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Abstract
We prove a decomposition theorem for the nef cone of smooth fiber products over curves, subject to the necessary
condition that their Néron–Severi space decomposes. We apply it to describe the nef cone of so-called Schoen
varieties, which are the higher-dimensional analogues of the Calabi–Yau threefolds constructed by Schoen. Schoen
varieties give rise to Calabi–Yau pairs, and in each dimension at least three, there exist Schoen varieties with
nonpolyhedral nef cone. We prove the Kawamata–Morrison–Totaro cone conjecture for the nef cones of Schoen
varieties, which generalizes the work by Grassi and Morrison.

1. Introduction

1.1. Cone conjecture

To understand the geometry of a smooth projective variety X, studying the Mori cone of curves NE(𝑋)
and its dual, the nef cone Nef (𝑋), is central, especially from the viewpoint of the minimal model
program (MMP).

An important part of the relationship between the Mori cone and the MMP is captured by the cone
theorem, and the contraction theorem. These theorems assert that the 𝐾𝑋 -negative part of the Mori cone
of a smooth projective variety X is rational polyhedral away from the 𝐾𝑋 -trivial hyperplane, and the
extremal rays of the 𝐾𝑋 -negative part correspond to some morphisms from X involved in the MMP. In
particular, when X is a Fano variety (namely, −𝐾𝑋 is ample), the cone Nef (𝑋) is a rational polyhedral
cone, and its extremal rays are generated by semiample classes. In general, however, it is difficult to
describe the whole Mori cone, or dually the whole nef cone, even under the slightly weaker assumption
that −𝐾𝑋 is semiample. For instance, if X is the blowup of P2 at the base points of a general pencil of
cubic curves in P2, then −𝐾𝑋 is semiample but Nef (𝑋) is not rational polyhedral.

When X is K-trivial, we expect nevertheless that some essential parts of the nef cone of X are rational
polyhedral, up to the action of Aut(𝑋). A precise statement, known as the cone conjecture, was first
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formulated by Morrison [35] and Kawamata [22]. It was later generalized by Totaro [48] to klt Calabi–
Yau pairs (𝑋,Δ) (see Section 2.2), thus including many more examples, already in dimension 2. When
stated by these authors, the cone conjecture comprises predictions both on the nef cone and on the
movable cone of varieties and has both an absolute and a relative version. In what follows, we will only
consider the absolute cone conjecture for nef cones of certain Calabi–Yau pairs.

Let us recall the statement formulated by Totaro in [48, Conjecture 2.1], starting with some notations.
For a pair (𝑋,Δ), we define

Aut(𝑋,Δ) := { 𝑓 ∈ Aut(𝑋) | 𝑓 (supp(Δ)) = supp(Δ)}.

We also define the nef effective cone Nef𝑒 (𝑋) as

Nef𝑒 (𝑋) := Nef (𝑋) ∩ Eff (𝑋),

where Eff (𝑋) is the effective cone of X.
Conjecture 1.1 (Kawamata–Morrison–Totaro cone conjecture). Let (𝑋,Δ) be a klt Calabi–Yau pair.
There exists a rational polyhedral cone Π in Nef𝑒 (𝑋) which is a fundamental domain for the action of
Aut(𝑋,Δ) on Nef𝑒 (𝑋), in the sense that

Nef𝑒 (𝑋) =
⋃

𝑔∈Aut(𝑋,Δ)

𝑔∗Π,

and Π◦ ∩ (𝑔∗Π)◦ = ∅ unless 𝑔∗ = id.
An important prediction of the cone conjecture for the MMP is that the number of Aut(𝑋,Δ)-

equivalence classes of faces of the nef effective cone Nef𝑒 (𝑋) corresponding to birational contractions
or fiber space structures is finite (see, e.g., [48, p.243]).

Note that it is standard to replace Conjecture 1.1 by the a priori stronger following conjecture. Let
Nef+(𝑋) denote the convex hull of

Nef (𝑋) ∩ 𝑁1 (𝑋)Q,

where 𝑁1 (𝑋)Q is the rational Néron–Severi space of X.
Conjecture 1.2. Let (𝑋,Δ) be a klt Calabi–Yau pair. Then the following statements hold.
1. There exists a rational polyhedral cone in Nef+(𝑋) which is a fundamental domain for the action of

Aut(𝑋,Δ) on Nef+(𝑋).
2. We have

Nef+(𝑋) = Nef𝑒 (𝑋).

