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Motivated by recent discussions on the possible role of quantum computation in
plasma simulations, here, we present different approaches to Koopman’s Hilbert-space
formulation of classical mechanics in the context of Vlasov–Maxwell kinetic theory.
The celebrated Koopman–von Neumann construction is provided with two different
Hamiltonian structures: one is canonical and recovers the usual Clebsch representation
of the Vlasov density, the other is non-canonical and appears to overcome certain
issues emerging in the canonical formalism. Furthermore, the canonical structure is
restored for a variant of the Koopman–von Neumann construction that carries a different
phase dynamics. Going back to van Hove’s prequantum theory, the corresponding
Koopman–van Hove equation provides an alternative Clebsch representation which is then
coupled to the electromagnetic fields. Finally, the role of gauge transformations in the new
context is discussed in detail.
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1. Introduction

Ongoing discussions (Shenkel et al. 2018) on the potential of quantum information and
computation in plasma physics have recently led to exploiting Hilbert-space approaches in
the numerical simulation of magnetized plasmas (Dodin & Startsev 2020; Engel, Smith
& Parker 2019, 2021; Joseph 2020), of the Navier–Stokes equations (Gaitan 2020), and
of arbitrary non-Hamiltonian systems of equations (Joseph 2020; Liu et al. 2020). In
particular, recent work (Joseph 2020) has emphasized the role of Koopman wavefunctions
in classical dynamics while their usage in describing hybrid quantum-classical systems
was presented in Bondar, Gay-Balmaz & Tronci (2019), Boucher & Traschen (1988),
Gay-Balmaz & Tronci (2019), Tronci & Gay-Balmaz (2021), Sudarshan (1976) and Jauslin
& Sugny (2010). In this paper, we want to show how these enter in the variational and
Hamiltonian formulation of Vlasov kinetic theory.
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In the context of the classical Liouville equation ∂t f = {H, f }, the idea of a
Koopman wavefunction emerges naturally from the fact that the phase-space density
is positive–definite, so that the relation f (x, p) = |Ψ (x, p)|2 induces a Hilbert-space
description of classical mechanics hinging on the Koopman–von Neumann (KvN)
equation (Koopman 1931; von Neumann 1932; Mauro 2002)

i�∂tΨ = L̂HΨ, where L̂H := {i�H, ·}, (1.1)

and {·, ·} denotes the canonical Poisson bracket. Here, the Liouvillian operator L̂H
associated to the Hamiltonian H is self-adjoint so that the Koopman wavefunction
undergoes a unitary dynamics, thereby leading to a quantum analogy. While the Koopman
propagator exp(−i�−1L̂H) (Koopman operator) often appears in the dynamical systems
literature (Budišić, Mohr & Mezić 2012; Giannakis et al. 2020), the role of Koopman
wavefunctions is being recognized in physics only recently. Over the decades, prominent
authors such as Berry (1992), Chirikov, Izrailev & Shepelyanskii (1988), Della Riccia
& Wiener (1966) and ’t Hooft (1997) have discussed Koopman wavefunctions without
referring to Koopman’s original work. However, the interest in Koopman wavefunctions
has been recently revived by their role in the quantum-classical divide (Bondar et al. 2012).

One of the important motivations for the introduction of the Koopman formalism is to
develop a rigorous Hilbert-space theory for the approximation of the particle distribution
function (PDF). For example, it is well known that the linearized Vlasov–Maxwell
equation possesses Case–van Kampen eigenmodes and one might wish to understand how
an expansion in eigenmodes, or some other complete set of eigenfunctions, converges to
a solution of the nonlinear Vlasov–Maxwell equations. This point of view was taken by
Koopman and von Neumann in their development of ergodic theory.

Yet another important application of the Koopman approach is the development of
quantum algorithms for simulating nonlinear classical dynamical systems (Joseph 2020).
In principle, quantum computers can store and process an exponentially large amount
of information efficiently and can perform certain calculations, such as the ‘quantum’
Fourier transform, very efficiently (Nielsen & Chuang 2010). While quantum computers
hold great promise, they can only perform linear unitary operations on normalized
wavefunctions. A number of authors, such as Alanson (1992), Chirikov et al. (1988)
and Joseph (2020), have reformulated nonlinear non-Hamiltonian dynamics as a linear
unitary evolution of functions on phase space. Thus, as shown in Joseph (2020), quantum
Hamiltonian simulation algorithms for the Koopman evolution operator can achieve up to
an exponential speedup over an Eulerian discretization of the PDF and using amplitude
estimation of physical observables leads to up to a quadratic speedup over Lagrangian
discretizations based on Monte Carlo and particle-in-cell.

Depending on the choice of phase, Koopman wavefunctions are related to the Clebsch
representation of the Vlasov distribution (Morrison 1981), which may be of more common
knowledge in the plasma physics community. However, as discussed in § 2.1, the complete
identification between Koopman wavefunctions and Clebsch variables may require the
Koopman phase to be singular at some points or regions in phase space (Joseph 2020).
In turn, the phase is irrelevant in the KvN theory and one should be able to set it to
zero without affecting the general formulation of the theory. In order to overcome this
possible issue, we develop an alternative non-canonical formulation that indeed allows for
a zero phase. As shown in § 2.2, this formulation follows from a suitable adaptation of the
Euler–Poincaré variational principle for the standard Vlasov dynamics (Cendra et al. 1998;
Squire et al. 2013; Tronci 2013). In this case, the relation to standard Clebsch variables is
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replaced by a momentum map structure that is discussed in § 2.3. Then, § 2.4 applies this
construction to the Vlasov–Maxwell system.

In addition, a variant of the KvN construction called the ‘Koopman–van Hove equation’
(KvH) will also be illustrated in § 3. As shown in § 3.1, in this variant the KvN
equation emerges as the amplitude equation, while the evolution of the phase is given
by the classical action, i.e. the integral of the Lagrangian function, following Feynman’s
general prescription. The KvH formulation is based on a slight extension of standard
canonical transformations that first appeared in van Hove’s thesis (van Hove 1951) and
is briefly discussed in § 3.2. As the KvH construction is based on a canonical Hamiltonian
structure, its relation to the Vlasov density comprises an extension of the standard Clebsch
representation, as presented in § 3.3. Then, § 3.4 couples the KvH equation to the evolution
of the electromagnetic fields and presents the resulting Hamiltonian structure. Finally,
§ 3.5 discusses the role of gauge transformations in the KvH context.

