to canonical isomorphism,
it depends only on the reduction of Z modulo the uniformizer of V; in particular, this
construction globalizes (though we shall not need this). When X = Spf(V[[t]]), f = t, we modify
the construction as before, and write D†(0) for D†XQ(Z). An argument parallel to [Ber96a, 4.3.11]

shows that D†(0) is a left and right flat D†-algebra. Finally, the ring D†A is naturally a D†(0)-
algebra, thanks to the inclusion homomorphism Rb→A.

3.2 Coherent D†-modules

A coherent D†-module arises by extension of scalars D̂(m0)→D† from some coherent D̂(m0)-
module M (m0). If for m>m0 we set M (m) = D̂(m) ⊗D̂(m0) M (m0), then M ' lim−→m

M
(m)
Q , and

this observation would suffice for the construction, in the next section, of the analytification of a
coherent D†-module. It is technically more convenient, however, to start with a construction on
the level of derived categories, and for this we need Berthelot’s description in [Ber02b, § 4.2] of
Dbcoh(D†) as a localized inductive limit. There is no point in going into the details of this rather
elaborate construction, but a few points should be mentioned.

We denote by Db(D̂(·)) the (bounded) derived category of the category of inductive systems
M (·) where each M (m) is a D̂(·)-module and the transition maps M (m)→M (m+1) are semilinear
with respect to D̂(m)→ D̂(m+1). Berthelot applies two successive localizations to Db(D̂(·)) to
obtain a category LD−→

b
Q(D̂(·)) and a functor lim−→ : LD−→

b
Q(D̂(·))→Db(D†) extending the usual

direct limit. The full subcategory LD−→
b
Q,coh(D̂(·)) of LD−→

b
Q(D̂(·)) consists of objects isomorphic

in LD−→
b
Q(D̂(·)) to an M (m) for which there exists an increasing λ : N→ N with λ(m) >m such
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that the following properties hold.

(i) The D̂(·)-module M (m) is an object of Db
coh(D̂(λ(m))).

(ii) For every m′ >m, the canonical map

D̂(λ(m′)) L⊗D̂(λ(m)) M
(m)→M (m′)

is an isomorphism.

Finally, Berthelot shows [Ber02b, 4.2.4] that the functor (⊗ZQ) ◦ lim−→ induces an equivalence of
categories (by an abuse of notation, denoted here simply by lim−→)

lim−→ : LD−→
b
Q,coh(D̂(·)) ∼−−→Db

coh(D†). (3.2.1)

Of course, if M is a coherent D†-module and M (m0) is a coherent D̂(m0)-module such that
M 'D† ⊗D̂(m0) M

(m0)
Q , then the inductive system {D̂(m) ⊗D̂(m0) M (m0)} (considered as a complex

whose only nonvanishing term is in degree zero) is an object of LD−→
b
Q,coh(D̂(·)) whose image under

lim−→ : LD−→
b
Q,coh(D̂(·))→Db

coh(D†) is M .

3.3 F -Isocrystals on Rb

The differential module structure of an isocrystal M on Rb does not, in general, extend to a
D̂(m)-module structure for any m. However, if M is solvable in the sense of Robba (i.e. the
generic radius of convergence of the connection on the circle |t|= r approaches one as r tends
to 1, cf. [CM02, §§ 4.1 and 8.3]), then the differential module structure extends to a D†(0)-
module structure, and makes M into a coherent D†(0)-module. The argument is the same as
that of [Ber90, § 3.1] and [Ber96a, § 4.4] with no particular modifications. Nonetheless some of
the constructions of [Ber96a, § 4.4] will be needed later, so we will briefly recall them.

With B(f, r) as in (3.1.3), we set

B(m) = B̂(t, pm+1), B
(m)
Q =B(m) ⊗Q, (3.3.1)

where the hat denotes the p-adic completion, and, for any n>m,

D̂(n,m) =B(n) ⊗̂OX
D̂(m), D̂(n,m)

Q = D̂(n,m) ⊗Q (3.3.2)

(the condition on n is necessary to get an action of D̂(m) on B(n)). It will also be useful to set

D̂(m)(0) = D̂(m,m) (3.3.3)

so that

D†(0)' lim−→
m

D̂(m)(0)Q. (3.3.4)

For n>m the maps B(m)→B(n), D̂(m)→ D̂(n) induce maps

D̂(m)(0) = D̂(m,m)→ D̂(n,m)→ D̂(n,n) = D̂(n)(0),

and thus for any increasing λ : N→ N such that λ(m) >m there is a natural isomorphism

D†(0)' lim−→
m

D̂(λ(m),m)
Q . (3.3.5)

If M is a solvable isocrystal on Rb, the argument of [Ber96a, Theorem 4.4.5] with the
solvability condition in place of the overconvergence condition of [Ber96a, § 4.4] shows that we
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can find the following:

– a n0 ∈ N and a B(n0)-module M0 of finite type;

– an isomorphism

lim−→
n>n0

B
(n)
Q ⊗M0

∼−−→M ; (3.3.6)

– an increasing function λ : N→ N such that λ(0) = n0 and λ(m) >m; and

– a D̂(λ(m),m)-structure on B(λ(m)) ⊗M0 such that the natural homomorphisms

B(λ(m)) ⊗̂M0→B(λ(m+1)) ⊗M0

and the isomorphism (3.3.6) are D̂(λ(m),m)-linear.

Set M (m) =B(λ(m)) ⊗M0, so that M (0) 'M0. The argument of [Ber96a, 4.4.6–4.4.11] shows
that the canonical morphism

M
(m)
Q −→ D̂(λ(m),m)

Q ⊗D̂(λ(0),0) M
(0) (3.3.7)

is an isomorphism. Combining the isomorphisms (3.3.5) and (3.3.7), we get an isomorphism

M
∼−−→D†(0)⊗D̂(λ(0),0) M

(0) (3.3.8)

by passing to the limit in m. This is the essential step in showing that M is a coherent
D†(0)-module [Ber96a, Theorem 4.4.12]. If we set D̂(∞,0) = lim−→m

D̂(m,0), then (3.3.8) yields an
isomorphism

M
∼−−→D†(0)⊗D̂(∞,0) M. (3.3.9)

On the other hand, an argument parallel to [Ber96a, 4.4.9] and [Ber90, 3.1.3] shows that the
canonical map

M −→ D̂(∞,0) ⊗Db M
is an isomorphism, where, as before, Db =Rb[∂]. From (3.3.9) we then obtain a natural
isomorphism

M
∼−−→D†(0)⊗Db M, (3.3.10)

for any F -isocrystal M on Rb.
If (M, F ) is an F -isocrystal onRb, then M is known to be solvable in the above sense ([CM02,

Proposition 8.16]; this is the analogue for Rb of the well-known ‘Dwork trick’, but is considerably
more difficult), so M is naturally a coherent D†(0)-module. In fact, in this case the restriction
of scalars of M to D† is coherent as a D†-module, as was shown in [Cre06].

There is no analogue of this last result for F -isocrystals on A, and we just define a convergent
F -isocrystal on A to be an F -isocrystal whose differential module structure is induced by a D†A-
module structure.

3.4 Cohomological operations on FD†-modules
Let ϕ be a lifting to X of the q-power Frobenius of the reduction of X, where q is a fixed power
of p, and recall that a Frobenius structure relative to ϕ on a D†-module M is an isomorphism
M

∼−−→ ϕ∗M of D†-modules. An FD†-module on X is a D†-module equipped with a Frobenius
structure, and morphisms of FD†-modules are defined in the obvious way; the category of FD†-
modules on X is independent of the choice of ϕ. The presence of a Frobenius structure allows
one to define the characteristic variety of an FD†-module [?, § 5.2], and Berthelot has proven
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an analogue of Bernstein’s inequality, enabling him to define the notion of a holonomic FD†-
module. The definition is a bit involved and will not be given here. It is unknown whether there
is a reasonable definition of characteristic variety in the case of D†-modules without Frobenius
structure. As in the classical case, the holonomy condition is essential for the preservation
of coherence under the standard cohomological operations f+, f+, f!, f ! on F -complexes of
D†-modules, although it is still a matter of conjecture whether these operations actually preserve
holonomy.

The cohomological operations mentioned above are constructed in [?] and described
in [Ber02b, §§ 2–4]. Relative to X = Spf(V[[t]]) they have fairly simple explicit descriptions, similar
to the classical case.

Consider first the closed immersion i : 0→ X defined by the divisor t= 0 in the formal scheme
X = Spf(V[[t]]). A holonomic module on 0 is just a finite-dimensional K-vector space V endowed
with a Frobenius action, and i+V ' i!V can be identified simply with V ⊗K δ, where δ is the
‘Dirac’ D†-module Rb/OK . On the other hand, if M is a holonomic FD†-module on X, i!M is
given by

i!M
∼−−→ [M t·−−→M ] (3.4.1)

where the complex is supported in degrees [0, 1]. In general, the holonomicity of extraordinary
inverse images is still an open problem, but for formally smooth formal curves over V, such as
Spf(V[[t]]), this was proven in [Cre06] (the case of a proper, formally smooth curve was treated
by Caro [Car06b]). It was shown in [Cre06, Theorem 2.2] that the functor i+ on holonomic
FD†-modules can be computed by

i+M ' RHomD†(M
∗,Oan) (3.4.2)

where M∗ is the holonomic dual of M (see below). We will give another, simpler version of this
formula later, in § 5. Finally, it was shown in [Cre06, 2.2] that for any holonomic FD†-module M ,
the spaces Exti(M,Oan) have finite dimension, so that i+ preserves holonomy as well.

There are several operations relative to the inclusion j : η = Spec(k((t)))→ Spec(k[[t]]) of
the generic point, even though we are regarding Spf(O) as a formal scheme. Two of these
operations could be called restriction to the generic point, namely the extensions of scalars
j∗M =D†A ⊗D† M and j+M =D†(0)⊗D† M of a D†-module M , which, when M is a coherent
D†-module, are coherent modules over D†A and D†(0) respectively. Of these two constructions,
j+ will be the more useful one.