Thanks to the fundamental work of Looijenga [32], we prove that the two conjectures are equivalent
(see Corollary 2.6).

1.2. Nef cones of fiber products

The starting point of this work is a decomposition theorem for the nef cone of a fiber product over a curve.
It begins with the following general question. Let 𝑊1 and 𝑊2 be projective varieties, and let 𝜙1 :

𝑊1 → 𝐵 and 𝜙2 : 𝑊2 → 𝐵 be surjective morphisms over a base B. Assume that the fiber product
𝑊 := 𝑊1 ×𝐵 𝑊2 is irreducible.
Question 1.3. Denote by 𝑝𝑖 : 𝑊 → 𝑊𝑖 the natural projections. When do we have

𝑝∗
1Nef (𝑊1) + 𝑝∗

2Nef (𝑊2) = Nef (𝑊)? (1.1)

As the nef cone of a projective variety linearly spans the whole space of numerical classes of
R-divisors on the variety, the nef cone decomposition (1.1) exists only if
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𝑝∗
1𝑁1(𝑊1)R + 𝑝∗

2𝑁1 (𝑊2)R = 𝑁1(𝑊)R. (1.2)

We may then ask which fiber products satisfying the decomposition (1.2) also have the decomposition
(1.1).

When B is a point, it is not hard to see that Equation (1.2) implies Equation (1.1). In this case, indeed,
the decomposition (1.2) is a direct sum. Every divisor D decomposes uniquely as 𝑝∗

1𝐷1 + 𝑝∗
2𝐷2, where

𝐷1 = 𝐷 |𝑊1×{pt} and 𝐷2 = 𝐷 | {pt}×𝑊2 . If D is nef, then so are its restrictions, and hence Equation (1.1)
follows. When B is P1 and the varieties 𝑊𝑖 are certain rational elliptic surfaces, the decomposition (1.1)
was proven in [14, Proposition 3.1]. We show that the implication (1.2) ⇒ (1.1) continues to hold for
an arbitrary irreducible fiber product over a curve.

Theorem 1.4. For 𝑖 = 1, 2, let 𝜙𝑖 : 𝑊𝑖 → 𝐵 be a surjective morphism from a projective variety to a
projective curve B. Assume that

1. The fiber product 𝑊 = 𝑊1 ×𝐵 𝑊2 is irreducible.
2. We have

𝑝∗
1𝑁1(𝑊1)R + 𝑝∗

2𝑁1 (𝑊2)R = 𝑁1(𝑊)R.

Then
𝑝∗

1Nef (𝑊1) + 𝑝∗
2Nef (𝑊2) = Nef (𝑊).

As a consequence, we also have 𝑝∗
1Amp(𝑊1) + 𝑝∗

2Amp(𝑊2) = Amp(𝑊).

In Examples 3.5, 3.6 and 3.7, we build examples of fiber products over bases of higher dimension,
that fail the implication (1.2) ⇒ (1.1). In Remark 3.8, we recall a classical example emphasizing that a
similar decomposition does not hold for the movable cone of divisors of a fiber product over a curve.

We establish the following corollary to this first theorem.

Corollary 1.5. Keep the notations and assumptions of Theorem 1.4. Then the extremal rays of the convex
cone Nef (𝑊) are exactly the pullbacks of the extremal rays of the two cones Nef (𝑊1) and Nef (𝑊2). In
particular, the cone Nef (𝑊) is rational polyhedral if and only if the cones Nef (𝑊1) and Nef (𝑊2) are
both rational polyhedral.

This corollary can be seen as a means to construct fiber products over curves, whose nef cones are
not rational polyhedral.

1.3. Cone conjecture for Schoen varieties

Among the strict Calabi–Yau manifolds (see Definition 2.2) whose nef cones are known to not be
rational polyhedral, to our knowledge, the cone conjecture is only known so far in two special cases.
One of them is the desingularized Horrocks–Mumford quintics, studied by Borcea in [4] (see also [12]);
the other is the fiber product of two general rational elliptic surfaces with sections over P1, constructed
by Schoen in [44] and investigated by Namikawa and Grassi–Morrison [37, 14]. Both examples are of
dimension three.

