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Abstract

In 1977 Hartwig and Luh asked whether an element a in a Dedekind-finite ring R satisfying aR = a2R
also satisfies Ra = Ra2. In this paper, we answer this question in the negative. We also prove that if a is
an element of a Dedekind-finite exchange ring R and aR = a2R, then Ra = Ra2. This gives an easier proof
of Dischinger’s theorem that left strongly π-regular rings are right strongly π-regular, when it is already
known that R is an exchange ring.
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1. Introduction

As a common generalisation of right artinian rings and algebraic algebras, Arens and
Kaplansky in 1948 introduced a class of rings R such that for any a ∈ R there exist an
element x ∈ R and a positive integer n ≥ 1 (both depending on a) satisfying an+1x = an

(see [2, Theorem 3.1]). If an element a ∈ R satisfies anR = an+1R for some n ≥ 1,
then we say that a is right strongly π-regular (of index n), and define the left version
analogously. It is clear that a is right strongly π-regular in R precisely when the chain
of right ideals aR ⊇ a2R ⊇ a3R ⊇ · · · stabilises. If every element of a ring R is right
(or left) strongly π-regular, we say R is right (or left) strongly π-regular. Strongly
π-regular rings have been widely studied; see, for example, [1, 3, 9, 13, 15].

In [10, page 74] Kaplansky asked:

Since it is customary in modern algebra to use chain conditions as a fundamental
hypothesis, it is natural to ask what can be deduced from just the assumption
an+1x = an. For example, does it enable one to construct idempotents?

For more than 25 years the answer to the question raised by Kaplansky was not known
and the classes of left and right strongly π-regular rings were studied separately. In
1976 Dischinger [7] proved the amazing result (with a very intriguing proof) that a ring
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is left strongly π-regular if and only if it is right strongly π-regular. Now such rings
are simply called strongly π-regular rings. Note that for every element a in a strongly
π-regular ring R, there exist x ∈ R and n ≥ 1 such that anx is a nonzero idempotent.
Thus, Kaplansky’s question has a positive answer when interpreted globally.

Unfortunately, Dischinger’s result does not hold true locally. Recall that a ring
R is Dedekind-finite if ab = 1 implies ba = 1. Fix a ring R which is not Dedekind-
finite, with elements a, b such that ab = 1 but ba , 1. For example, we can take
R = F〈a, b : ab = 1〉, where F is a field. It is clear that aR = a2R = · · · = R, but the
chain of left ideals Ra ⊇ Ra2 ⊇ · · · does not stabilise.

On the other hand, Azumaya proved in [3, Theorem 1] that if a is an element of a
ring R with bounded index of nilpotence and aR = a2R, then Ra = Ra2. Equivalently,
Dischinger’s result is true locally for rings with bounded index of nilpotence. As a
ring R with bounded index of nilpotence is Dedekind-finite (see [11, pages 7–8] for
two different proofs), Hartwig and Luh [8, page 94] asked if the result of Azumaya
holds in a Dedekind-finite ring. In other words, if a is an element in a Dedekind-finite
ring R and aR = a2R, then is it the case that Ra = Ra2?

We construct a ring R with only trivial idempotents which has an element a
such that aR = a2R but Ra , Ra2. As non-Dedekind-finite rings have infinitely many
idempotents, this answers the question of Hartwig and Luh in the negative. This
also shows that Kaplansky’s condition an+1x = an, which in view of Dischinger’s
result enables one to construct idempotents globally, does not enable one to construct
idempotents locally.

On the positive side, we prove the local left–right symmetry of strong π-regularity
in Dedekind-finite exchange rings. We end with a number of open problems.

2. The main example

Let R = F〈x, y : x2y = x〉, where F is any commutative ring with only trivial
idempotents. Clearly x2R = xR. We will prove that R has only trivial idempotents.

Monomials in the variables x and y can be put into reduced form, simply by
repeatedly replacing instances of x2y by x. This is because the given relation x2y = x
yields a reduction system in the sense of [4]. Monomials in their reduced form provide
a free F-module basis for R, which we denote by B. Given m ∈B and an element
r ∈ R, we say that m is in the support of r, denoted m ∈ supp(r), if the coefficient of
m in the reduced representation of r is nonzero. Notice that we have Rx2 , Rx since
any monomial ending in x2 will continue to end in x2 after reductions. Given any
monomial m ∈ R, we write red(m) ∈B for the reduced form of m.