When (M, F ) is a holonomic FD†-module, one can show without too much difficulty that
j∗M is a convergent F -isocrystal on A (see [Ber10]); this is a variant of the argument showing
that a holonomic FD†-module whose characteristic variety is the 0-section of the cotangent
bundle is a convergent F -isocrystal, cf. [Ber02b, § 5.2, Remark]. A more difficult result states
that when (M, F ) is holonomic, j+M is an F -isocrystal on Rb. For this one needs a result of
Berthelot [Ber07] which in the present situation says that when M is a coherent D†(0)-module
such that D†A ⊗D†(0) M is a convergent isocrystal on A, M is an isocrystal onRb. If now (M, F ) is
a holonomic FD†-module, j+M =D†(0)⊗D† M is a coherent D†(0)-module, and D†A ⊗D†(0) j

+M
can be identified with j∗M , which as before is a convergent F -isocrystal on A, so it follows that
j+M is an isocrystal on Rb.

On the other hand an F -isocrystal on Rb can be viewed (since it is Robba-solvable, cf. 3.3) as
a D†(0)-module with Frobenius structure, and the extension of scalars D†A ⊗D†(0) M is holonomic,
as it can be shown to be a convergent F -isocrystal on A. We are therefore justified in simply
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defining the category of holonomic FD†-modules on η to be the category of F -isocrystals on Rb,
and regarding the functor j+ as a functor from the category of holonomic FD†-modules on X to
the category of holonomic FD†-modules on η.

Finally, if M is a holonomic FD†-module on η, i.e. an F -isocrystal on Rb viewed as D†(0)-
module, the direct image j+M is defined to be the restriction of scalars of M by D†→D†(0); it is
known to be a holonomic FD†-module on X (see [Cre06, Theorem 3.1]). With these definitions,
(j+, j+) is an adjoint pair.

We will say that a holonomic FD†-module M on X = Spf(V[[t]]) is punctual if it has the form
M = i!V ' V ⊗K δ for some F -isocrystal V on K; conversely, it is easily checked that any such
module is holonomic. Using the localization triangle [Ber02b, 5.3.6]

i!i
!M −→M −→ j+j

+M
+1−−−→, (3.4.3)

we see that M is punctual if and only if j+M = 0 (this is a special case of the arithmetic
version [Ber02b, 5.3.3] of Kashiwara’s theorem).

We will say that a holonomic FD†-module M on X = Spf(V[[t]]) is of connection type if the
natural map M → j+j

+M is an isomorphism, or in other words the natural map

M −→D†(0)⊗D† M

is an isomorphism. The localization triangle (3.4.3) shows that i!M = 0 is an equivalent condition.
Here we are following (roughly) the terminology of [Mal91]; note, for example that the D†-module
OK , regarded as a free OX-module with connection, is not of ‘connection type’.

From the localization triangle (3.4.3) we see that, for any holonomic FD†-module M , there
are exact sequences

0−→N1 −→M −→ M̃ −→ 0
0−→ M̃ −→ j+j

+M −→N2 −→ 0
(3.4.4)

with N1, N2 punctual; we will call this the standard devissage of M (this is a very special case
of a more general devissage constructed by Caro, cf. [Car06a]).

For any coherent D†-module M (or more generally, perfect complex of D†-modules), the
dualizing functor is given by

D(M) = RHomD†(M,D† ⊗ ω−1
X )[1]

(normally one translates by the dimension of X; cf. [Ber02b, 4.3.10]; in the formal case we should
translate by the rank of Ω1

X/V rather than by the dimension of X as a formal scheme). Now
any holonomic FD†-module on Spf(V[[t]]) has cohomological dimension one (again, the rank of
Ω1

X/V ; cf. Virrion [Vir00]) so for M a holonomic FD†-module on Spf(V[[t]]) we have D(M)'M∗

for some holonomic FD†-module M∗, the so-called holonomic dual of M . The functor M 7→M∗

defines an autoequivalence of the category of FD†-modules (cf. [Vir00]).

4. The ring of analytic differential operators

In this section we construct the analytification of an object of Db
coh(D†) and the ring of analytic

differential operators Dan. We show furthermore that Dan is a left and right flat D†-algebra, and
that the analytification functor is the derived tensor product with Dan.
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4.1 Analytification
Recalling that O = V[[t]], we set for any positive integers r, n

Or,n =O[T ]/(pn, pT − tr) and Or = lim←−
n

Or,n 'O〈T 〉/(pT − tr).

By (3.1.3), Or,n has a natural D(m)-module structure if r is divisible by pm+1; it is determined
by the condition that the ∂[k] annihilate pT − tr:

∂[k]T = p−1

(
r

k

)
tr−k for k 6 pm. (4.1.1)

(the condition on r implies that these binomial coefficients are divisible by p). It follows that if
M is a D̂(m)-module, then Or,n ⊗OM has a natural D̂(m)-module structure.

Since D̂(m) is left and right flat over O, a projective D̂(m)-module is O-flat. Thus if
M · is an object of Db(D̂(m)), a choice of quasi-isomorphism P ·→M · with P · a complex of
projective D̂(m)-modules yields an isomorphism

R lim←−
n

Or,n
L
⊗OM · 'R lim←−

n

Or,n ⊗O P · (4.1.2)

in D(O). Since O and R lim←− have finite homological dimension, the above complex is actually in
Db(O). On the other hand, the previous paragraph shows that R lim←−n Or,n ⊗O P

· is naturally a

complex of D̂(m)-modules, so in the end we see that R lim←−n Or,n
L
⊗OM · is naturally an object of

Db(D̂(m)).

Lemma 4.1.1. If M is a D̂(m)-module of finite type, then

H i

(
R lim←−

n

Or,n
L
⊗OM

)
Q

=

{
(Or ⊗̂OM)Q i= 0,
0 i 6= 0.

(4.1.3)

Proof. The p-torsion submodule of M is also of finite type, so we can reduce to the cases where
M is either p-torsion or p-torsion free. In the first case M is annihilated by a fixed power of p, the

same is true for the H i(R lim←−n Or,n
L
⊗OM), and everything in (4.1.3) is zero. If M is p-torsion-

free, then

Or,n
L
⊗OM ' [O〈T 〉/pn ⊗OM

pT−tr−−−−−→O〈T 〉/pn ⊗OM ],
and consequently

R lim←−
n

Or,n
L
⊗OM ' [O〈T 〉 ⊗̂OM

pT−tr−−−−−→O〈T 〉 ⊗̂OM ]. (4.1.4)

The right-hand side of (4.1.4) is the p-adic completion of

[O[T ]⊗OM
pT−tr−−−−−→O[T ]⊗OM ],

and, since M has no p-torsion, multiplication by pT − tr is injective on O[T ]⊗OM . It is then
injective on O〈T 〉 ⊗̂OM , and we find

H i

(
R lim←−

n

Or,n
L
⊗OM

)
=

{
Or ⊗̂OM i= 0,
0 i 6= 0.

2

Remark . If M is a D̂(m)-module of finite type, the O-submodule M ⊂MK defines a Banach
norm on MK , and the equivalence class of the norm (and the resulting topology on MK) is
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independent of M in the following sense: if M ′ ⊂MK is a D̂(m)-submodule of finite type such
that MK =M ′K , then M and M ′ define equivalent norms. We can assume that M and M ′ are
p-torsion free and identify them with D̂(m)-submodules of MK . Since M and M ′ are finitely
generated D̂(m)-modules, there are positive integers a, b such that paM ⊆M ′ and pbM ′ ⊂M ,
and the equivalence of norms follows. Now, in the terminology of [Bos84, ch. 2], OK is a Banach
K-algebra and (Or)K is a normed OK-module, and we can identify (Or ⊗̂OM)Q with the
completed tensor product (Or)K ⊗̂OK MK of normed OK-modules. It follows that (Or ⊗̂OM)Q
is functorial in MK , not just in M ; this point will be important in the proof of Proposition 4.1.2.

The proof of Lemma 4.1.1 shows that there is a second way of making R lim←−n Or,n
L
⊗OM ·

into an object of Db(D̂(m)) when M · is an object of Db(D̂(m)). In fact, equation (4.1.1) defines a
D(m)-module structure on O[T ] and O〈T 〉, and since (pn, pT − tr) is a regular sequence in O[T ],
the associated Koszul complex K ·r,n is a resolution of Or,n by flat O-modules. By (4.1.1) it is
also a resolution by D(m)-modules, so

R lim←−
n

Or,n
L
⊗OM · 'R lim←−

n

K ·r,n ⊗M · (4.1.5)

is naturally an object of Db(D̂(m)), and is in fact is isomorphic to the construction (4.1.2).
Suppose now M · is an object of Db(D̂(n,m)). Since D̂(n,m) is not a flat O-algebra (neither is

B(n)), we cannot use (4.1.2) to construct R lim←−n Or,n
L
⊗OM · as an object of Db(D̂(n,m)). We can,

however, use a combination of the two constructions (4.1.2) and (4.1.5). In fact, if P ·→M · is a
quasi-isomorphism with P · a complex of projective D̂(n,m)-modules (bounded above), then

R lim←−
n

Or,n
L
⊗OM · 'R lim←−

n

K ·r,n ⊗ P · (4.1.6)

by (4.1.5). Since a projective D̂(n,m)-module is p-torsion free, the same argument that led
to (4.1.4) shows that

R lim←−
n

Or,n
L
⊗OM · ' [O〈T 〉 pT−tr−−−−−→O〈T 〉] ⊗̂O P ·. (4.1.7)

We now observe that if P (respectively Q) is a D̂(m)-module (respectively D̂(n,m)-module) then
P ⊗̂O Q has a natural D̂(n,m)-module structure. It follows that the right-hand side of (4.1.7) is
naturally an object of D−(D̂(n,m)).

In any case the argument of Lemma 4.1.1 is valid when M is a D̂(n,m)-module of finite type;
in fact for such M it is still true that if M is p-torsion, it is annihilated by a power of p. The
rest of the argument does not appeal to the D̂(n,m)-module structure of M .