The main goal of this paper is to prove the cone conjecture for generalizations of Schoen’s Calabi–Yau
threefolds, typically Calabi–Yau pairs, but also higher-dimensional strict Calabi–Yau varieties. In both
cases, the underlying varieties, which we call Schoen varieties, are constructed as fiber products over P1.

Let us first summarize our construction defining Schoen varieties; we refer to Subsections 4.1 and 4.2
for more details. We start with Fano manifolds 𝑍1 and 𝑍2 of dimension at least two, which respectively
admit an ample and globally generated divisor 𝐷𝑖 (𝑖 = 1, 2), such that −(𝐾𝑍𝑖 +𝐷𝑖) is globally generated.
We take 𝑊𝑖 ⊂ P1 × 𝑍𝑖 to be a general member in the linear system |OP1 (1) � O𝑍𝑖 (𝐷𝑖) |. There is a
fibration 𝜙𝑖 : 𝑊𝑖 → P

1. We put another mild condition on the fibrations 𝜙1 and 𝜙2 to be general with
respect to one another (see the second paragraph of Subsection 4.2 for a precise statement). Consider
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the following fiber product over P1

𝜙 : 𝑋 := 𝑊1 ×P1 𝑊2 → P1.

Under our assumptions, the variety X is smooth and projective. All varieties obtained through this
procedure are called Schoen varieties.

It follows from the construction that −𝐾𝑋 is globally generated, so many effective Q-divisors are
Q-linearly equivalent to −𝐾𝑋 . Any such Q-divisor Δ yields a Calabi–Yau pair (𝑋,Δ), that we call a
Schoen pair.

We prove the following result.

Theorem 1.6. Let (𝑋,Δ) be a Schoen pair. Then there exists a rational polyhedral fundamental domain
for the action of Aut(𝑋,Δ) on Nef𝑒 (𝑋) = Nef+(𝑋) = Nef (𝑋).

Note that, by Corollary 1.5, the cone Nef (𝑋) is not rational polyhedral as soon as one of the cones
Nef (𝑊𝑖) (𝑖 = 1, 2) is not, typically if one of the factors 𝑊𝑖 is a rational elliptic surface with 𝑍𝑖 
 P

2

and 𝐷𝑖 = OP2 (3). Using this remark, we provide in Example 5.6 the first series of strict Calabi–Yau
manifolds (and Calabi-Yau pairs) of arbitrary dimension for which the cone conjecture holds, with nef
cones that are not rational polyhedral.

We finally mention two unsurprising consequences of Theorem 1.6 (see Corollary 5.7): The finite
presentation of the group of components 𝜋0Aut(𝑋) and the finiteness of real forms on X, up to isomor-
phism.

1.4. Relation to other work

1.4.1. Cone conjecture
We refer to [30] and the references therein for a survey of the cone conjecture for varieties (as opposed to
pairs). As for the cone conjecture for Calabi–Yau pairs, its two-dimensional case was proven by Totaro
[48]. Kopper [27] also proved the cone conjecture for Calabi–Yau pairs arising from Hilbert schemes
of points on certain rational elliptic surfaces; the underlying varieties in his work may have non rational
polyhedral nef cones, but they only appear in even dimensions. The references [11, 31] also contain
some recent results.

1.4.2. Cone conjectures for varieties with rational polyhedral nef cones
One way of proving the cone conjecture for a smooth projective variety X is to show that Nef (𝑋) is a
rational polyhedral cone and that Nef (𝑋) = Nef𝑒 (𝑋) (see, e.g., [29, Proposition 6.5]). This is the case
whenever X is a smooth anticanonical hypersurface in a Fano manifold Y of dimension at least 4, by the
following theorem, due to Kollár [3, Appendix].

Theorem 1.7. Let D be a smooth anticanonical hypersurface in a smooth Fano variety Y of dimension at
least 4. Then the natural restriction map Nef (𝑌 ) → Nef (𝐷) is an isomorphism. In particular, Nef (𝐷)

is a rational polyhedral cone, generated by classes of semiample divisors.

Other Calabi–Yau pairs (𝑋,Δ) for which Nef (𝑋) = Nef𝑒 (𝑋) is rational polyhedral are described in
the work of Coskun and Prendergast-Smith [40, 8, 9].