Any monomial m ∈B has the form

m = ynk xynk−1 · · · xyn1 xn0

for some unique integers k ≥ 1, n1, n2, . . . , nk−1 ≥ 1 and n0, nk ≥ 0. We will call k the
depth of m, and denote it by depth(m). We say that m′ ∈B is a right subword of m ∈B
if firstly m = m′′m′ for some m′′ ∈B and secondly there are no reductions to perform
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when we concatenate m′′ and m′. If m = ynk xynk−1 · · · xyn1 xn0 , then for any j ≤ k, we
define

m( j) = yn j xyn j−1 · · · xyn1 xn0 ,

which is a right subword of m.
If m1 = ys j xys j−1 · · · xys1 xs0 and m2 = yt j xyt j−1 · · · xyt1 xt0 are two elements of B with

the same depth, we say m1 ≺ j m2 if either s0 > t0 or there exists some j′ such that
1 ≤ j′ ≤ j, si = ti for i < j′, and s j′ < t j′ .

Let m1, m2 ∈B have depths d1 and d2 respectively and set d = min{d1, d2}. We say
that m1 ≺ m2 if either m1(d) ≺d m2(d), or m1(d) = m2(d) and d = d1 < d2. Given these
definitions, the following result is straightforward.

L 2.1. The relation ≺ is a total ordering on B.

L 2.2. Let m ∈B.
(1) If m starts on the left with y, then red(x2m)(`) ≺` m(`), where

` = depth(red(x2m)) − 1.

(2) If m starts on the left with x, then red(xm)(`) ≺` m(`), where

` = depth(red(xm)) − 1.

In particular, if m1, m2 ∈B, then either m1m2 is already reduced or red(m1m2) ≺ m2.

P. (1) Write m = ynk xynk−1 · · · xyn1 xn0 with nk ≥ 1. Then

x2m = xynk−1xynk−1 · · · xyn1 xn0 .

Note that the monomial on the right-hand side is in reduced form if nk > 1 and in that
case it is clear that red(x2m)(`) ≺` m(`). If nk = 1, then

x2m = xynk−1−1 · · · xyn1 xn0 .

The right-hand side is reduced if nk−1 > 1 and in that case it is again clear that
red(x2m)(`) ≺` m(`). Proceeding in this way we see that if ni > 1 for any 1 ≤ i ≤ k,
then red(x2m)(`) ≺` m(`). Otherwise red(x2m) = xn0+1 ≺0 m(0) and in this case
depth(xn0+1) = 1 so ` = 0 still works.

The proof of (2) runs along the same lines as that of (1). Also the last assertion
follows quickly from (1) and (2). �

T 2.3. The ring R = F〈x, y : x2y = x〉, where F is a commutative ring with
trivial idempotents, contains only trivial idempotents.

P. Let e2 = e ∈ R. The only monomials which multiply to a constant are constants
(as there are no reductions which remove all instances of x and y). Thus, we see that
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the constant term of e must be an idempotent. As F contains only trivial idempotents
we may assume 1 < supp(e), replacing e by 1 − e if necessary. Suppose, by way of
contradiction, that e , 0. Let M be the maximal monomial (with respect to ≺) in the
support of e, and let m0 be the shortest right subword of M in the support of e (that is,
a right subword of M for which no proper right subword is also in the support). As
e2 = e we must have m0 = m1m2 for some m1, m2 ∈ supp(e).

Case 1. Assume m1m2 is already reduced. Then m2 is a right subword of m0. From
the minimality of m0, we have m2 = m0. Thus m1 = 1 ∈ supp(e), a contradiction.

Case 2. If m1m2 is not reduced, then by Lemma 2.2 we have m0 = red(m1m2) ≺ m2.
For any j < depth(m0) = k we have m0( j) = m2( j), because otherwise M( j) = m0( j) ≺ j

m2( j) which is not possible in view of the maximality of M. Thus the only way to have
m0 ≺ m2 is if m0 = m0(k) ≺k m2(k) or m0 = m0(k) = m2(k) and depth(m2) > k. In either
case, this implies that m0 is a (proper) right subword of m2.