Let M be an object of Db
coh(D†). As in § 3, M ' lim−→m

M
(m)
Q for some object M (·) of

LD−→
b
Q,coh(D̂(·)). We define

Man = lim−→
m

(
R lim←−

r

(
R lim←−

n

Or,n
L
⊗OM (m)

)
⊗Q

)
(4.1.8)

where it is understood that r→∞ in such a way that vp(r)→∞ as well, so that (R lim←−n Or,n
L
⊗O

M (m)) is naturally an object of Db(D̂(m)) for r� 0. It follows that the right-hand side of (4.1.8)
is naturally an object of Db(D†). Note that the right-hand side of (4.1.8) is independent of the
choice of M (·). In fact, an ind-isogeny M (·)→N (·) of D̂(·)-modules (cf. [Ber02b, 4.2.1]) induces
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for all m> 0 isomorphisms(
R lim←−

n

Or,n
L
⊗OM

)
Q

∼−−→
(
R lim←−

n

Or,n
L
⊗O N

)
Q

in Db(D̂(m)), and these are compatible with the localization [Ber02b, 4.2.2]. It follows that if
M (·)→N (·) is an isomorphism in LD−→

b
Q,coh(D̂(·)), the induced map Man→Nan is an isomorphism

in Db(D†).
Although the construction (4.1.8) looks like a hopeless tangle of interwoven direct and inverse

limits, we will show that M 7→H0(Man) induces an exact functor on the category of coherent
D†-modules. The following variant of the standard Mittag–Leffler criterion ought to be well-
known; it is in any case an immediate consequence of [Gro61, Remark 13.2.4].

Lemma 4.1.2. Suppose (Aα) is an inverse system of complete metrizable topological groups
whose transition maps fαβ :Aβ →Aα satisfy the following condition: for every α there is a β > α
such that for all γ > β, fαγ(Aγ) is dense in fαβ(Aβ). Then R1 lim←−α Aα = 0.

(Note that the hypothesis in [Gro61, Remark 13.2.4] of uniform continuity is automatic here.)

Lemma 4.1.3. If M is a coherent D†-module and M = lim−→m
M (m), then

H i(Man) =

lim−→
m

(
lim←−
r

(
Or ⊗̂OMQ

(m)

))
i= 0,

0 i 6= 0.
(4.1.9)

Proof. If M = lim−→m
M (m), then Lemma 4.1.1 shows that

Man = lim−→
m

(
R lim←−

r

(Or ⊗̂OM (m))Q

)
.

Each (Or ⊗̂OM (m))Q has the structure of a Banach space, and, for r < r′, the image
of (Or′ ⊗̂OM (m))Q→ (Or ⊗̂OM (m))Q is dense. Therefore R1 lim←−r((Or ⊗̂OM

(m))Q) = 0 by
Lemma 4.1.2, and by ‘Roos’s theorem’ the Ri lim←−r vanish for i > 1. The result follows from
the exactness of inductive limits. 2

The last lemma justifies writing Man for H0(Man) when M is a coherent D†-module, which
we shall do from now on. In the particular case M =D† we write

Dan = H0((D†)an)

= lim−→
m

(
lim←−
r

(Or ⊗̂O D̂(m))Q

)
(4.1.10)

and observe that it has a natural structure as a D†-algebra; we will call it the ring of analytic
differential operators. Explicitly, it is

Dan =
{∑

k

ak∂
[k]

∣∣∣∣ ak ∈ Oan and there is an η < 1 such that for all positive r < 1,
there exists a Cr > 0 such that |ak|r 6 Crη

k

}
(4.1.11)

where |a|r denotes the supremum norm on the disk |t|6 r.
Note that the D†-module structure of Man extends naturally to a Dan-module structure, and

accordingly we will view M 7→Man as a functor from the category of coherent D†-modules to
the category of (left) Dan-modules. It should be clear that similar constructions hold for right
D†-modules.
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We can now prove the main result of this section.

Theorem 4.1.1. The D†-algebra Dan is left and right flat, and for any D†-module M of finite
presentation there are natural isomorphisms

Dan
L
⊗D† M

∼−−→Dan ⊗D† M
∼−−→Man. (4.1.12)

Proof. Choose a presentation

(D†)r −→ (D†)s −→M −→ 0

of M . By Lemma 4.1.3, the functor M 7→Man is exact on the category of coherent D†-modules,
so we have

(Dan)r −→ (Dan)s −→Man −→ 0

and this implies the last isomorphism of (4.1.12). However, this means that the functor
M 7→ Dan ⊗D† M is exact on the category of D†-modules of finite presentation, which implies
that Dan is flat as a right module. The proof that it is flat as a left module is similar.

The corresponding results for coherentD†(0)-modules are proven similarly and will just sketch
the results. A construction parallel to that of § 3.2 produces a category LD−→

b
Q,coh(D̂(·)(0)) and an

equivalence of categories

lim−→ : LD−→
b
Q,coh(D̂(·)(0)) ∼−−→Db

coh(D†(0)) (4.1.13)

parallel to (3.2.1). If M (·) is an object of LD−→
b
Q,coh(D̂(·)(0)) corresponding via (4.1.13) to an

object of Db
coh(D†(0)), the right-hand side of (4.1.8) is naturally an object of D(D†(0)), which

we write Man(0). We set Dan(0) = (D†(0))an, and leave to the reader the exercise of working
out the analogue of (4.1.11); then, for M as above, Man(0) is naturally an object of D(Dan(0)).
Lemma 4.1.3 holds as stated for any coherent D†(0)-module, so Man(0) is in fact an object of
Db(Dan(0)), and the same argument as before leads to the following theorem.

Theorem 4.1.2. The D†(0)-algebra Dan(0) is left and right flat, and for any D†(0)-module of
finite presentation M there are natural isomorphisms

Dan(0)
L
⊗D†(0) M

∼−−→Dan(0)⊗D†(0) M
∼−−→Man(0). (4.1.14)

It follows from the constructions that Dan(0) is a Dan-algebra, and that

D† //

��

D†(0)

��
Dan // Dan(0)

commutes.
In § 3.3 we explained why a solvable isocrystal M on Rb has a natural structure as a coherent

D†(0)-module. By construction Dan(0) is anR-module, so it follows that Man =Dan(0)⊗D†(0) M
has a natural R-module structure.

Proposition 4.1.1. If M is a solvable isocrystal on Rb, the natural map

R⊗Rb M −→Man(0)

is an isomorphism.
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Proof. We resume the notation of § 3.3: M (m) =B(λ(m)) ⊗OM0 for some finitely generated
B(n0)-module M0 and some λ. The image of M (·) in LD−→

b
Q,coh(D̂(·)(0)) corresponds via the

equivalence (4.1.13) to the D†(0)-module M , so

Man(0) ' lim−→
m

lim←−
r

(Or ⊗̂OM (m)
Q )

by the analogue of Lemma 4.1.3 for D†(0). Then

Or ⊗̂OM (m)
Q ' Or ⊗̂O (B(λ(m)) ⊗OM0)Q

' (Or ⊗̂O B(λ(m)))Q ⊗B(λ(m)) (B(λ(m)) ⊗B(n0) M0)Q.

' (Or ⊗̂O B(λ(m)))Q ⊗B(λ(m)) M
(m)
Q .

Since M0 is a finitely generated B(n0)-module, Lemma 4.1.2 yields an isomorphism

lim←−
r

Or ⊗̂OM (m)
Q ' (Oan ⊗̂O B(λ(m))

Q )⊗
B

(λ(m))
Q

M
(m)
Q .

Since

R' lim−→
m

lim←−
r

Or ⊗̂O B(λ(m)) and Rb ' lim−→
m

lim←−
r

B
(λ(m))
Q

the proposition follows by taking the direct limit in m. 2

For any Dan(0)-module M we denote by j+M the restriction of scalars of M to the subring
Dan (compare with the definition of j+ for coherent D†(0)-modules in § 3.4). If M is a coherent
D†(0)-module that is also coherent as a D†-module, it make sense to compare (j+M)an and
j+(Man(0)). We claim that there is a natural morphism

(j+M)an −→ j+(Man(0)) (4.1.15)

of Dan-modules. In fact, we have M = lim−→m
M

(m)
Q for some D̂(·)-module M (·), and then

M(0)(m) =B(m) ⊗̂OM (m) (4.1.16)

is a coherent D̂(m,m)-module for which M ' lim−→m
M(0)(m)

Q as well. The map (4.1.15) is induced

by the maps M (m)
Q →M(0)(m)

Q .

In order to understand when (4.1.15) is an isomorphism, we first make the following
observation. If M is a coherent D†(0)-module, say M = lim−→m

M
(m)
Q as above, then each M

(m)
Q

has a canonical Banach space topology, and M inherits an inductive limit topology which is
independent of the choice of M (m), since any two choices are cofinal. We will call this the natural
topology of M ; when separated, it is an LF-space topology.

Proposition 4.1.2. If M is a coherent D†(0)-module that is coherent as a D†-module, and
separated in its natural topology, then the natural map (4.1.15) is an isomorphism.

Proof. We start with M (m), M(0)(m) as in (4.1.16), which are coherent modules over D̂(m) an
D̂(m,m) respectively. Since these are noetherian rings, we can replace M (m) and M(0)(m) by their
images in M , to obtain coherent modules (still called M (m), M(0)(m)), injective maps

M
(m)
Q ↪→M(0)(m)

Q ↪→M
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and isomorphisms

lim−→
m

M
(m)
Q

∼−−→ lim−→
m

M(0)(m)
Q

∼−−→M (4.1.17)

although (4.1.16) no longer holds. The natural topology of M is the inductive limit topology
induced by the right-hand isomorphism in (4.1.17), and is by hypothesis separated. It follows
that the inductive limit on the far left is separated; furthermore, both inductive limits are LF-
space topologies, so the isomorphisms in (4.1.16) are all topological isomorphisms by the open
mapping theorem for LF-spaces.