1.4.3. Fiber product constructions
Constructing Calabi–Yau threefolds as fiber products of two general rational elliptic surfaces with
sections over P1 was first considered and investigated by Schoen [44]. It recently came back to light
as Suzuki considered a certain higher-dimensional generalization of Schoen’s construction and studied
its arithmetic properties in [46]. Similar ideas are also involved in Sano’s constructions of non-Kähler
Calabi–Yau manifolds with arbitrarily large second Betti number in [42].
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1.4.4. Cone conjecture for movable cones
We have already mentioned that there is a part of the cone conjecture concerned with movable cones [48,
Conjecture 2.1.(2)]. It predicts that a Calabi–Yau variety should have finitely many minimal models, up
to isomorphism [7, Theorem 2.14]). See [36, 22, 48, 30] for related references. This part of the cone
conjecture was verified for some cases. Notably, in [6], Cantat and Oguiso produced the first series of
strict Calabi–Yau manifolds in arbitrary dimension whose movable cones are not rational polyhedral
and for which the cone conjecture for movable cones holds. We refer to [17, 20, 28, 50] and references
therein for more results.

In [37], Namikawa showed that a certain strict Calabi–Yau threefold, constructed as a Schoen variety,
has finitely many minimal models, up to isomorphism. Nonetheless, the cone conjecture is still unknown
for the movable cone of divisors of this Calabi–Yau threefold. The cone conjecture for the nef cones
of each of these minimal models is not known either. Similar questions could be asked for the Schoen
varieties of higher dimension constructed here.

1.5. Structure of the paper

Section 2 is devoted to some preliminaries and fundamental results. We prove Theorem 1.4 in Section 3.
After constructing Schoen varieties and Schoen pairs in Section 4, we prove Theorem 1.6 in Section 5.

2. Preliminaries

We work over the field C of complex numbers throughout this paper. For notions of birational geometry,
we refer to [26].

2.1. Notations

Let X be a projective variety. We write 𝑁1 (𝑋) for the free abelian group generated by the classes of
Cartier divisors modulo numerical equivalence.

Inside the vector space 𝑁1(𝑋)R := 𝑁1(𝑋) ⊗R, we denote by Nef (𝑋) the nef cone, that is, the closure
of the ample cone Amp(𝑋), and by Eff (𝑋) the effective cone. The nef effective cone Nef𝑒 (𝑋) is defined
as

Nef𝑒 (𝑋) := Nef (𝑋) ∩ Eff (𝑋).

Let Nef+(𝑋) denote the convex hull of

Nef (𝑋) ∩ 𝑁1 (𝑋)Q,

where 𝑁1 (𝑋)Q := 𝑁1(𝑋)⊗Q. We denote by 𝑁1 (𝑋) the group of 1-cycles modulo numerical equivalence.
The intersection product defines a perfect pairing between the two vector spaces 𝑁1 (𝑋)R and 𝑁1 (𝑋)R.
Under this pairing, the nef cone Nef (𝑋) is dual to the Mori cone NE(𝑋), which is by definition the
closure of the convex cone of effective 1-cycles in 𝑁1 (𝑋)R.

The group of automorphisms of X is denoted by Aut(𝑋) and acts on 𝑁1 (𝑋) by pullback. This action

𝜌 : Aut(𝑋) → GL(𝑁1 (𝑋))

linearly extends to 𝑁1(𝑋)R, preserving the cones Nef𝑒 (𝑋) and Nef+(𝑋). The connected component of
the identity in Aut(𝑋) is a normal subgroup Aut0(𝑋), which acts trivially on 𝑁1(𝑋) [5, Lemma 2.8].

2.2. Klt Calabi–Yau pairs

A pair is the data (𝑋,Δ) of a normal projective variety X together with an effective R-divisor Δ on X
such that 𝐾𝑋 + Δ is R-Cartier.
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Definition 2.1. Following [48], we say that a pair (𝑋,Δ) is Calabi–Yau if X is Q-factorial and 𝐾𝑋 + Δ
is numerically trivial.

Let us briefly recall the definition of a Kawamata log terminal (klt) pair. We start with a notation.
For any pair (𝑋,Δ) and any birational morphism 𝜇 : 𝑋 → 𝑋 , there exists a unique R-divisor Δ̃ on 𝑋
such that

𝐾𝑋 + Δ̃ = 𝜇∗(𝐾𝑋 + Δ) and 𝜇∗Δ̃ = Δ .