Writing m2 = m3m0 we have m0 = m1m3m0 = m4m0, where m4 is the reduced
form of m1m3. If m4m0 requires reduction to put it into its reduced form, then
m0 = red(m4m0) ≺ m0 by Lemma 2.2, a contradiction. So m4m0 is already in
reduced form and hence m4 = 1. Thus m1m3 = 1, which implies that m1 = 1, another
contradiction. �

3. Dedekind-finite exchange rings

In this section we will prove that if a is an exchange element in a Dedekind-finite
ring R and aR = a2R, then Ra = Ra2. Towards that end we first introduce a new
definition.

D 3.1. Given an element a ∈ R we say that a is a right exchange element if
for any right ideal I ⊆ R with aR + I = R, there exists an idempotent e ∈ aR such that
1 − e ∈ I. Left exchange elements are defined similarly. Throughout this paper, we
will only work with right exchange elements.

Note that this generalises the notion of a suitable element defined in [12]. Every
(von Neumann) regular element is a right (and left) exchange element, which is seen
by modifying [12, Lemma 2.8]. Furthermore, a ring R is an exchange ring if and only
if every element is a right (and left) exchange element [12, Proposition 1.11].

E 3.2. Note that if a ∈ R has the property that ar is suitable for every r ∈ R, then
a is an exchange element. The converse is not true. Take a =

( 1 3
0 0
)
∈M2(Z). This is

an idempotent, hence regular and an exchange element. However, ae2,1 = 3e1,1 is not
suitable.

L 3.3. If a is a regular element in a Dedekind-finite ring R, then aR = a2R implies
that Ra = Ra2.

P. First note that if a2x = a and aya = a, then a2xya2 = a2, so a2 is also regular.
The equality aR = a2R implies Ra � Ra2. But as Ra2 ⊆⊕ Ra ⊆⊕ RR and R is Dedekind-
finite, it follows that Ra2 = Ra. �
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The Dedekind-finite hypothesis in the lemma cannot be dropped. Indeed, if R is
not Dedekind-finite, then there exist a, b ∈ R with ab = 1 , ba. So a is regular and
aR = a2R but Ra , Ra2.

With this lemma in place, we are now able to obtain a local version of Dischinger’s
theorem, for exchange elements. This generalises [14, Proposition 3], where R is
assumed to be a semiperfect ring with nil Jacobson radical.

T 3.4. Let a be a right exchange element in a Dedekind-finite ring R. If
aR = a2R, then Ra = Ra2.

P. In view of Lemma 3.3 it is enough to prove that a is regular. As aR = a2R,

aR + rR(a) = R,

where rR(a) = {r ∈ R : ar = 0}. Since a is an exchange element, there exists an
idempotent 1 − e ∈ aR such that e ∈ rR(a). So

aR + eR = R and rR(a) + (1 − e)R = R.

In particular, e · rR(a) = eR and so −e = ek for some k ∈ rR(a). We will show that a − e
is a unit.

Note that (a − e) · rR(a) = e · rR(a) = eR. Also (a − e)(1 + k) = a − e − ek = a. Thus
both aR and eR are in (a − e)R. As aR + eR = R, we have that (a − e)R = R. This
implies that a − e is right invertible. But as R is Dedekind-finite, a − e is a unit.

Write a − e = u. Then e = (a − e)k = uk implies u−1e = k. Thus au−1(a − u) =

au−1e = ak = 0 implies that au−1a = a. �

C 3.5. Dischinger’s result holds locally in Dedekind-finite exchange rings.

In Dischinger’s proof of the left–right symmetry of strongly π-regular rings, the
most difficult portion is showing that such a ring is π-regular, and hence an exchange
ring. It would be nice if a more conceptual proof of this fact could be found.

As another application of the ideas in Theorem 3.4, we next prove that we can
lift the left–right symmetry of strongly π-regular elements locally, if idempotents lift
modulo the radical.

C 3.6. Let a be an element in a Dedekind-finite ring R with anR = an+1R for
some n ≥ 1. Assume that idempotents lift modulo the Jacobson radical J. If a ∈ R/J is
strongly π-regular, then so is a ∈ R.

P. It suffices to treat the case where n = 1 and a is strongly regular. By
Theorem 3.4, it is also enough to show that there exists an idempotent e ∈ aR such
that 1 − e ∈ rR(a).