In particular, for any m the map

M(0)(m)
Q −→ lim−→

n

M
(n)
Q

is injective and continuous, so it follows from Grothendieck’s factorization theorem (e.g. [Sch02,
Corollary 8.9]) that there is an λ(m) >m such that the above map factors through a continuous
map M(0)(m)

Q −→M
(λ(m))
Q . In other words, the two inductive systems {M (m)

Q }m, {M(0)(m)
Q }m of

O-submodules of M are cofinal. We can choose λ(m) to be an increasing function of m, in which
case M (λ(·)) defines an object of LD−→

b
Q,coh(D̂(·)) isomorphic to M (·).

By the remarks after Lemma 4.1.1 and the functorial properties of the completed tensor
product, the maps

M
(m)
Q −→M(0)(m)

Q , M(0)(m)
Q −→M

(λ(m))
Q

extend uniquely to continuous maps

(Or ⊗̂OM (m))Q −→ (Or ⊗̂OM(0)(m))Q,

(Or ⊗̂OM(0)(m))Q −→ (Or ⊗̂OM (λ(m)))Q

for any r < 1 (existence follows from [Bos84, § 2.1, Proposition 5] and uniqueness is clear since
M

(m)
Q is dense in (Or ⊗̂OM (m))Q). By uniqueness, the composite

(Or ⊗̂OM (m))Q −→ (Or ⊗̂OM(0)(m))Q −→ (Or ⊗̂OM (λ(m)))Q (4.1.18)

is the morphism induced by M (m)→M (λ(m)), while the composite

(Or ⊗̂OM(0)(m))Q −→ (Or ⊗̂OM (λ(m)))Q −→ (Or ⊗̂OM(0)(λ(m)))Q (4.1.19)

is induced by M(0)(m)→M(0)(λ(m)). Passing to the inverse limit in r and the direct limit in
m in (4.1.18) yields the map (4.1.15), while passing to the limits in (4.1.19) yields an inverse
to (4.1.15). 2

Corollary 4.1.1. If M is an F -isocrystal on Rb, the natural map

(j+M)an −→ j+(Man(0)) (4.1.20)

is an isomorphism.

Proof. It suffices to show that the natural topology of Man(0) is separated. In fact, M is a finite
free R-module, and the natural topology is induced by the topology of R, so this is clear. 2

In particular, if M is an F -isocrystal on Rb, there is a functorial isomorphism

R⊗Rb M
∼−−→Man (4.1.21)

arising from Proposition 4.1.2 and Corollary 4.1.1.
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The analytification of the adjunction M → j+j
+M is Man→ (j+j+M)an, and since

(j+j+M)an has a Dan(0)-module structure, we obtain a natural map

Dan(0)⊗Dan Man −→ (j+j+M)an. (4.1.22)

Lemma 4.1.4. For any holonomic FD†-module M , the natural map (4.1.22) is an isomorphism.

Proof. Since j+M 'D†(0)⊗D† M is an F -isocrystal on Rb we may apply Corollary 4.1.1,
obtaining an isomorphism

(j+j+M)an −→ j+(j+M)an(0).

It is then easily checked that (4.1.22) is the composite of the isomorphisms

Dan(0)⊗Dan Man ' Dan(0)⊗Dan (Dan ⊗D† M)
' Dan(0)⊗D† M.

' Dan(0)⊗D†(0) (D†(0)⊗D† M)

' Dan(0)⊗D†(0) (j+M)

' (j+M)an(0)

where the first and last isomorphisms are from Theorems 4.1.1 and 4.1.2 respectively. 2

Remark . If, as in § 3.4, we define j+M =Dan(0)⊗Dan M when M is a Dan-module, the natural
map (4.1.22) takes the form

j+j
+(Man)−→ (j+j+M)an.

I do not know if (4.1.22) is an isomorphism for coherent D†-modules M . One can show, using
Lemma 4.1.9 and its analogue for D†(0), that (4.1.22) becomes an isomorphism if the tensor
product is replaced by a suitable completion.

5. Coherent D†-modules up to analytic isomorphism

5.1 Basic calculations
We begin with some elementary computations. The resolution

OK ' [D† ·∂−−→D†]

shows that
(OK)an =Oan (5.1.1)

while on the other hand Corollary 4.1.1 yields an isomorphisms

(Rb)an = (Rb)an(0) =R (5.1.2)

(use the F -isocrystal structure ∇(1) = 0, F (1) = 1 on Rb). The isomorphism

δ ' [OK −→Rb]

together with (5.1.1) and (5.1.2) then yields

δan 'R/Oan ' δ

and, as any punctual holonomic FD†-module is a finite sum of copies of δ, we obtain the following
proposition.

Proposition 5.1.1. If N is a punctual holonomic FD†-module, then N 'Nan.
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This elementary fact allows us to complete Theorem 4.1.1.

Corollary 5.1.1. The analytification functor is exact and faithful on the category of holonomic
FD†-modules.

Proof. Exactness follows from Theorem 4.1.1. To show faithfulness it suffices, by an elementary
argument, to show that Man = 0 only if M = 0. Suppose that Man = 0 and let N1, N2 be defined
by the exactness of

0→N1→M → j+j
+M →N2→ 0.

By Theorem 4.1.1 and Proposition 5.1.1, the analytification of this is the exact sequence.

0→N1→Man→ (j+j+M)an→N2→ 0.

Then Man = 0 implies N1 = 0; on the other hand Lemma 4.1.4 shows that (j+j+M)an = 0, and
consequently N2 = 0. It follows that M ' j+j+M , i.e. M is an F -isocrystal on Rb. Finally the
formula (4.1.21) shows, since Rb is a field, that M = 0. 2

We now consider duality, and first remark that the adjunction formula yields an isomorphism

RHomD†(M, N) ∼−−→ RHomDan(Man, N) (5.1.3)

for all coherent D†-modules M , N .

Proposition 5.1.2. For any two coherent D†-modules M , N , there is a functorial isomorphism

RHomD†(M, Nan)' RHomD†(D(N), (D(M))an). (5.1.4)

Proof. Since M and N have a finite resolutions by finitely generated projective D†-modules,
and Dan is flat over D†, Man and Nan likewise have a finite resolutions by finitely generated
projective Dan-modules. It follows that the natural biduality homomorphism

RHomDan(Man, Nan)→ RHomDan(RHomDan(Nan,Dan), RHomDan(Man,Dan))

is an isomorphism. By (5.1.3) and the flatness of Dan we have

RHomDan(Man,Dan) ' RHomD†(M,Dan)
' RHomD†(M,D†)an

' D(M)an ⊗O ωX[−1]

for any coherent D†-module M . It follows that the target of the above biduality isomorphism is

RHomDan(D(N)an, D(M)an)' RHomD†(D(N), D(M)an). 2

We can now give the promised description of i+M , for M a holonomic FD†-module.

Proposition 5.1.3. For any holonomic FD†-module M , there is a natural isomorphism

i+M
∼−−→ [Man ∂−−→Man] (5.1.5)

where the complex is in degrees [−1, 0].

Proof. On the one hand, there is a natural isomorphism (3.4.2)

i+M
∼−−→ RHomD†(M

∗,Oan)[1]

and, on the other hand, (5.1.4) yields

RHomD†(M
∗,Oan) ∼−−→ RHomD†(OK , Man)
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since OK is self-dual. By the explicit description (3.1.5) of the ring D†, OK has the free resolution
D† ·∂−−→D†, and from this we deduce a natural isomorphism

RHomD†(OK , Man)' [Man ∂−−→Man],

and the result follows by composing these isomorphisms. 2

Proposition 5.1.4. A holonomic FD†-module M is of connection type if and only if
RHomD†(M,Oan) = 0.

Proof. Again using [Cre06, 2.2], there is a natural isomorphism

RHomD†(M,Oan)[1] ∼−−→ i+(M∗),

while, on the other hand, biduality and the definition of i+ yield an isomorphism

i+(M∗)' (i!M)∗

so we have RHomD†(M,Oan) = 0 if and only if i!M = 0, i.e. if and only if M has connection
type. 2

5.2 The analytic category

The category Cohan(D†) of coherent D†-modules up to analytic isomorphism is a localization of
the category of coherent D†-modules: objects are just coherent D†-modules on Spf(V[[t]]), while
morphisms are given by

HomCohan(M, N) = HomDan(Man, Nan). (5.2.1)

We denote by

an : Coh(D†)−→ Cohan(D†) (5.2.2)

the localization functor, which by Theorem 4.1.1 is exact.
If (M, Φ) is an FD†-module, the Frobenius structure Φ induces a Frobenius structure on the

Dan-module Man. Thus we can define the category Holan(FD†) of holonomic FD†-modules up
to isomorphism, by taking as objects the holonomic FD†-modules, while a morphism M →N in
Holan(FD†) is a morphism Man→Nan of Dan-modules compatible with the induced Frobenius
structure. We denote the associated localization, as above, by

an : Hol(FD†)−→Holan(FD†). (5.2.3)

The above results show that certain cohomological functors on the category of holonomic
FD†-modules extend to Holan(FD†). First of all, this is the case for the construction M 7→
M ⊗O ωX which turns a left D†-module into a right D†-module. In fact if we denote by ωan the
analytification of the right D†-module ωX/V , then

ωan 'Oan ⊗O ωX/V ,

and a simple calculation using Lemma 4.1.3 shows that

(M ⊗O ωX/V)an 'Man ⊗Oan ωan (5.2.4)

for any left coherent D†-module M ; there is a similar formula for right coherent D†-modules.
It follows from (5.2.4) that the ‘left-to-right’ functor extends to Cohan. Similarly, the duality
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functor M 7→M∗ satisfies

(M∗)an ' Ext1D†(M,D† ⊗O ω−1
X/V)an

' Ext1D†(M,Dan ⊗Oan (ωan)−1)
' Ext1Dan(Man,Dan ⊗Oan (ωan)−1)

so that M 7→M∗ is actually functorial in Man, i.e. induces a functor Holan(FD†)→Holan(FD†)
(in fact an autoequivalence). Again, the formulas

i+M ' [Man ∂−−→Man]

and

i!M ' RHom(M∗, δ)' RHom((M∗)an, δ)

imply that i+, i! define cohomological functors on Holan(FD†). That the same is true for j+ and
j+ follows from Proposition 4.1.2 and the isomorphism (4.1.21).