A pair (𝑋,Δ) is called klt if, for any birational morphism 𝜇 : 𝑋 → 𝑋 , when defining the divisor Δ̃
as above, each irreducible component of Δ̃ has coefficient less than one.

Note that if we can find one resolution of singularities 𝜇 : 𝑋 → 𝑋 whose corresponding divisor Δ̃ has
simple normal crossings, with irreducible components of coefficients less than one, then (𝑋,Δ) is klt.

Definition 2.2. Let X be a smooth projective variety. We say that X is a Calabi–Yau manifold if its
canonical line bundle 𝐾𝑋 is trivial and ℎ𝑖 (𝑋,O𝑋 ) = 0 for any 0 < 𝑖 < dim 𝑋 . If in addition, X is simply
connected, we call it a strict Calabi–Yau manifold.

2.3. Looijenga’s result

The following result is crucial in this paper.

Proposition 2.3. Let X be a projective variety, and let 𝐻 ≤ Aut(𝑋) be a subgroup. Assume that there is
a rational polyhedral cone Π ⊂ Nef+(𝑋) such that Amp(𝑋) ⊂ 𝐻 · Π. Then

1. 𝐻 · Π = Nef+(𝑋), and the H-action on Nef+(𝑋) has a rational polyhedral fundamental domain.
2. The group 𝜌(𝐻) is finitely presented.

This result should be well known to experts, but we include a proof for the sake of completeness. It
relies on the fundamental results due to Looijenga [32, Proposition 4.1, Application 4.14, and Corollary
4.15], which we extract and formulate here as Lemma 2.4. Recall that a convex cone 𝐶 ⊂ 𝑁R in a finite
dimensional R-vector space 𝑁R is called strict if its closure 𝐶 ⊂ 𝑁R contains no line.

Lemma 2.4. Let N be a finitely generated free Z-module, and let C be a strict convex open cone in the
R-vector space 𝑁R := 𝑁 ⊗ R. Let 𝐶+ be the convex hull of 𝐶 ∩ 𝑁Q. Let (𝐶∨)◦ ⊂ 𝑁∨

R
be the interior of

the dual cone of C. Let Γ be a subgroup of GL(𝑁) which preserves the cone C. Suppose that

◦ there is a rational polyhedral cone Π ⊂ 𝐶+ such that 𝐶 ⊂ Γ · Π;
◦ there exists an element 𝜉 ∈ (𝐶∨)◦∩𝑁∨

Q
whose stabilizer in Γ (with respect to the dual action Γ � 𝑁∨

Q
)

is trivial.

Then Γ · Π = 𝐶+ and the Γ-action on 𝐶+ has a rational polyhedral fundamental domain. Moreover, the
group Γ is finitely presented.

To prove Proposition 2.3, it is key to connect abstract convex geometry as in Lemma 2.4 with the
specifics of an automorphism group acting on an ample cone. That is the goal of the next lemma.

Lemma 2.5. Let X be a projective variety. Then there exists an ample Cartier divisor on X, whose
numerical class 𝜂 ∈ 𝑁1 (𝑋) satisfies: For every 𝑔 ∈ Aut(𝑋), if 𝑔∗𝜂 = 𝜂, then 𝑔∗ is the identity on 𝑁1(𝑋).

Proof. Our proof is inspired by the argument of [29, Proposition 6.5].
Let Γ := 𝜌(Aut(𝑋)) < GL(𝑁1(𝑋)). For every 𝜃 ∈ 𝑁1(𝑋)Q, let Γ𝜃 denote the subgroup of Γ

stabilizing 𝜃. We want to find an element 𝜂 ∈ Amp(𝑋) ∩ 𝑁1 (𝑋) such that Γ𝜂 is trivial. By linearity, it
is sufficient to find such an element in Amp(𝑋) ∩ 𝑁1(𝑋)Q.