2. Koopman-von Neumann theory

In this section, we present two alternative formulations of the KvN theory. The first
formulation is canonical. In this case, the Hamiltonian functional depends on the phase
and vanishes if the latter is initially set to zero. Indeed, this Hamiltonian generally differs
from the expression of the total energy obtained by Koopman’s prescription f = |Ψ |2.
This ambiguity may be overcome by enforcing a specific constraint on the phase (Joseph
2020) thereby leading to branch-cut singularities. We show that these intricacies can be
removed by resorting to an alternative non-canonical formulation that is entirely built upon
the prescription f = |Ψ |2, so that the Hamiltonian functional is independent of the phase
which can then be set to zero. In order to simplify the notation, most of our discussion will
treat the case of a single degree of freedom, so that the phase space is two-dimensional.
The generalization to multiple degrees of freedom is straightforward, and will be used
when discussing the Vlasov–Maxwell system.

2.1. Clebsch variables and canonical structure
As first discussed in Dodin (2014), the KvN equation is Hamiltonian with the canonical
Hamiltonian structure arising from the following Dirac–Frenkel variational principle
(Frenkel 1934)

δ

∫ t2

t1

〈
Ψ, i�∂tΨ − L̂HΨ

〉
dt = 0. (2.1)

Here, Ψ is a square-integrable complex function, 〈A, B〉 = Re〈A|B〉 is the real-valued
pairing associated with the standard L2 inner product 〈A|B〉 = ∫

A(x, p)∗B(x, p) dx dp, and
we have Im〈A|B〉 = 〈iA, B〉. As discussed in Bondar et al. (2019) and Joseph (2020), this
Hamiltonian structure readily identifies a Hamiltonian functional given by

hKvN(Ψ ) = 〈Ψ |L̂HΨ 〉 = �

∫
H Im{Ψ ∗, Ψ } dx dp . (2.2)

This is accompanied by the usual Poisson bracket from standard quantum mechanics
(Chernoff & Marsden 1976; Foskett, Holm & Tronci 2019)

{{h, k}} (Ψ ) = 1
2�

Im
〈

δh
δΨ

∣∣∣∣ δk
δΨ

〉
, (2.3)

where we have introduced the double-bracket notation {{·, ·}} to distinguish from the
canonical Poisson bracket. Then, the Madelung transform Ψ = √

DeiS/� expresses the
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Koopman wavefunction in terms of the density D and the phase S, thereby leading
to the celebrated Clebsch representation of the real-valued Vlasov density (Holm &
Kupershmidt 1983; Marsden & Weinstein 1983; Morrison 1981), that is

f = � Im{Ψ ∗, Ψ } = {D, S}. (2.4)

Here, the classical Liouville equation ∂t f = {H, f } follows by combining the Jacobi
identity with the relations

∂tD = {H, D}, ∂tS = {H, S}, (2.5a,b)

which arise from (1.1). For example, this formulation appeared in Neiss (2019), where the
Clebsch representation was used together with Koopman’s original prescription f = |Ψ |2
in the context of the Vlasov–Poisson system for electrostatic plasmas. In symplectic
geometry, the map Ψ �→ � Im{Ψ ∗, Ψ } identifies a momentum map for the action of
canonical transformations on the Hilbert space H of Koopman wavefunctions, which is
endowed with the canonical Poisson structure in (2.3). See § 2.3 later on for the definition
of momentum maps.

This picture leads us to two following important observations. First, the relation (2.4)
differs from Koopman’s prescription f = |Ψ |2 for the phase-space density. Second, the
Clebsch representation (2.4) does not generally identify a probability density, since∫ {D, S} dx dp = 0 whenever D and S are differentiable continuous functions. In Joseph
(2020), a solution to this apparent issue was provided by selecting a singular phase
ensuring the following consistency condition

|Ψ |2 = � Im{Ψ ∗, Ψ }, or, equivalently, D = {D, S}. (2.6)

Due to the equations of motion (2.5a,b), if this relation holds true as an initial condition,
then it will hold for all time. In this case, the expression of the phase is necessarily singular
and this is strictly necessary to produce the boundary terms generally required for the
Clebsch representation (2.4) to hold true. Then, in this context, we realize that the KvN
construction may be envisioned as a special case of Clebsch representation of the Vlasov
density (Joseph 2020).

Notice that this representation requires a non-vanishing phase, which again contrasts
with the phase invariance of the original prescription f = |Ψ |2. Indeed, while one might
wish to set the phase to zero and identify the Koopman wavefunction with a real-valued
amplitude, this possibility is excluded by the Clebsch representation, which requires a
non-zero phase by construction.

Whether or not the requirement of a non-zero, possibly singular phase is regarded as
an issue, it may still be desirable to develop a Hamiltonian structure of KvN theory that
does not necessitate the presence of a non-trivial phase. In view of this, we will proceed
by considering an alternative non-canonical Hamiltonian structure of KvN theory, which
appears to overcome this potential ambiguity.

REMARK 2.1 (Guillemin–Sternberg collectivization). We remark that, in both the
canonical and the non-canonical cases, Koopman wavefunctions provide a representation
of the Liouville (Vlasov) density whose dynamics is then governed by the usual
Lie–Poisson bracket on the Poisson algebra of phase-space functions (Marsden &
Weinstein 1981/82; Marsden et al. 1983; Morrison 1986). The procedure taking the
Koopman Hamiltonian structure into the Vlasov Lie–Poisson structure is an example
of collectivization by a momentum map (Guillemin & Sternberg 1980), which serves
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as the unifying geometric framework in this work; see § 2.3. Specifically, the canonical
action of a Lie group on a Poisson manifold induces a momentum map generalizing
Noether’s conserved quantity occurring in the particular case of a symmetry group.
Then, when a Hamiltonian function(al) can be entirely written in terms of this momentum
map, the Hamiltonian is called ‘collective’, borrowing the terminology from nuclear
physics (Guillemin & Sternberg 1980). Here, we derive collective Hamiltonians for a
series of models in Vlasov dynamics for which the Lie group is given by canonical
transformations (or variants thereof, as in § 3.2). In this process, different Clebsch-type
representations emerge from different actions on the Hilbert space of Koopman
wavefunctions. Alternatively, depending on convenience, one may prefer to keep working
with the Vlasov density itself.