Continuing in the same vein, we note that the property of being a holonomic FD†-module of
connection type is visible in the analytic category.

Proposition 5.2.1. If M is a holonomic FD†-module, then M is of connection type if and only
if the natural map

Man −→Dan(0)⊗Dan Man

is an isomorphism. In particular, if M and M ′ are holonomic FD†-modules with isomorphic
analytifications, then M is of connection type if and only if the same is true for M ′.

Proof. By Theorem 4.1.1 and Proposition 5.1.1, the analytification of the standard devissage
of M

0→N1→M → j+j
+M →N2→ 0

is the exact sequence

0→N1→Man→ (j+j+M)an→N2→ 0.

Using Lemma 4.1.4, we can write this as an exact sequence

0→N1→Man→Dan(0)⊗Dan Man→N2→ 0

where the map in the middle is the natural one. As M is of connection type if and only if
N1 =N2 = 0, the proposition follows. 2

6. Solution data

6.1 Microfunctions

The first step in extending the classification of § 2 is to show that the differential module
structures of Bb and B extend to D†-module structures. By (1.2.3) it suffices to show that the
Rb,stn (u) have a D†-module structure; in fact, they are F -isocrystals on Rb, so we can
apply the remarks of § 3.3.

It is not hard to construct the D†-module structure on Rb,stn (u) directly. Choose a local
parameter t and set

R0,st
n = KerNn|R0[log t]
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(unlike Rb,st, this is not independent of the choice of t). Since

Rb,stn (u)'R0(u)⊗R0 R0,st
n ⊗Q

it suffices to construct D†-module structures on R0(u)Q and on R0,st
nQ . Now R0(u) is an étale

R0-algebra, so R0(u) has a formal m-PD-stratification, and hence a D̂(m)-module structure for
all m. On the other handR0,st

n has a PD-stratification (i.e. a stratification of level zero) defined by

1⊗ (log t) 7→ (log t)⊗ 1 +
∑
k>0

(−1)k−1(k − 1)!(t−k ⊗ 1)γk(1⊗ t− t⊗ 1),

which makes R0,st
n into a D̂(0)-module; one checks, finally, that the natural morphism

R0,st
n → D̂(m) ⊗D̂(0) R0,st

n

is an isogeny for any m; this gives R0,st
nQ the structure of a D̂(m)

Q -module for all m, whence a
D†-module structure.

Since (Rb,stn (u))an =Rst
n (u), the D†-module structure of Rst

n (u) extends to a Dan-module
structure. We obtain thereby a Dan-module structure on B. In fact this extends to a Dan(0)-
module structure, as one sees from the construction of Dan(0).

We now set Oan
Knr =Oan ⊗̂K Knr, and define the microfunction spaces Cb, C and the canonical

maps Bb→Cb, B → C by the exact sequences

0−→OKnr −→Bb can−−−→ Cb −→ 0,

0−→Oan
Knr −→B can−−−→ C −→ 0.

(6.1.1)

As a quotient of B, C is a discrete G-module, and it inherits an action of the Frobenius ϕ and
of the canonical monodromy operator, which we denote by NC . Since OKnr has a Dan-module
structure, so does C (but there is no Dan(0)-module structure on C). Since N annihilates Oan ⊂ B,
the maps NB, NC factor through the variation

var : C −→B (6.1.2)

so that
NB = var ◦ can and NC = can ◦ var. (6.1.3)

Recall that I ⊂G denotes the inertia subgroup of the absolute Galois group of k((t)). For
σ ∈ I, the action of σ − 1 on B is zero on Oan

Knr , and so factors through a Knr-linear map

v(σ) : C −→B (6.1.4)

so that
σ|B = 1 + v(σ) · can and σ|C = 1 + can · v(σ) (6.1.5)

for any σ ∈ I. These deserve to be called variation maps as well, but it will be convenient to
reserve this term for the map induced by N , and refer to the collection of maps v(σ) as the
‘Galois variation’. We note, finally, that the canonical maps commute with ϕ and the Galois
action, while the variations satisfy

var · ϕ= qϕ · var, v(σ) · ϕ= qϕ · v(σ), σ ∈G. (6.1.6)

All of the above constructions have versions for Bb and Cb.
If now M is a holonomic F -D†-module on O, we define Knr-vector spaces V(M), W(M) by

V(M) = HomD†(M, B), W(M) = HomD†(M, C) (6.1.7)
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and denote by

can∗ : V(M)→W(M), var∗, v(σ)∗ : W(M)→ V(M) (6.1.8)

the maps induced by the canonical map (6.1.1) and the variation maps (6.1.2), and (6.1.4). Since
B and C are actually Dan-modules, there are isomorphisms

V(M) = HomDan(Man, B), W(M) = HomDan(Man, C) (6.1.9)

by Corollary 5.1.3; thus the functors V and W extend to the category Holan(FD†). They also
have a natural Frobenius structure given by F ∗ ◦ ϕ∗ which commutes with the canonical map,
and satisfies and analogue of (6.1.6) for the variations. We observe, finally, that since B and C
are Dan-modules, V(M) and W(M) depend only on the analytic isomorphism class of M .

This should motivate the following definition: the category SolnK of solution data has as
objects quintuples (V, W, c, v, v(·)) consisting of the following.

– The vector spaces V and W are objects of ModK(G, F ), i.e. finite-dimensional Knr-vector
spaces endowed with σ-linear isomorphisms F : V → V and F :W →W and a discrete
semilinear action of G commuting with F .

– The maps c : V →W and v :W → V are Knr-linear maps such that c commutes with F ,
while v satisfies vF = qFv.

– For any σ ∈ I, the action of σ on V (respectively W ) is given by 1 + v(σ) · c (respectively
1 + c · v(σ)) for some Knr-linear map v(σ) :W → V satisfying (6.1.6).

A morphism f : (V, W, c, v, v(σ))→ (V ′, W ′, c′, v′, v′(σ)) is a pair of maps f : V → V ′, f :
W →W ′ with all of the above structure, i.e. which are morphisms both of G-representations and
of F -isocrystals on Knr, such that the diagrams

V
c //

f
��

W

f
��

V ′
c′ // W ′

W
v //

f
��

V

f
��

W ′
v′ // V ′

W
v(σ) //

f
��

V

f
��

W ′
v′(σ) // V ′

commute.
It should be clear that SolnK is a K-linear abelian category in which every object has finite

length. A morphism f as above is a monomorphism (respectively epimorphism) if and only if
the maps V → V ′, W →W ′ are injective (respectively surjective).

To lighten the notation, we will occasionally write objects of SolnK as (V, W, c, v) or (V, W )
if the other data do not need to be specified.

The goal of this section is to show that the construction

M 7→ S(M) = (V(M),W(M), can∗, var∗, v(σ)∗) (6.1.10)

described above defines an exact functor S : Hol(M)−→ SolnK . We first compute V(M) for some
basic types.

Proposition 6.1.1. For any holonomic FD†-module there is a functorial isomorphism

V(M) ∼−−→ V(j+j+M). (6.1.11)

If M is of connection type, there is a functorial isomorphism

V(M) ∼−−→ V(Man) (6.1.12)
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where the V-functor on the right is the functor (2.1.1) applied to the F -isocrystal Man on R. If
M is of punctual type, then RHomD†(M, B)' 0, and in particular V(M) = 0.

Proof. Suppose first that M is of connection type, i.e. an F -isocrystal on Rb. Tensoring the
isomorphism (3.3.10) with Dan(0) yields, by (4.1.14), an isomorphism

Man ∼−−→Dan(0)⊗DMan

where D =R[∂] as in § 2. Consequently

HomD(Man, B)'HomDan(0)(Dan(0)⊗DMan, B)'HomDan(0)(M
an, B)

where the first isomorphism is the adjunction. On the other hand, Proposition 4.1.2 yields
isomorphisms

Man 'Dan ⊗D† M 'Dan(0)⊗D†(0) M,

and from this we get isomorphisms

HomDan(0)(M
an, B)'HomDan(0)(Dan(0)⊗D†(0) M, B)'HomD†(0)(M, B)

where the second map is the adjunction. SinceM is of connection type we haveM 'D†(0)⊗D† M
and isomorphisms

HomD†(0)(M, B)'HomD†(0)(D†(0)⊗D† M, B)'HomD†(M, B)

where again the second map is the adjunction. Putting everything together, we get an
isomorphism

HomD(Man, B)'HomD†(M, B)
which is (6.1.12).

Suppose now M = V ⊗K δ. Since δ has the resolution

δ ' [D† ·t−−→D†] (6.1.13)

we have
RHomD†(V ⊗ δ, B)' V ∗ ⊗K [B t·−−→B]' 0,

which is the last assertion of Proposition 6.1.1. The isomorphism (6.1.11) then follows using the
standard devissage (3.4.4). 2

Lemma 6.1.1. There is a canonical isomorphism

Ext1D†(R
b, B) = 0.

Proof. Since Rb has the resolution

Rb ' [D† ·∂t−−−→D†]

we have

RHomD†(Rb, B) ' [B ∂t·−−−→B]

' [B ∂·−−→B]

since t is invertible on B. The lemma follows since ∂ is surjective on B, as we saw in the proof of
Lemma 1.2.1. 2
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Lemma 6.1.2. For any holonomic F -D†-module M on X,

ExtiD†(M, B) = ExtiD†(M, C) = 0

for all i > 0.