The equality aR = a2R is equivalent to aR + rR(a) = R. So write ar + k = 1, where
r ∈ R and k ∈ rR(a). As a ∈ R = R/J is strongly regular we have aR ∩ rR(a) = (0).
Thus, ar and k are complementary idempotents. In particular, ar is clean (the sum
of a unit and an idempotent) in R. As idempotents lift modulo J by assumption
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(and units always lift modulo J) this implies ar is clean, and hence suitable by the
proof of [12, Proposition 1.8(1)]. Therefore, there exists an idempotent e ∈ arR with
1 − e ∈ (1 − ar)R = kR ⊆ rR(a) as desired. �

We do not know whether the condition that idempotents lift modulo the Jacobson
radical can be dropped or not.

4. Open questions

What other properties, like Dedekind-finiteness, are easily provable using only a
one-sided strongly π-regular assumption, and may lead to a local proof of Dischinger’s
theorem? Note that the Jacobson radical in a strongly π-regular ring (or more generally,
a π-regular ring) is always nil. The example we constructed in Section 2 already
has zero Jacobson radical, so that condition does not suffice to yield a local form of
Dischinger’s theorem. Another obvious fact is that factor rings of strongly π-regular
rings are still strongly π-regular. In particular, factor rings must stay Dedekind-finite.
In this case, the example we constructed does fail to have the necessary property.
Indeed, if R = F〈x, y : x2y = x〉 with F a field, then R/(1 − xy) is not Dedekind-finite.

Q 4.1. If R is a ring for which every factor ring is Dedekind-finite, are right
strongly π-regular elements also left strongly π-regular?

There are other conditions that a strongly π-regular ring possesses, which are not
quite as easy to obtain. For example, unifying numerous results in the literature Ara [1]
proved that strongly π-regular rings have stable range one. Thus, we might also ask
whether the ring we constructed in Section 2 has stable range one. The answer is no.
Recall that if R has stable range one, so does every factor ring, and we just found a
factor of R which is not Dedekind-finite, hence does not have stable range one.

Can we modify our example so that it has stable range one? We begin with the
following result of Canfell [6, Corollary 4.5].

L 4.2. Let R be a ring with stable range one. If aR = bR, then a = bu for some
u ∈ U(R).

P. For completeness we include a proof here. As aR = bR we have a = br and
b = as for some r, s ∈ R. Then rR + (1 − rs)R = R and so from the stable range
condition there exists some z ∈ R with r + (1 − rs)z = u ∈ U(R). Multiplying on the
left by b we have a = br = b(r + (1 − rs)z) = bu as desired. �

With this lemma in mind, we see that if R has stable range one and xR = x2R, we
may as well assume that x2y = x, with y a unit. Consider the ring R′ = F〈x, y, z :
x2y = x, xz = x2, yz = zy = 1〉. An analysis similar to the one done before shows
that if F is a commutative ring with only trivial idempotents, then R′ has only trivial
idempotents. (We think of z = y−1. The only major change is that while we consider
right subwords in the previous sense, we now also allow multiplication on the left by
y−1. So, for example, y−3xyx2 is a right subword of xy3xyx2.) This shows that right
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strongly π-regular elements, with unit right quasi-inverses are not left π-regular, even
in a Dedekind-finite ring. It is not clear whether R′ has stable range one. Thus, we ask
the following question which is strictly weaker than Question 4.1.

Q 4.3. If R has stable range one, are right strongly π-regular elements also left
strongly π-regular?

Modifying [8, Proposition 7] we have the following lemma.

L 4.4. Let R ⊆ S be rings. If a ∈ R satisfies aR = a2R and S a = S a2, then Ra =

Ra2. In particular, any subring of a ring satisfying Dischinger’s theorem locally, also
satisfies Dischinger’s theorem locally.

P. Write a = a2x = ya2 with x ∈ R and y ∈ S . We have ya = ya2x = ax ∈ R. So
y2a = yax = ax2 ∈ R. Now we compute

(y2a)a2 = y(ya2)a = ya2 = a.

Hence Ra2 = Ra, as desired. �

According to a result of Burgess and Raphael [5, Theorem 2.1], every ring can be
embedded in a clean (and hence exchange) ring. Those rings which can be embedded
in Dedekind-finite exchange rings satisfy Dischinger’s theorem locally. Thus, the ring
we constructed cannot be embedded in a Dedekind-finite exchange ring.

Q 4.5. Can a ring with stable range one be embedded in a Dedekind-finite
exchange ring?

We do not know the answer to this question, even for semilocal rings. A positive
answer to this question would lead to a positive answer to Question 4.3.
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