2.2. Euler–Poincaré variational formulation
In this section, we shall start by presenting the Euler–Poincaré formulation of KvN theory.
We start from the Euler–Poincaré variational principle for the classical Liouville equation

δ

∫ t2

t1

∫
f (x, p, t) ( pu(x, p, t) − H(x, p)) dx dp dt = 0. (2.7)

As discussed extensively in Cendra et al. (1998), Squire et al. (2013) and Tronci (2013),
this variational principle arises from a symmetry reduction from the Lagrangian-path
formulation in phase space to the corresponding Eulerian-variable description. Indeed,
if we introduce the notation Jj� = {z j, z�} and z0 = (x0, p0) is the phase-space label
coordinate, then the equation of motion η̇ = J∇H(η) of the Lagrangian trajectory
η(z0, t) = (ηq(z0, t), ηp(z0, t)) follows from the variational principle δ

∫ t2
t1

∫
f0(ηpη̇q −

H(ηq, ηp)) dx0 dp0 dt = 0, where f0(z0) is the reference density. In turn, the latter
variational principle leads to the Eulerian counterpart (2.7) by a mere change of
variables. Upon denoting by z = (x, p) the Eulerian phase-space coordinate, the Eulerian
phase-space density evolves according to the Lagrange-to-Euler map

f (z, t) =
∫

f0(z0) δ(z − η(z0, t)) d2z0 = f0(z0)

det ∇η(z0)

∣∣∣∣
z0=η−1(z,t)

. (2.8)

Here, det ∇η denotes the Jacobian determinant. In addition, we define the Eulerian
phase-space vector field X = (u, σ ) such that

X (z, t) = (u(z, t), σ (z, t)) = η̇(z0, t)|z0=η−1(z,t) . (2.9)

In this setting, we also define the infinitesimal displacement Ξ(z, t) = δη(z0, t)|z0=η−1(z,t)
so that the Euler–Poincaré variations read

δX = ∂tΞ + X · ∇Ξ − Ξ · ∇X , δf = − div( f Ξ), (2.10a,b)

which are obtained from the defining relations (2.8) and (2.9). Here, Ξ is an
arbitrary displacement vanishing at the endpoints, i.e. Ξ(t1) = Ξ(t2) = 0. Then, the
Euler–Poincaré variational principle (2.7) yields X = J∇H, which is accompanied by
the continuity equation ∂t f + div( f X ) = 0 following from (2.8), thereby returning ∂t f +
{f , H} = 0.
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The Euler–Poincaré approach for the KvN theory arises immediately from the
construction above. Indeed, the Koopman description f = |Ψ |2 immediately leads to

Ψ (z, t) = Ψ0(z0)√
det ∇η(z0)

∣∣∣∣
z0=η−1(z,t)

, (2.11)

which is the standard Lagrange-to-Euler map for half-densities (Bates & Weinstein 1997).
This evolution law leads to the relations

∂tΨ = −X · ∇Ψ − 1
2 div(X )Ψ, δΨ = −Ξ · ∇Ψ − 1

2 div(Ξ)Ψ. (2.12a,b)

One can introduce the operators Λ̂� = −i�∂� to write the above as Schrödinger-like
equations

i�∂tΨ = 1
2 [X̂�, Λ̂�]+Ψ, i�δΨ = 1

2 [Ξ̂ �, Λ̂�]+Ψ, (2.13a,b)

where [·, ·]+ denotes the anticommutator, X̂� are simply the multiplicative operators
identified by the components of X and likewise for Ξ̂ �. Notice that here we are not asking
for the vector field X to be Hamiltonian: as we shall see, this property will result as
a consequence of the variational principle under consideration. In more generality, the
evolution law (2.11) and its equation of motion in (2.12a,b) also appear in other contexts
involving non-Hamiltonian dynamical systems (Alanson 1992; Joseph 2020).

Since we are interested in the Hamiltonian structure, we shall write the Euler–Poincaré
variational principle in terms of an arbitrary Hamiltonian functional h(Ψ ) as follows:

δ

∫ t2

t1

(∫
|Ψ (x, p, t)|2 pu(x, p, t) dx dp − h(Ψ )

)
dt = 0, (2.14)

where we recall (2.9). Here, the arbitrary functional h(Ψ ) generally depends on Ψ and
its conjugate Ψ ∗. Upon combining (2.12a,b) with the first equation in (2.10a,b), the
Euler–Poincaré variational principle yields

X = − 1
|Ψ |2 J

(
Ψ � δh

δΨ

)
, Ψ � δh

δΨ
:= 1

2
Re

(
δh
δΨ

∗
∇Ψ − Ψ ∗∇ δh

δΨ

)
. (2.15a,b)

Here, we have used the functional derivative notation so that δh := 〈δh/δΨ , δΨ 〉 and,
following Holm, Marsden & Ratiu (1998), we have defined the diamond operator � for
compactness of notation.

Then, the wavefunction equation for an arbitrary Hamiltonian is obtained by substituting
(2.15a,b) in the first equation of (2.12a,b), which leads to quite a cumbersome explicit
form. However, in the case of KvN theory, this simplifies substantially. Indeed, if the
Hamiltonian functional depends only on f = |Ψ |2, then the chain rule relation δh/δΨ =
2(δh/δf )Ψ transforms (2.15a,b) to the Hamiltonian vector field

X = J∇ δh
δf

=: X δh/δf , (2.16)

thereby recovering the KvN equation (1.1) in the general form

i�∂tΨ = L̂δh/δf Ψ. (2.17)

In this case, the Lagrangian trajectory is a canonical transformation so that the propagator
(2.11) reduces to Ψ (z, t) = Ψ0(z0)|z0=η−1(z,t).
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Notice that, while here we have used canonical coordinates associated with the
canonical symplectic form dx ∧ dp, the possibility of a non-canonical structure does
not pose any difficulty. Indeed, one would simply redefine canonical transformations
as symplectomorphisms, that is smooth invertible transformations preserving the
non-canonical symplectic structure. Then, the Liouvillian operator L̂H = {i�H, } would
naturally involve the corresponding non-canonical Poisson bracket.

2.3. Non-canonical Poisson bracket and momentum map structure
We realize that (2.17) arises naturally from the Euler–Poincaré formulation of the Liouville
equation, while its underlying structure is quite involved and this reflects in an intricate
non-canonical Hamiltonian structure. Given an arbitrary functional k(Ψ ), the usual
relation k̇ = {{k, h}} leads in this case to

{{k, h}}(Ψ ) =
∫

1
|Ψ |2

(
Ψ � δk

δΨ

)
· J

(
Ψ � δh

δΨ

)
dx dp, (2.18)

which reduces to the Lie–Poisson bracket

{{k, h}}( f ) =
∫

f
{

δk
δf

,
δh
δf

}
dx dp, (2.19)

in the case of functionals depending only on f = |Ψ |2. To obtain (2.18), we have used the
relation 〈Ψ � Υ , W 〉 = 〈Υ, W · ∇Ψ + div(W )Ψ/2〉 for any Koopman wavefunctions Ψ
and Υ , and any vector field W . Indeed, this relation leads to

dk
dt

=
〈

δk
δΨ

, ∂tΨ

〉
= −

〈
δk
δΨ

, X · ∇Ψ + 1
2

div(X )Ψ

〉
= −

〈
Ψ � δk

δΨ
, X

〉
= {{k, h}}(Ψ ),

(2.20)

where the last equality follows from (2.15a,b). While expanding the terms in (2.18) does
not lead to much insight, the present formulation has the advantage of restoring the use of
the relation f = |Ψ |2 everywhere in the problem. For example, the standard expression of
the total energy now coincides unambiguously with the Hamiltonian functional, which no
longer vanishes upon setting the phase to zero.