Proof. By (6.1.1) and the fact that a holonomic F -D†-module has cohomological dimension less
than or equal to 1, we see that it is enough to prove the vanishing for B and for i= 1. By the
last assertion of Proposition 6.1.1, it suffices to prove this for holonomic modules of connection
type. Now an M of connection type is an F -isocrystal on Rb, so Man is free of finite type over
R, and so using (2.1.2) and the flatness of the D†-algebra Dan produces isomorphisms

Ext1D†(M, B) ' Ext1Dan(Man, B)
' Ext1Dan(R,HomR(Man, B))
' Ext1Dan(R, V(Man)⊗Knr B)
' Ext1D†(R

b, V(Man)⊗Knr B)

and the last Ext group vanishes by Lemma 6.1.1. 2

Corollary 6.1.1. For any holonomic FD†-module, there is an exact sequence

0−→HomD†(M,Oan
Knr)−→ V(M) can−−−→W(M)−→ Ext1D†(M,Oan

Knr)−→ 0. (6.1.14)

Proof. This follows from Lemma 6.1.2 and the exact sequence (6.1.1). 2

Corollary 6.1.2. A holonomic FD†-module M is of connection type if and only if the
canonical map can : V(M)→W(M) is an isomorphism.

Proof. By the last corollary, can : V(M)→W(M) is an isomorphism if and only if
RHom(M,Oan)' 0, but we saw in Proposition 5.1.4 that this last isomorphism is equivalent
to M being of connection type. 2

Remark . The classification that is the aim of this paper was modeled on that of
Malgrange [Mal91]. We see, however, that our classification is closer to the ‘formal’ classification
of [Mal91] rather than the holomorphic one. In fact, with D̂ equal to the (classical) ring of
differential operators on K[[t]], and O =K[[t]], we have RHomD̂(M,O) = 0 for any D̂-module M
of connection type (if M is totally irregular, this follows from [Mal91, ch. 3, Theorem 2.3]; for
M regular it can be checked directly). In the holomorphic case, on the other hand, the dimension
of Ext1(M,O) for an M of connection type is the irregularity of M (cf. [Mal91, ch. 4, § 4]). This
is a little disturbing in view of the well-known analogy between the irregularity of a connection
and wild ramification; it would seem that our construction is not capable of seeing the wild
vanishing cycles.

We can now compute W of a punctual module.

Corollary 6.1.3. If M = V ⊗K δ, then

W(M)' V ∗Knr .

Proof. Since V(M) = 0, (6.1.14) shows there are isomorphisms

W(V ⊗K δ) ∼−−→ Ext1D†(V ⊗K δ,Oan
Knr)' V ∗ ⊗K Ext1D†(δ,O

an
Knr),
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and, again using the resolution (6.1.13), we find

RHomD†(δ,Oan
Knr)' [Oan

Knr
t·−−→Oan

Knr ]

so that Ext1D†(δ,O
an
Knr)'Knr. 2

Theorem 6.1.1. The construction (6.1.10) defines an exact functor

S : Hol(FD†)−→ SolnK .

Proof. To show that S(M) is an object of SolnK , the only thing that remains to be seen is that
V(M) and W(M) have finite dimension over Knr. In fact, the extreme terms of (6.1.14) have
finite dimension by [Cre06, Theorem 2.2], and by the isomorphism (6.1.11), the dimension of
V(M) is the rank of the F -isocrystal (j+j+M)an. It follows that W(M) has finite dimension.

To show that S is exact, it suffices to show that the functors V and W are exact; this however,
follows immediately from Lemma 6.1.2. 2

Motivated by Corollary 6.1.2, we will say that an object (V, W, c, v, v(·)) of SolnK is of
connection type if c is an isomorphism. For example, if (V, N, F, ρ) is an object of ModK(G, F, N),
then (V, V, idV , N, ρ(·)− 1) is a connection type object of SolnK . This construction induces a
fully faithful functor

ModK(G, F, N)→ SolnK . (6.1.15)
On the other hand, if (V, W, c, v) is a solution datum of connection type, then

(V, W, c, v)' (V, V, idV , vc),

and vc is nilpotent. Thus the full subcategory of connection type solution data is the essential
image of the functor (6.1.15).

We will say that an object of SolnK is punctual if it has the form (0, W, 0, 0). Since the Galois
variation is zero, the inertia group I ⊂G must act trivially on W . By Proposition 6.1.1, punctual
F -D†-modules give rise to solution data of this type, for if V = 0 then v, c, and v(·) are zero as
well. An object (V, W, c, v) of SolnK has a ‘standard devissage’

0→ (0,Ker c, 0, 0)→ (V, V, idV , vc)→ (V, V/Ker c, proj, vc)→ 0,

0→ (V, V/Ker c, proj, vc)→ (V, W, c, v)→ (0, Coker c, 0, 0)→ 0
(6.1.16)

corresponding to the standard devissage (3.4.4) of an FD†-module on O.

7. Construction of holonomic FD†-modules from solution data

7.1
Our aim is to recover a holonomic F -D†-module up to analytic isomorphism from its solution
data. Suppose M is a holonomic FD†-module and S = S(M) is the corresponding solution data.
The sextuple

S = (B, C, can, var, v(·), ϕ)
can be viewed as an ind-object of the category SolnK , and there is a natural evaluation map

M −→Hom(S, S)

where the Hom is in the ind-category of SolnK . We will show that Hom(S, S) is isomorphic as a
Dan-module to Man, and the induced Frobenius structures coincide. To obtain an FD†-module
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we must replace this construction by

Hom(S, Sb) = M(S)

where Sb is the ind-object
Sb = (Bb, Cb, can, var, v(·)).

We will see that M(S) is a holonomic FD†-module with the same analytification as M , so that
we have recovered M as an object of Holan(FD†). For reasons explained in the introduction, we
cannot hope to do better than this.

It will be convenient to work with a more explicit form of this construction. For S =
(V, W, c, v, v(·)) we denote by M•(S) the two-term complex

(Hom(V, Bb)⊕Hom(W, Cb))G d−−→ (Hom(V, Cb)⊕Hom(W, Bb))G (7.1.1)

in degrees zero and one, where the differential is defined by the matrix

d=
(

can∗ −c∗
−v∗ var∗

)
(7.1.2)

considered as acting on column vectors. Then

M(S) =H0(M•(S)) (7.1.3)

clearly coincides with the M(S) defined above, and the FD†-module structures on Bb and Cb
induce an FD†-module structure on M(S). We first consider some examples.

The kernel of the variation var : Cb→Bb is Rb/OKnr , so by the exactness of Galois-invariants
there is an exact sequence

0−→Rb/O −→ (Cb)G −→ (Bb)G. (7.1.4)
Thus if S = (0, W, 0, 0, F ) is of punctual type, W0 =WG with the induced action of F is an
F -isocrystal on K, and

M(S) ' Ker(Hom(W, Cb)G var∗−−−−→Hom(W, Bb)G)
' HomK(W0,Rb/O)
' HomK(W0, δ)'W ∗0 ⊗K δ (7.1.5)

is a holonomic FD†-module of punctual type.
If S = (V, V, idV , N) is of connection type, M•(S) is

(Hom(V, B)⊕ Hom(V, C))G d−−→ (Hom(V, C)⊕Hom(V, B))G,

d=
(

can∗ − id∗

−N∗ var∗

)
,

and the equation (
can∗ − id∗

−N∗ var∗

)(
a
b

)
= 0

yields can∗ a= b and var∗ b=N∗a, so that N∗a= (var · can)∗a=NB∗a. Thus the kernel of d is
the same as the kernel of N∗ −NB∗, and there is a functorial isomorphism

H0(M(V, V, idV , N))'HomKnr(V, Bb)G,N 'Mb(V ), (7.1.6)

in the notation of (2.1.5). By Lemma 2.1.1, this is an F -isocrystal on Rb, i.e. a holonomic
FD†-module of connection type.
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Proposition 7.1.1. The construction S 7→M(S) defines an exact functor

SolnK −→Hol(FD†).

Proof. We first show that S 7→M(S) is an exact functor from SolnK to the category of FD†-
modules. The functoriality of the construction is clear. We first show that

Hom(V, Bb)⊕Hom(W, Cb) d−−→Hom(V, Cb)⊕Hom(W, Bb) (7.1.7)

is surjective for any solution data (V, W, c, v), where d is the map (7.1.2). It suffices to show that
the endomorphism of Hom(V, Cb)⊕Hom(W, Bb) given by the matrix(

can∗ −c∗
−v∗ var∗

)(
var∗ c∗

v∗ can∗

)
=
(
NC∗ − (vc)∗ 0

0 NB∗ − (cv)∗

)
is surjective; in computing the matrix product we have used (6.1.3) and the fact that anything
of the form f∗ commutes with anything of the form g∗. The maps (vc)∗, (cv)∗ are nilpotent,
and the maps NB∗, NC∗ have right inverses commuting with (cv)∗ and (vc)∗ respectively, so the
surjectivity of this endomorphism follows from Lemma 2.1.3.

Since Bb and Cb are discrete G-modules, all four of the Hom spaces in (7.1.7) are discrete
G-modules by Lemma 2.1.2. It follows that the map d in (7.1.1) is surjective, and consequently
that the functor M is exact, by the same argument as in Lemma 2.1.4.

Now that we know M : SolnK →Mod(FD†) is exact, the holonomicity of M(S) for S in
SolnK reduces, by the standard devissage (6.1.16), to the case where S is either punctual, or of
connection type. This was checked in the calculations (7.1.5) and (7.1.6). 2

The isomorphisms (6.1.9) show that the functors V(M) and W(M) extend naturally to
functors on Holan(FD†). It follows that S extends to a functor

San : Holan(FD†)→ SolnK . (7.1.8)

We denote by Man the composite functor

Man : SolnK −→Hol(FD†) an−−→Holan(FD†). (7.1.9)

Lemma 7.1.1. For any S in SolnK there is a functorial isomorphism

M(S)an 'Ker : (Hom(V, B)⊕Hom(W, C))G d−−→ (Hom(V, C)⊕Hom(W, B))G. (7.1.10)

Proof. Suppose S = (V, W, c, v). Since the action of G on V and W is discrete, and since vc and
cv are nilpotent we can replace Bb and Cb in (7.1.1) by Rb,stn (u) and Rb,stn (u)/OK for some u
and n depending on S. These are coherent D†-modules whose analytifications are Rst

n (u) and
Rst
n (u)/Oan respectively. Taking the limits over u and n results in (7.1.10). 2

Theorem 7.1.1. The functors (7.1.8), (7.1.9) define inverse equivalences of categories between
Holan(FD†) and SolnK .