We conclude this section by showing that the map Ψ �→ |Ψ |2 is a momentum map
(Marsden & Ratiu 1998) associated with the following (left) group action of canonical
transformations: Ψ �→ Ψ ◦ η−1, where ◦ denotes composition of functions. By the
arguments in Remark 2.1, this ensures that the Poisson bracket (2.18) consistently reduces
to (2.19) for any two functionals k and h of the type k(Ψ ) = k̃(|Ψ |2). Given the canonical
action of a Lie group G on a manifold M with Poisson structure {{·, ·}}, a momentum map
J : M → g∗ is defined as

{{k(x), 〈J (x), ξ〉}} = 〈 dk(x), ξM(x)〉, (2.21)

for any function k on M and any element ξ of the Lie algebra g of G. Here, g∗ denotes the
dual space of g, 〈·, ·〉 is the duality pairing, d is the differential on M and ξM denotes the
infinitesimal generator of the G-action on M. If G is a symmetry of the Hamiltonian, then
J (x) is conserved in time by Noether’s theorem. The Lie algebra of the group of canonical
transformations is the space of Hamiltonian vector fields X = X ξ , where ξ = ξ(x, p) is a
scalar function. Up to the addition of irrelevant constants, this space can be identified
with the space of phase-space functions endowed with the canonical Poisson bracket.
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8 C. Tronci and I. Joseph

Then, the corresponding infinitesimal action on the Koopman Hilbert space H = L2(R2)
is given by ξH(Ψ ) = −X ξ · ∇Ψ = {ξ, Ψ }. Upon using the L2-pairing, we compute

Ψ � δ

δΨ
〈|Ψ |2, ξ〉 = 2Ψ � (ξΨ ) = −|Ψ |2∇ξ, (2.22)

so that

{{k, 〈|Ψ |2, ξ〉}} = −
∫

δk
δΨ

{Ψ, ξ} dx dp, (2.23)

thereby proving (2.21). This picture extends the usual Clebsch representation treated in
§ 2.1 to the non-canonical case. By proceeding analogously, one proves that the quantities

∫
|Ψ |2 d3p,

∫
p |Ψ |2 d3p (2.24a,b)

comprise the plasma-to-fluid momentum map (Marsden et al. 1983). Specifically, these
are momentum maps for the action of momentum translations (x, p) �→ (x, p − dϕ(x))
and configuration-space diffeomorphisms (x, p) �→ (η(x),−p dη(x)), respectively.

2.4. The KvN–Maxwell system
In this section, we want to apply the previous non-canonical formulation to the
Maxwell–Vlasov system of magnetized plasmas. The canonical treatment is found in
Neiss (2019) for the case of the electrostatic limit. In the full electromagnetic case, gauge
invariance naturally acquires a prominent role. In particular, the gauge freedom manifests
itself in the Lagrangian formulation of Maxwell’s equations through the fact that the
Lagrangian is independent of ∂tΦ, and, hence, variations with respect to Φ serve to enforce
Gauss’ law as a constraint. In the absence of sources, the Maxwell Lagrangian is written
as

LMax = −ε0

∫
E · (∂tA + ∇Φ) d3x − hMax(A, E), (2.25)

where

hMax(A, E) = ε0

2
‖E‖2 + 1

2μ0
‖∇ × A‖2 (2.26)

is the Maxwell Hamiltonian expressed in terms of the standard L2-norm. If we express the
Vlasov density in non-canonical coordinates, we can construct the variational principle by
an immediate extension of (2.14). We write

δ

∫ t2

t1

[∫
|Ψ |2 ((mv + qA) · u − qΦ) d3x d3v

− ε0

∫
E · (∂tA + ∇Φ) d3x − h(Ψ, A, E)

]
dt = 0, (2.27)

where

h(Ψ, A, E) = hMax(A, E) + m
2

∫
|Ψ |2v2 d3x d3v

= m
2

∫
|Ψ |2v2 d3x d3v + ε0

2

∫
|E|2 d3x + 1

2μ0

∫
|∇ × A|2 d3x (2.28)

https://doi.org/10.1017/S0022377821000805 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000805


Koopman wavefunctions in Vlasov–Maxwell kinetic theory 9

is the Hamiltonian, while Gauss’ law is enforced in (2.27) by the Lagrange multiplier Φ.
Using (2.12a,b) and the first equation in (2.10a,b), we obtain

X = q
m

(
0, −∂tA − ∇Φ+ 1

|Ψ |2
(

Ψ � δh
δΨ

)
v

× (∇ × A)

)
− 1

m|Ψ |2 J

(
Ψ � δh

δΨ

)
.

(2.29)

In addition, arbitrary variations of the fields lead to

ε0(∂tA + ∇Φ) = − δh
δE

, ε0∂tE = δh
δA

+ q
m

∫ (
Ψ � δh

δΨ

)
v

d3v. (2.30a,b)

Here, the subscript v denotes the velocity components of vector-valued quantities in phase
space. These equations reveal an intricate Hamiltonian structure whose Poisson bracket
can be easily obtained by applying the usual relation k̇ = {{k, h}} upon expanding k̇ =
〈δk/δΨ, ∂tΨ 〉 + 〈δk/δE, ∂tE〉 + 〈δk/δB, ∂tB〉 and using the equations of motion for an
arbitrary gauge-invariant Hamiltonian h. Indeed, upon taking the curl of the first equation
in (2.30a,b) and using δh/δA = ∇ × δh/δB, one obtains the following structure:

{{k, h}} =
∫

1
m|Ψ |2

(
Ψ � δk

δΨ

)
· J

(
Ψ � δh

δΨ

)
d3x d3v

+ 1
ε0

∫ (
δk
δE

· ∇ × δh
δB

− δh
δE

· ∇ × δk
δB

)
d3x

+ q
mε0

∫ [
ε0B

m|Ψ |2 ·
(

Ψ � δk
δΨ

)
v

×
(

Ψ � δh
δΨ

)
v

+
(

Ψ � δk
δΨ

)
v

· δh
δE

−
(

Ψ � δh
δΨ

)
v

· δk
δE

]
d3x d3v. (2.31)

Then, one can simply evaluate

δh
δΨ

= mv2Ψ ,
δh
δE

= ε0E,
δh
δB

= μ−1
0 B, (2.32a–c)

so that J(Ψ � δh/δΨ ) = (mv, 0) |Ψ |2. Introducing the notation Λ̂ = −i�(∇x,∇v) =
(λx, λv), the KvN equation reads

i�∂tΨ = v · λxΨ + q
m

(E + v × B) · λvΨ, (2.33)

which is accompanied by Faraday and Ampére’s law

∂tB = −∇ × E, ε0∂tE = μ−1
0 ∇ × B − q

∫
|Ψ |2v d3v. (2.34a,b)

Here, the first equation is obtained by taking the curl of the first equation in (2.30a,b).