Proof. We first observe that there are functorial morphisms

S −→ S(M(S)), Man −→M(S(M))an (7.1.11)

for any object S of SolnK and any object M of Hol(FD†). The first is a straightforward evaluation
map, of the sort described at the beginning of this section. The second is more subtle since in
general there is no morphism M →M(S(M)), let alone an isomorphism, but Lemma 7.1.1 shows
that there is a functorial evaluation map M →M(S(M))an and this induces the second morphism
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in (7.1.11) by adjunction. Since S and M factor through the localization functor Hol→Holan,
we get functorial morphisms

1−→ SanMan, 1−→ManSan. (7.1.12)
These will be isomorphisms if the morphisms in (7.1.11) are for all S and M , and since
S and M are exact, it suffices by devissage to treat the cases where S and M are either
punctual or of connection type. For punctual modules this follows from Corollary 6.1.3 and the
isomorphism (7.1.5). For connection type modules, this follows from (7.1.6) and Theorem 2.1.1. 2

We have already remarked that the category SolnK is artinian, whence we have the following
corollary.

Corollary 7.1.1. The category Holan(FD†) is artinian.

The equivalence in Theorem 7.1.1 and the remarks in § 5.2 show that the basic cohomological
operations on Hol(FD†) (i.e. j+, j+, and so forth) are reflected by operations on SolnK . Certain
of them are easily deduced from the above results. For example, the operations j+, j+ correspond
to the functors

j+ : ModK(G, F, N)→ SolnK j+ : SolnK →ModK(G, F, N),

(V, N) 7→ (V, V, id, N) (V, W, c, v) 7→ (V, cv).
(7.1.13)

The standard devissage in SolnK shows that the H i(i!) are given by

H0(i!(V, W, c, v)) = Ker(c), H−1(i!(V, W, c, v)) = Coker(c) (7.1.14)

while the functor i+ corresponds to

i+ : ModK → SolnK
V 7→ (0, V, 0, 0).

(7.1.15)

The remaining operations (j!, i+, and duality) are more involved and will be treated in another
paper.

8. Canonical extensions

8.1 Special étale covers
We now use Theorem 7.1.1 to construct canonical extensions of objects of Holan(FD†). We first
recall the Katz–Gabber theory of canonical extensions of étale covers.

Set Gm = P1
k − {0,∞}. A finite étale morphism X →Gm is special if its Galois closure

Y →Gm has the following properties.

(i) The morphism Y →Gm is tame at infinity.
(ii) The Galois group G of Y →Gm has a single p-Sylow subgroup P , and G/P is cyclic of

order prime to p.

Note that these conditions are satisfied by the Galois groups of finite separable extensions of a
local field of equicharacteristic p. Fix an identification of the completion of the fraction field of
the local ring of P1

k at 0 with F = k((t)). The theorem of Katz and Gabber is that the restriction
functor

(special étale covers of Gm)−→ (étale covers of Spec(F ))
is an equivalence of categories. It follows that the natural homomorphism π1(Spec(F ))→ π1(Gm)
has a canonical section, and any `-adic representation of π1(Spec(F )) has a canonical extension
to an `-adic representation of π1(Gm).
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In the p-adic setting, canonical extensions of the this sort were constructed, on one hand by
Garnier [Gar95] for D†-modules of connection type and of rank one (but not necessarily with a
Frobenius structure), and on the other hand by Matsuda [Mat02] for quasi-unipotent isocrystals
on R (and in particular, for F -isocrystals on R). Nonetheless it is easy to see that there cannot
be any canonical extension of this sort for FD†-modules on V[[t]]; it is enough to remark that
the Ext group Ext1D†(OK ,OK) is infinite dimensional (it is the de Rham cohomology of OK),
whereas if M is an FD†-module on Gm extending OK , the Ext group Ext1(M,M) is of finite
dimension; thus the restriction functor cannot be essentially surjective. Matsuda avoids this
problem by working over R instead of Rb, and we shall do essentially the same thing here, by
working with the category of holonomic FD†-modules up to analytic isomorphism.

8.2 Canonical extensions

The first step is to construct a global version of the ring B. We begin by choosing a lift P of P1
k to

a formally smooth p-adic formal scheme over V. Next, choose k-rational points 0,∞∈ P1
k(k), and

denote by j : A1
k→ P1

k the inclusion of the complement of∞. Set O† = j†OP, and fix a lifting ϕ of
Frobenius to O†; the ring of global sections of O† is a Monsky–Washnitzer weak completion of a
polynomial ring over K. It is clear that any two triples of data (j : A1

k→ P1
k,P, ϕ) are isomorphic

in an obvious way, and all subsequent constructions will depend canonically on the initial choice
of (j : A1

k→ P1
k,P, ϕ).

We now consider pairs (X, i : X ↪→ X) whereX →Gm is a special étale cover, X/V is a formally
smooth lifting of X/k, and i : X→ X is an open immersion into a proper formally smooth formal
V-scheme. For any such pair we denote by O†X the D†

X
-module j†OX on X. If π : Y →X is a

morphism over Gm of special étale covers, and if (X, i : X→ X), (Y, i′ : Y→Y) are pairs as
above, then π does not necessarily lift to a map Y→ X; nonetheless the theory of D†-modules
allows one to construct a direct image π+O†Y . As the direct image satisfies a canonical transitivity
isomorphism, we may define

Rgl = lim−→
π:X→Gm

π+O†X (8.2.1)

where the direct limit is over the category of special étale covers of Gm. It has a natural action
of G= Gal(F sep/F ), and the lifting ϕ extends uniquely to each of the π+O†X , and thus to the
whole of Rgl.

Finally, we formally adjoin a logarithm of (a lifting of) an affine parameter of A1
k to O† and

Rgl, following the procedure of § 1.1. Denote by O†,1 ⊂ (O†)× the subgroup of integral power
series congruent to 1 modulo m. The logarithm log :O†,1→O† is defined as in (1.1.1), and, as
before, we extend it to O] =K× · O†,1 by requiring it to vanish at p ∈ V and at the Teichmuller
liftings of elements of k×. Finally, there is a ring Ost and a homomorphism log :O†→Ost solving
the same kind of universal problem as in § 1.1; it is isomorphic to a polynomial ring in one variable
over O†, and there is a canonical O†-derivation N :Ost→Ost such that N(log t) = 1, where t is
any lifting of an affine parameter of A1

k. The map ϕ lifts uniquely to an endomorphism of Ost

compatible with log :Ost→O†, and, as before, we have Nϕ= qϕN .

If we now set

Bgl =Ost ⊗O† R
gl (8.2.2)
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we see that Bgl is a ring endowed with the following structures:

– an action of G= Gal(F sep/F );
– a lifting ϕ of Frobenius compatible with the G-action;
– a nilpotent Rgl-derivation Ngl commuting with the Galois action, and satisfying Nglϕ=
qϕNgl.

Next, we set
Cgl = Bgl/O† (8.2.3)

and, as before, there are canonical and variation maps,

can : Bgl→Cgl, var : Cgl→Bgl, (8.2.4)

and for every σ in the inertia group I ⊂G a Galois variation

v(σ) : Cgl→Bgl (8.2.5)

satisfying analogues of (6.1.5) and (6.1.6).
If S = (V, W, c, v, v(·)) is a solution datum in the sense of § 6, we denote by Mgl• the complex

(HomD†(V, Bgl)⊕HomD†(W, Cgl))G d−−→ (HomD†(V, Cgl)⊕HomD†(W, Bgl))G (8.2.6)

supported in degrees zero and one, where, as before,

d=
(

can∗ −c∗
−v∗ var∗

)
, (8.2.7)

and we define

Mgl(S) =H0(Mgl•(S)). (8.2.8)

The same argument that led to the exact sequence (7.1.4) yields, in the global case, an exact
sequence

0−→ δ0 −→ (Cgl)G var−−−→ (Bgl)G (8.2.9)

where δ0 is the D†PQ-module Rb/O supported at 0 ∈ P1
k. Then if S = (0, W, 0, 0, F ) is of punctual

type, a calculation exactly parallel to (7.1.5) shows that

Mgl(S)'W ∗0 ⊗K δ0 (8.2.10)

where W0 =WG; thus Mgl is a holonomic FD†PQ-module. Similarly, if S = (V, V, idV , N, F ) is of
connection type, a repetition of the argument for (7.1.6) shows that

Mgl(S)'HomKnr(V, Bgl)G,N (8.2.11)

which is the direct image onto P of an overconvergent F -isocrystal on Gm, in fact
of Matsuda’s canonical extension of the F -isocrystal Man(S). An argument parallel to the proof of
Proposition 7.1.1 proves the following proposition.

Proposition 8.2.1. The construction S 7→Mgl(S) defines an exact functor

SolnK →Hol(FD†PQ). (8.2.12)

From now on we set X = Spf(O) = Spf(V[[t]]) and we fix an identification of X with the formal
completion of P at 0 ∈ P1

k. This determines a restriction functor

R : Coh(D†PQ)−→ Coh(D†XQ) (8.2.13)
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where D†XQ is the ring denoted by D† in the preceding sections. The choice of lifting ϕ of Frobenius
to O† induces a lifting of Frobenius to O, whence another restriction functor

R : Hol(FD†PQ)−→Hol(FD†XQ). (8.2.14)

Either of these may be composed with the analytification functors (5.2.2), (5.2.3) to get further
restrictions:

Ran : Coh(D†PQ)−→ Cohan(D†XQ),

Ran : Hol(FD†PQ)−→Holan(FD†XQ).
(8.2.15)

All of these functors are exact and faithful; for the functors (8.2.13) and (8.2.14) this follows
from the faithful flatness of completions, and for Ran it suffices to invoke the faithfulness of the
analytification functors (5.2.2), (5.2.3) (Corollary 5.1.1).