3. Koopman-van Hove theory

As we saw in previous sections, the KvN phase remains constant along the phase-space
Lagrangian trajectories; see the second equation in (2.5a,b). Indeed, in the KvN
construction the phase is entirely irrelevant and plays the role of a gauge freedom in
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the relation f = |Ψ |2. However, in classical mechanics one usually relates the classical
phase to the Lagrangian function. Specifically, in Hamilton–Jacobi theory the phase
is a function in configuration space and this function is given by the classical action
integral. We observe that this is different from the Koopman phase, which instead is
defined on phase space. As we shall see, the KvH construction combines the theory
of Koopman wavefunctions with Feynman’s prescription of a phase expressed in terms
of the Lagrangian. Again, to keep the notation as simple as possible, the phase space
will be two-dimensional in most of our discussion. The extension to six dimensions is
straightforward and will be used when coupling the KvH equation to the electromagnetic
fields.

3.1. The KvH equation
An alternative theory of classical mechanics based on Koopman wavefunctions goes back
to van Hove’s thesis (van Hove 1951), where canonical transformations were extended
to include phase factors. As later shown by Kostant (1970), in this setting the phase
function is again identified with the action integral, which is now defined in terms of
the phase-space Lagrangian. In this setting, the KvN equation (1.1) becomes the KvH
equation

i�∂tΨ = L̂HΨ − L Ψ, with L = p∂pH − H. (3.1)

Here, L̂H = ∂xHλp − ∂pHλx while L is the expression of the phase-space Lagrangian,
which now identifies a phase term. The information contained in this equation may be
unfolded by applying the Madelung transform Ψ = √

DeiS/�, which leads to

∂tD + {D, H} = 0, ∂tS + {S, H} = L . (3.2a,b)

The second equation can be formally solved in terms of the Lagrangian trajectories as
(Gay-Balmaz & Tronci 2019, 2021)

S(z, t) =
∫ t

0
L (η(z, τ − t)) dτ + S0(η

−1(z, t)), (3.3)

thereby showing how the phase evolution emerges from the integral of the Lagrangian, in
analogy to Feynman’s path-integral formulation of quantum mechanics. For a discussion
of the relation between equation (3.3) and the Hamilton–Jacobi equation, see de Gosson’s
work in de Gosson (2004).

REMARK 3.1 (Relation to hybrid quantum-classical dynamics). Notice that, for
Hamiltonians of the type H = T + V, enforcing ∂pΨ = 0 and replacing p → −i�∂x
takes (3.1) into the quantum Schrödinger equation, thereby justifying the early name
‘prequantum Schrödinger equation’ (Kostant 1970). Indeed, (3.1) first appeared within
the context of prequantization theory (Kirillov 2001; van Hove 1951) and it has remained
pretty unknown over the decades. Recently, it was recognized how this equation may
actually lead to a consistent theory of quantum-classical coupling (Bondar et al. 2019;
Gay-Balmaz & Tronci 2019; Tronci & Gay-Balmaz 2021), where the phase plays a
crucial role. Partly inspired by Kirillov (2001), the authors of Bondar et al. (2019)
and Gay-Balmaz & Tronci (2019) called (3.1) the ‘Koopman–van Hove equation’ in
recognition of the very first contributions from Koopman and van Hove.
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Koopman wavefunctions in Vlasov–Maxwell kinetic theory 11

3.2. Geometric setting
While canonical transformations are enough to characterize the evolution of Koopman
wavefunctions in KvN theory, the presence of the phase in the KvH formalism requires
extending the KvN picture. A more detailed summary of the geometric setting of
KvH theory is found in Faure (2007), Gay-Balmaz & Tronci (2019) and Gay-Balmaz
& Tronci (2021). First, one introduces the U(1)-bundle R2 × U(1), where R2 is the
Euclidean two-dimensional phase space and U(1) is the group of complex phase factors.
Gauge transformations are identified, as usual, with local phase factors so that the KvH
wavefunction evolves according to compositions of gauge transformations and canonical
transformations, that is

Ψ (z, t) = exp (−iϕ(z0, t)/�) Ψ0(z0)|z0=η−1(z,t) . (3.4)

Notice that, unlike (2.11), here we are restricting the Lagrangian trajectory to identify a
canonical transformation at all times. The geometric characterization of the phase factor
in (3.4) needs further discussion. Specifically, the relation between the phase factor and
the phase-space Lagrangian emerges as follows. Upon defining the gauge connection
A = p dx, it is well known (Marsden & Ratiu 1998) that d(η∗A − A) = 0, where d is
the exterior differential and η∗A(z) := A�(η(z))∇η�(z) is the standard pullback of the
connection one-form A by the canonical transformation η. Then, the phase factor in (3.4)
is defined via

dϕ := A − η∗A. (3.5)

Indeed, upon using the Lie derivative theorem d(η∗A)/dt = η∗£X H A, we notice that
Cartan’s magic formula takes the time derivative of (3.5) into the form

∂t dϕ = −η∗£X HA = −η∗ d(X H · A − H) = −d(η∗L ), with L := p · ∂pH − H,
(3.6)

so that ∂tϕ(z0, t) = ω(t) − L (η(z0, t)). Then, up to a time-dependent frequency ω(t),
(3.3) follows from the defining relation S(z, t) := (S0(z0) − ϕ(z0, t))|z0=η−1(z,t), where Ψ0 =√

D0eiS0/�.
The evolution law (3.4) together with the definition (3.5) represents the KvH analogue

of (2.11) from KvN theory. The propagator Ψ0(z) �→ Ψ (z, t) was first devised by van
Hove (1951) and identifies a unitary transformation called a van Hove transformation
in Gay-Balmaz & Tronci (2019) and Gay-Balmaz & Tronci (2021). Given a canonical
transformation η, the van Hove transformation reads

UηΨ (z) := exp (−iϕ(z0)/�) Ψ0(z0)|z0=η−1(z). (3.7)

Without going much into the details, here, we shall simply point out that van Hove
transformations possess a group structure whose Lie algebra is identified with the space
of Hamiltonian functions endowed with the Lie bracket given by the canonical Poisson
bracket. In turn, the self-adjoint operator

L̂H = L̂H + H − p∂pH = L̂H − L (3.8)

in (3.1) identifies the infinitesimal generator −i�−1L̂H of van Hove transformations. Since
KvH theory emerged historically in prequantization theory, here we shall keep the standard
nomenclature by calling (3.8) the ‘prequantum operator’.
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3.3. The phase-space density
So far, nothing has been said about the relation between KvH wavefunctions and the
classical phase-space density. In principle, one could insist on following Koopman’s
original prescription f = |Ψ |2. However, as we will see shortly, this step poses questions
similar to those arising in § 2.1. At present, the only Hamiltonian structure available for
the KvH equation (3.1) is given by the canonical bracket (2.3), which is accompanied by
the Hamiltonian functional

hKvH(Ψ ) =
∫

Ψ ∗L̂HΨ dx dp =
∫

H
(|Ψ |2 + ∂p( p|Ψ |2) + � Im{Ψ ∗, Ψ }) dx dp, (3.9)

where we notice that ∂p( p|Ψ |2) = div(JA|Ψ |2).
If we follow Koopman’s original prescription of using f = |Ψ |2 for the phase-space

density, then the Hamiltonian functional does not generally coincide with the total
energy of the system. As shown in Bondar et al. (2019), Gay-Balmaz & Tronci (2019)
and Gay-Balmaz & Tronci (2021), the expression in parenthesis in (3.9) identifies the
momentum map for the (left) unitary representation (3.7) of van Hove transformations on
the Koopman Hilbert space H = L2(R2). Consequently, by the arguments in Remark 2.1,
the identification

f = |Ψ |2 + ∂p( p|Ψ |2) + � Im{Ψ ∗, Ψ } (3.10)

leads to the usual Liouville equation ∂t f = {f , H}. While it may be objected that f is not
positive definite, the flow of f preserves the sign of the initial condition thereby eliminating
this apparent problem.

Nevertheless, the identification (3.10) represents a change of perspective from the
conventional Koopman prescription f = |Ψ |2 in that the KvH phase S enters the
expression of the phase-space density. However, while the f given in (3.10) comprises
the entire physical information, we emphasize that in the present formalism the single
terms in (3.10) do not possess any physical meaning despite the fact that both the first
and the sum of the last two obey the Liouville equation. In particular, this representation
of the phase-space density identifies an alternative Clebsch representation extending the
usual case given by the last term in (3.10); see § 2.1. Further discussions are found in
Gay-Balmaz & Tronci (2019) and Gay-Balmaz & Tronci (2021). A point of relevance for
later purpose is that the momentum map f (Ψ ) in (3.10) is covariant (or equivariant) with
respect to canonical transformations. Indeed, using the notation of (3.7), we have

f (UηΨ ) = f ◦ η−1. (3.11)

The details of this property can be found in e.g. Gay-Balmaz & Tronci (2019).

REMARK 3.2 (Constraints and phase singularities). Notice that here we can follow the
same arguments as in § 2.1 in order to enforce the relation f = |Ψ |2 as a specific
constraint. Indeed, as hinted in Gay-Balmaz & Tronci (2019), one may be tempted to write
Ψ = √

DeiS/� and choose the phase S so that

∂p( p|Ψ |2) + � Im{Ψ ∗, Ψ } = div (DJ(∇S − A)) = 0. (3.12)

As proven in Gay-Balmaz & Tronci (2019) and Joseph (2020), if this relation holds for
the initial condition, then it will hold for all time. For an arbitrary D, this can only be
true if ∇S = A, which simultaneously requires ∂S/∂p = 0 and ∂S/∂x = p. For general
nonlinear systems, this solution requires S to have special types of coordinate singularities
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when the Hamiltonian flow has O-points and X-points (Joseph 2020). For an integrable
system where action-angle coordinates {J, θ} can be constructed, the Hamiltonian is a
function of the action variables J alone, H(J). In this case, the solutions to Hamilton’s
equations of motion simplify to have the form θ = θ0 + ω(J)t, where ω = ∂H/∂J. The
general solution to the Hamilton–Jacobi equation has the form S = S0 + Jθ − H(J)t,
where S0 is an arbitrary function of constants of the motion. This can also be written
as S = S0 + Jθ0 + (Jω − H)t; i.e. as the sum of an arbitrary constant of the motion
and the Lagrangian multiplied by the time. For quadratic Hamiltonians, such as the
harmonic oscillator, the general solution clearly reduces to S = S0, an arbitrary function
of constants of the motion.

Before concluding this section, we notice the expressions of the first two moments

∫
f dp =

∫
|Ψ |2dp + � Im

∫
{Ψ ∗, Ψ } dp,

∫
pf dp = � Im

∫
p{Ψ ∗, Ψ } dp,

(3.13a,b)
which will play a crucial role in the coupling to electromagnetic fields, as shown in the
next section. In more generality, the relation

∫
pmf dp =

∫
pm

(
(1 − m)|Ψ |2 + � Im{Ψ ∗, Ψ }) dp (3.14)

provides an alternative representation of Vlasov moments in terms of canonical variables.

3.4. KvH–Maxwell system and its Hamiltonian structure
In this section, we apply the KvH formalism to the Vlasov kinetic theory of magnetized
plasmas. In particular, we are interested in the Hamiltonian structure for the system
comprising the electromagnetic component as well as the KvH wavefunction Ψ (x, v)
expressed in terms of the velocity variable v = (p − qA)/m. As customary in the
geometric approach to the Maxwell–Vlasov system, we start in terms of canonical
variables and write the action principle for an arbitrary gauge

δ

∫ t1

t0

(〈
Ψ, i�∂tΨ − qL̂ΦΨ

〉
− ε0 〈E, ∂tA + ∇Φ〉 − h(Ψ, A, E)

)
dt = 0, (3.16)

where

h(Ψ, A, E) = hKvH(Ψ ) + hMax(E, A) and H = 1
2m

|p − qA|2 . (3.17a,b)

Here, hMax(E, A) is the standard Maxwell Hamiltonian (2.26) while hKvH(Ψ ) = 〈Ψ, L̂HΨ 〉
involves the prequantum operator (3.8), so that 〈Ψ, L̂HΨ 〉 = 〈 f , H〉 with f given in (3.10).
Similarly, 〈Ψ, L̂ΦΨ 〉 = ∫

f Φ d3x d3p and Φ plays again the role of a Lagrange multiplier
enforcing Gauss’ law as in (2.27). Notice that here one may choose to include the Φ-terms
in the Hamiltonian, which would then become a Routhian. However, in order to obtain
an explicit Hamiltonian structure comprising a Poisson bracket, it is customary to fix the
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Hamiltonian gauge Φ = 0 in (3.16) so that the resulting Hamilton’s equations yield

{{k, h}}(Ψ, A, E) = 1
2�

Im
〈

δh
δΨ

∣∣∣∣ δk
δΨ

〉
− 1

ε0

〈
δk
δA

,
δh
δE

〉
+ 1

ε0

〈
δk
δE

,
δh
δA

〉
. (3.18)

We recall that the angle brackets denote the standard L2-pairing. Then, the KvH equation
i�∂tΨ = L̂HΨ is accompanied by ∂tA = −E and Ampère’s law in the form

ε0∂tE = μ−1
0 ∇ × B − q

m

∫
(p − qA)f d3p

= μ−1
0 ∇ × B − q�

m
Im

∫
p{Ψ,Ψ ∗} d3p + q2

m
A

∫ (|Ψ |2 + � Im{Ψ,Ψ ∗}) d3p.