Since we have chosen compatible liftings of Frobenius to P and X, the natural restriction
morphisms

Bgl→B, Cgl→C (8.2.16)

are compatible with all of the structures Ngl, ϕ, etc. From this we get a canonical isomorphism

Ran(Mgl(S))'Man(S) (8.2.17)

for any solution datum S.
We will say that an FD†PQ-module is canonical if it is in the essential image of the

functor (8.2.12). We denote by CanK the full subcategory of the category of holonomic FD†PQ-
modules consisting of canonical FD†-modules, and by

Mcan : SolnK −→ CanK (8.2.18)

the functor induced by Mgl. We can rewrite (8.2.17) as an isomorphism of functors

Ran ◦Mcan 'Man, (8.2.19)

and we can now prove the main result of this section.

Theorem 8.2.1. The restriction functor

Ran : CanK −→Holan(FD†XQ)

is an equivalence.

Proof. We know that Man is an equivalence of categories, so by the functorial
isomorphism (8.2.19) it suffices to show that Mcan is an equivalence. By construction it is
essentially surjective. That it is fully faithful is a formal consequence of Man being an equivalence
and Ran being faithful. 2

Since San is an inverse to Man, the inverse of Ran : CanK →Holan(FD†XQ) is the canonical
extension

Can = Mgl ◦ San : Holan(FD†XQ)−→ CanK . (8.2.20)

Objects of CanK have the following properties: (1) they are of ‘connection type at infinity’,
i.e. isomorphic to the direct image of their restriction by A1 ↪→ P1; (2) their restriction to Gm

is the direct image by specialization of an overconvergent F -isocrystal on Gm/K; and (3) this
restriction to Gm becomes isomorphic, on some special cover of Gm, to a successive extension
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of geometrically constant F -isocrystals. It seems probable that these properties characterize
CanK as a full subcategory of Hol(FD†PQ), but we will not discuss this question here.

8.3 Fourier transforms

The restriction and extension functors Ran, Can in the last subsection were all defined relative
to a choice of points 0, ∞∈ P1

k: in fact we used these points to define the notion of a special
cover of P1

k, and X = Spf(O) was identified with the formal completion of P at 0. We could of
course reverse the roles of 0 and ∞. Denote by CanK(0) the category previously denoted by
CanK , and by

R0 : CanK(0) −→ Holan(FD†X0Q),

Can0 : Holan(FD†X0Q) −→ CanK(0)

the functors of ‘restriction to 0’ and ‘canonical extension from 0’, i.e. the ones considered in the
last subsection; here X0 is the formal completion of P at 0. Reversing 0 and∞, we get an inverse
pair of functors

R∞ : CanK(∞) −→ Holan(FD†X∞Q),

Can∞ : Holan(FD†X∞Q) −→ CanK(∞)

where CanK(∞) is defined analogously to CanK(0). If i : P1→ P1 is the map t 7→ t−1, there are
functorial isomorphisms

R∞ =R0 ◦ i+, Can∞ = i+ ◦ Can0.

We denote by F the one-dimensional Fourier transform of Noot-Huyghe [Noo04], normalized
so that F preserves the category of complexes supported in degree zero (i.e. F(M) denotes what
in [Noo04] would be F(M)[1]). Fix a smooth model P of P1

k, and denote by D†PQ(∞) the ring
of arithmetic differential operators overconvergent at ∞. It is known [Noo04, Proposition 5.3.5]
that if M is a holonomic F -D†PQ(∞)-module, then so is F(M). Since we are in dimension one, we

can apply [Car06b] or [Cre06] to conclude that F(M) is actually a holonomic F -D†PQ-module.
This means that we can use the above constructions to define local Fourier transforms, as

in [Lau87, § 2.4]. In fact, if M is a holonomic FD†-module on Spf(O), we can define

F0,∞′(M) =R∞(F(Can0(M))),

F∞,0′(M) =R0(F(Can∞(M))),

F∞,∞′(M) =R∞(F(Can∞(M))),

(8.3.1)

and, as in [Lau87], one expects that F0,∞′ and F∞,0′ are exact functors giving an equivalence
between Holan(FD†) and the full subcategory of Holan(FD†) consisting of objects whose
Christol–Mebkhout slopes are strictly less than one, while F∞,∞′ is an autoequivalence of the
subcategory of Holan(FD†) of objects whose slopes are strictly greater than one.
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Appendix. Henselian dagger algebras

Shigeki Matsuda

This appendix reproduces a letter from Matsuda to Crew, which generalizes (and corrects some
points of) the proof of the Henselian property of the bounded Robba ring given in [Mat95].

Let R be a ring and I an ideal of R. Assume that R is I-adically complete. Let T1, . . . , Tn be
indeterminates. For i= (i1, . . . , in) ∈ Zn>0, we denote T i11 · · · T inn by T i and i1 + · · ·+ in by |i|.
For a formal power series f =

∑
i∈Zn>0

aiT
i ∈R[[T1, . . . , Tn]], we consider the following condition:

∃λ > 0, ∃µ ∈ R and ∃f (u) ∈ IuR[T1, . . . , Tn] s.t.
f =

∑
f (u) and deg f (u) 6 λu+ µ.

(†)

Here deg means the degree in T1, . . . , Tn. We denote by R[T1, . . . , Tn]† the sub R-algebra of
R[[T1, . . . , Tn]] consisting of series which satisfy (†).

Lemma A.1. Let f ∈R[[T1, . . . , Tn]]. Then f =
∑

i aiT
i ∈R[T1, . . . , Tn]† if and only if

∃α > 0, β ∈ R s.t. ∀i, ai ∈ Imax{0,α|i|−β}.

Lemma A.2. For f ∈A=R[[T1, . . . , Tn]] we denote by deg(u)f the degree of the image of f in
R/Iu[[T1, . . . , Tn]]. Then f satisfies (†) if and only if there exists some λ > 0 and µ ∈ R such that
deg(u)f 6 λu+ µ for any u ∈ Z, u> 0.

Proof. If f =
∑
f (u) with f (u) satisfying the condition in (†), then f ≡

∑u−1
i=0 f

(i) (mod IuA) for
any integer u> 0 and deg(u)f 6 λ(u− 1) + µ. Conversely, assume that there exist some λ > 0
and µ ∈ R such that deg(u)f 6 λu+ µ for any u ∈ Z, u> 0. Then, for any integer i> 0, there
exist fi ∈R[T ] such that f ≡ fi (mod Ii+1A) and deg fi 6 λi+ µ. We put f (0) = f0 and define
f (i) to be fi − fi−1 for i > 0. Then deg f (i) 6 λi+ µ, f (i) ∈ IiA and f ≡

∑u−1
i=0 f

(i) (mod IuA).
Thus

∑∞
u=0 f

(u) converges to f in R[[T ]]. 2

Lemma A.3. In general, let a ∈A, and assume that a satisfies (†) and that a≡ c (mod IA) for
some c ∈R. Then a satisfies the following condition:

∃λ > 0, and ∃a(u) ∈ IuR[T1, . . . , Tn] s.t.

a=
∑

a(u) and deg a(u) 6 λu.
(††)

Moreover, if a, b ∈A satisfy (††) for a common λ > 0, then a+ b and ab satisfy (††) for the
same λ.

Proof. The proof is elementary. 2

Proposition A.1. Let A be an R-algebra such that there exists a surjection ϕ :
R[T1, . . . , Tn]†→A and that IA⊂ rad(A). Then (A, IA) is a Henselian pair.

Proof. We can assume thatA=R[T1, . . . , Tn]†. By [Ray70, ch. XI, § 2, Proposition 1], it is enough
to show that, for any monic polynomial f = f(X) ∈A[X], if f(X) factors as f(X) =Xd(X − 1)d,
then f factors as f = δP with monic polynomials δ, P , such that δ =Xd, P = (X − 1)d. We use
the method of Abhyanker [Abh64, ch. II]. Put

f † = f0 + f1X + · · ·+ fd−1X
d−1,

f∗ = fd + fd+1X + · · ·+ f2dX
d.
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Arithmetic D-modules on the unit disk

Then f = f † +Xdf∗, f † = 0, and f∗ = (X − 1)d. Since f∗ ≡ 1 (mod (I, X)), f∗ is invertible in
A[[X]]. Let F =

∑
i>0 FiX

i =−f †/f∗.
Since f∗ ≡ (X − 1)d and f † ≡ 0 (mod IA[[X]]), the Fi satisfy (††) with a common λ by

Lemma A.3. Therefore there exist F (u) =
∑

i>1 F
(u)
i Xi such that F (u)

i ∈ IuA and deg F (u)
i 6 λu.

We define Q(u) ∈ IuA[[X]] and r(u) ∈ IuA[X] successively for u= 0, 1, 2 . . . by

Q(0) = 1, r(0) = 0,∑
k+l=u
k>1,l>0

F (k)Q(l) =XdQ(u) + r(u),

degX(r(u))< d.

Then we have

deg Q(u) 6 λu, deg r(u) 6 λu

and Q=
∑

u Q
(u) (respectively r =

∑
u r

(u)) converges in A[[X]] (respectively A[X]). By
construction, QF =Xd(Q− 1) + r, and hence

Xd − r = (Xd − F )Q=
f † +Xdf∗

f∗
Q=

f

f∗
Q.

Since Q(0) = 1, we have the facts that Q≡ 1 (mod IA[[X]]) and Q is invertible in A[[X]]. Put
δ = f∗/Q and P =Xd − r; then δ ∈A[X] and f = Pδ gives the desired factorization. 2
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Norm. Supér. (4) 29 (1996), 185–272.

Ber96b P. Berthelot, Cohomologie rigide et cohomologie rigide à support propre, Preprint 96-03 (1996),
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Mathématique de France, Paris, 2002).
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Ray70 M. Raynaud, Anneaux locaux henséliens, Lecture Notes in Mathematics, vol. 169 (Springer,
New York, 1970).

Sch02 P. Schneider, Nonarchimedean functional analysis (Springer, 2002).
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