(3.19)

An immediate way of obtaining the Hamiltonian structure in terms of Ψ (x, v) is given
by a direct change of coordinates. Here, we notice the convenient abuse in denoting the
Koopman wavefunction of both canonical and non-canonical coordinates by the same
symbol Ψ . The coordinate change (x, p) → (x, v) = (x, (p − qA)/m) corresponds to the
replacement

δ

δA
→ δ

δA
+ q

m
Re

∫
d3v ∇vΨ

∗ δ

δΨ
, (3.20)

which in turn transforms (3.18) into

{{k, h}}(Ψ, A, E) = 1
2�

Im
〈

δh
δΨ

∣∣∣∣ δk
δΨ

〉
− 1

ε0

〈
δk
δA

,
δh
δE

〉
+ 1

ε0

〈
δk
δE

,
δh
δA

〉

− q
mε0

〈
δk
δΨ

,
δh
δE

· ∇vΨ

〉
+ q

mε0

〈
δh
δΨ

,
δk
δE

· ∇vΨ

〉
. (3.21)

Notice that, under the same change of variables (x, p) → (x, v), the prequantum operator
(3.8) becomes

L̂H = 1
m

L̂H + i
q�

m2
B · ∂H

∂v
× ∂

∂v
+ H −

(
v + q

m
A
)

· ∂H
∂v

. (3.22)

Unless otherwise specified, in the remainder of this section we shall restrict ourselves
to the case H = mv2/2, as in (3.17a,b). Also, the expression (3.10) of the phase-space
density becomes

f = |Ψ |2 + ∇v ·
((

v + q
m

A
)

|Ψ |2
)

+ �

m
Im

(
{Ψ ∗, Ψ } + q

m
B · ∇vΨ

∗ × ∇vΨ
)

. (3.23)

In conclusion, upon writing (λx, λv) = −i�(∇x,∇v), the KvH equation i�(∂tΨ + qm−1E ·
∇v)Ψ = L̂HΨ reads

i�∂tΨ = v · λ̂xΨ + q
m

(E + v × B) · λ̂vΨ −
(m

2
v2 + qv · A

)
Ψ, (3.24)

which is accompanied by ∂tA = −E and Ampère’s law in the form

ε0
∂E
∂t

= δh
δA

+ q
m

Re
∫

(∇vΨ )∗ δh
δΨ

d3v with h = hMax(E, A) + hKvH(Ψ ). (3.25)
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More explicitly, one has ε0∂tE − μ−1
0 ∇ × B = −J where

−J = δhKvH

δA
+ q

m
Re

∫
(∇vΨ )∗ δhKvH

δΨ
d3v

= q
m

∫
|Ψ |2∇vH d3v + q�

m2
∇ ×

∫
H Im(∇vΨ

∗ × ∇vΨ ) d3v

+ 2
q
m

Re
∫

(∇vΨ )∗L̂HΨ d3v

= q
∫

H∇vf d3v

= −q
∫

vf d3v. (3.26)

In order to derive these relations, one makes repeated use of integration by parts in
combination with (3.22), (3.23) and

Im
∫

{H, Ψ }∇vΨ
∗ d3v = Im

∫
H{∇vΨ

∗, Ψ } d3v − Im
∫

{Ψ, H∇vΨ
∗} d3v

= Im
∫

H{∇vΨ
∗, Ψ } d3v − 1

2
∇ ×

∫
H Im(∇vΨ

∗ × ∇vΨ ) d3v.

(3.27)

Here, the last equality follows from Im
∫ {Ψ, H∇vΨ

∗} d3v = − div
∫

H Im(∇vΨ ⊗
∇vΨ

∗) d3v by using Im
∫

Ψ ∗∇v∇vΨ d3v = 0 and standard vector algebra. Notice that we
have the relation

�
∂

∂t

(
Im

∫
Ψ ∗∇vΨ d3v

)
= −2 Re

∫
(∇vΨ )∗L̂HΨ d3v, (3.28)

which follows directly from the KvH equation i�(∂tΨ + qm−1E · ∇v)Ψ = L̂HΨ for an
arbitrary function H.

3.5. Gauge invariance and charge conservation
So far, nothing has been said about the role of gauge transformations. In this section, we
will show how Gauss’ law

div(ε0E) = q
∫

f d3p = q
∫

|Ψ |2 d3p + q� Im
∫

{Ψ,Ψ ∗} d3p (3.29)

arises as usual from gauge invariance. It is well known that Gauss’ law arises from the
symmetry of the simultaneous action of gauge transformations over both vector potentials
and phase-space quantities. In order to avoid unnecessary difficulties, as explained
in Marsden & Weinstein (1981/82), it is convenient to study the properties of gauge
transformations in terms of the canonical coordinates (x, p). In particular, besides the
standard gauge transformation on the electromagnetic quantities (A, E) �→ (A + ∇χ, E),
phase-space coordinates undergo momentum translations of the type (x, p) �→ (x, p +
q∇χ). In turn, this produces an action of gauge transformations on the phase-space density
that is f (x, p) = f (x, p − q∇χ). The latter is a type of canonical transformation, which
will be the starting point of our discussion.
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In order to examine the role of gauge transformations, we have to construct an action of
momentum translations on the space of KvH wavefunctions. If we were dealing with KvN
theory, this would be simply given by ΨKvN(x, p) �→ ΨKvN(x, p − q∇χ). However, KvH
wavefunctions also carry a phase factor which we now turn to. If η(x, p) = (x, p + q∇χ)
identifies a momentum translation, (3.5) yields

∇ϕ = p − (p + q∇χ) = −q∇χ, (3.30)

so that (up to irrelevant constants) ϕ = −qχ and in this case the phase-space function
ϕ depends only on the spatial coordinates x. Then, since χ(η−1(z)) = χ(x), we are
led to the following unitary action ΨKvH �→ UηΨKvH of momentum translations on KvH
wavefunctions:

ΨKvH(x, p) �→ eiqχ/�ΨKvH(x, p − q∇χ) = UηΨKvH(x, p). (3.31)

Upon dropping the subscript ‘KvH’, we will now show that the Hamiltonian (3.17a,b) is
invariant under the gauge transformation

(Ψ (x, p), A, E) �→ (
eiqχ/�Ψ (x, p − q∇χ), A + ∇χ, E

)
. (3.32)

Evidently, hMax in (2.26) is manifestly gauge invariant and thus here we consider the first
term 〈Ψ, L̂HΨ 〉. The gauge invariance of this functional is an immediate consequence
of the fact that the phase-space density (3.10) identifies an equivariant momentum map.
Indeed, since momentum translations are canonical transformations, we can use (3.11) to
write

〈UηΨ, L̂HUηΨ 〉 = 〈 f ◦ η−1, H〉

=
∫

f (x, p) H(x, p + q∇χ) d3x d3p

= 1
2m

∫
|p + q∇χ − qA|2 d3x d3p. (3.33)

Then, the transformation A �→ A + ∇χ leads to overall gauge invariance of 〈Ψ, L̂HΨ 〉.
At this point, we have characterized the gauge transformations that leave the

Hamiltonian h(Ψ, A, E) = 〈Ψ, L̂HΨ 〉 + hMax(E, A) invariant and we are ready to present
the associated conserved quantity. Here, we shall proceed once again by exploiting
momentum maps: since the action of gauge transformations on (Ψ, A, E) leaves the
Hamiltonian invariant, the momentum map associated with this action is conserved by
the dynamics. This momentum map must satisfy the defining relation (2.21). In this case,
the Poisson bracket is given by (3.18) and we have M = L2(T∗Q) × T∗Ω1(Q), where
Ω1(Q) denotes the space of differential one-forms on Q = R3. As discussed in Marsden
& Weinstein (1981/82), the Lie algebra of gauge transformations is identified with smooth
scalar functions ξ(x) on Q, so that their infinitesimal generator reads

ξM(Ψ, A, E) =
(
−iq�

−1L̂ξΨ,∇ξ, 0
)

. (3.34)

Then, upon writing the momentum map

J (Ψ, A, E) = div(ε0E) − q
∫

|Ψ |2 d3p − q� Im
∫

{Ψ,Ψ ∗} d3p = div(ε0E) − q
∫

f d3p

(3.35)
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and computing 〈J (Ψ, A, E), ξ〉 = −ε0〈E,∇ξ〉 − q〈Ψ, L̂ξΨ 〉, one indeed verifies (2.21).
Thus, Gauss’ law (3.29) emerges as the zero-level set of a conserved momentum map
associated with the action of gauge transformations.

We conclude our discussion by noticing that, while the Hamiltonian (3.17a,b) is gauge
invariant, its dependence on A cannot be generally expressed only in terms of the
magnetic field B = ∇ × A. While this is precisely what happens also in the standard
canonical treatment of the Maxwell–Vlasov system, here, we observe that this feature
persists after changing to non-canonical coordinates and this is due to the presence of
the Lagrangian function in the prequantum operator (3.22). As proposed in Marsden &
Weinstein (1981/82), one can still write the Hamiltonian h(Ψ, A, E) in (3.25) in terms of
(Ψ, B, E) at the expenses of fixing a convenient gauge such as the Coulomb gauge or
the Poincaré gauge. For example, the Coulomb gauge yields A = ∇ × (Δ−1B), which can
then be replaced in the expression (3.22) of the prequantum operator. Then, the Poisson
bracket (3.21) also changes according to the familiar chain rule relation δ/δA = ∇ × δ/δB.

4. Discussion

The KvN and KvH equations represent two valid approaches to developing a
Hilbert-space formulation of classical mechanics on phase space. Both approaches lead
to a generalized Clebsch representation for the PDF f . A specific choice of the complex
phase factor allows this Clebsch representation for f to become equal to the Koopman
prescription |Ψ |2. However, this choice requires the phase factor to become singular.

In both formulations, the complex phase factor is generally involved in reproducing
the classical dynamics. In fact, for the KvN formulation, the additional phase degree
of freedom is formally required for obtaining a canonical variational formulation.
This canonical KvN-Maxwell formulation parallels the development of the canonical
KvH–Maxwell formulation, and can be obtained from the results of § 3 by simply
eliminating the Lagrangian from the definition of L̂H . In fact, this canonical
KvN–Maxwell formulation has been treated in Neiss (2019) in the electrostatic limit.
Alternatively, in order to eliminate the need to include the phase in the KvN dynamics, a
non-canonical Poisson bracket was determined that reduces to the standard Vlasov bracket
for functionals that depend only on |Ψ |2. In this case, the phase becomes completely
irrelevant and can be set to be identically zero.

The ‘pre-quantum’ KvH formulation begins to bridge the gap between the classical
and quantum mechanical dynamics by providing a physically motivated prescription for
the evolution of the phase factor that agrees with the semiclassical � → 0 limit. Thus,
the prequantum KvH equation can begin to describe some of the important physical
consequences of coupling a classical system to a truly quantum system (Bondar et al.
2019; Gay-Balmaz & Tronci 2019; Tronci & Gay-Balmaz 2021). In contrast, the KvN
formulation, with a trivial phase dynamics, is perhaps better considered to correspond to
the diagonal part of the density matrix.

In dealing with both canonical and non-canonical structures, some comments on their
numerical aspects are also in place. Indeed, both symplectic numerical integrators and
quantum simulation algorithms are well understood for canonical Hamiltonian systems,
but not for non-canonical systems with an arbitrary Poisson bracket. While this makes the
canonical KvN and KvH formulations more amenable to the development of numerical
integration techniques that preserve conservation laws, it also motivates future research on
developing numerical methods that target the new non-canonical KvN formulation derived
here.
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Both approaches can be used to develop a ‘quantum’ representation of the classical
Liouville equation and both can be simulated on a quantum computer. However, once
the Koopman equation is coupled to Maxwell’s equations, one obtains a coupled system
of nonlinear partial differential equations. It is only possible to efficiently simulate
these equations using a quantum computer if they are embedded within a unitary
linear system of equations. This can be done by simulating the classical statistical
probability density, F (Ψ, A, E; t, x), for the fields at every point in space–time. As
described in Joseph (2020), the Liouville equation for F can be simulated efficiently
on a quantum computer. Understanding the complexity of quantum simulation for each of
these Koopman–Maxwell formulations is an important topic for future research.
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