By Fujiki–Liebermann’s theorem [5, Theorem 2.10], for every element 𝜃 in Amp(𝑋) ∩ 𝑁1 (𝑋)Q, the
stabilizer Γ𝜃 is finite. Pick an element 𝜂 ∈ Amp(𝑋) ∩ 𝑁1 (𝑋)Q such that Γ𝜂 has the smallest possible
order. Since the discrete set 𝑁1 (𝑋) is preserved by the action of Γ, there is an open neighborhood
𝑈 ⊂ Amp(𝑋) of 𝜂 such that, for every 𝛾 ∈ Γ \ Γ𝜂 , the intersection 𝛾𝑈 ∩ 𝑈 is empty. In particular, for
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every 𝜃 ∈ 𝑈 ∩ 𝑁1 (𝑋)Q, we have Γ𝜃 ⊂ Γ𝜂 , so Γ𝜃 = Γ𝜂 by the minimality assumption on 𝜂. Hence, we
have

𝛾 |𝑈∩𝑁 1 (𝑋 )Q
= id𝑈∩𝑁 1 (𝑋 )Q

,

which extends by linearity to 𝛾 = id. So the stabilizer Γ𝜂 is trivial, which concludes the proof. �

We can now establish Proposition 2.3.

Proof of Proposition 2.3. Let us set 𝑁 = 𝑁1(𝑋), 𝐶 = Amp(𝑋) and Γ = 𝜌(𝐻). To apply Lemma 2.4 in
this setup, it suffices to construct an element 𝜉0 ∈ (𝐶∨)◦ ∩ 𝑁∨

Q
with trivial stabilizer with respect to the

dually induced Γ-action. Start by picking any 𝜉 ∈ (𝐶∨)◦ ∩ 𝑁∨
Q

.
The idea is to find a minimizer 𝜂 for the linear functional 𝜉 on the set

Σ := {𝜂 ∈ 𝐶 ∩ 𝑁 |Γ𝜂 is trivial}

and to relate the stabilizer of 𝜂 (which is then trivial by construction) to the stabilizer of 𝜉 (which we
want to be trivial).

Note that Σ is nonempty by Lemma 2.5 and discrete. By definition, the linear form 𝜉 takes positive
values on the whole convex set 𝐶 \ {0}. Picking a large enough positive integer r, the intersection

Σ ∩ {𝑥 ∈ 𝐶 | 𝜉 (𝑥) ≤ 𝑟}

is now nonempty and finite. Minimizing 𝜉 on this finite set is equivalent to minimizing it on Σ, and thus
𝜉 has finitely many minimizers in Σ.

Since 𝐶 ∩ 𝑁 is discrete, we can now perturb 𝜉 into a new linear form 𝜉0 ∈ (𝐶∨)◦ ∩ 𝑁∨
Q

, which has
exactly one minimizer 𝜂 on Σ. As the set Σ is Γ-invariant and as Γ𝜂 is trivial, we have, for any nontrivial
𝛾 ∈ Γ, that 𝛾𝜂 ∈ Σ \ {𝜂}, and in particular

(𝛾𝜉0) (𝜂) = 𝜉0(𝛾𝜂) > 𝜉0(𝜂).

So the stabilizer of 𝜉0 in Γ is trivial. �

We prove a simple corollary of Proposition 2.3.

Corollary 2.6. Conjecture 1.1 and Conjecture 1.2 are equivalent.

Proof. Clearly, Conjecture 1.2 implies Conjecture 1.1. Now, fix a pair (𝑋,Δ) for which Conjecture 1.1
holds. Let Π ⊂ Nef𝑒 (𝑋) be a rational polyhedral fundamental domain for the action of Aut(𝑋,Δ) on
Nef𝑒 (𝑋). Then Π ⊂ Nef+(𝑋) by definition of Nef+(𝑋). By Proposition 2.3.(1),

Nef𝑒 (𝑋) = Aut(𝑋,Δ) · Π = Nef+(𝑋).

So Conjecture 1.2 holds. �

3. The nef cone of a fiber product over a curve

In this section, we prove Theorem 1.4. Let us recall the notations. For 𝑖 = 1, 2, the map 𝜙𝑖 : 𝑊𝑖 → 𝐵 is
a surjective morphism from a projective variety to a projective curve B. We consider the fiber product

𝑊 = 𝑊1 ×𝐵 𝑊2

𝑝1�����
���

��

𝑝

��

𝑝2 ����
���

���

𝑊1

𝜙1 ����
���

���
�� 𝑊2 .

𝜙2�����
���

���
�

𝐵
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and work under the following assumptions:

1. The fiber product 𝑊 = 𝑊1 ×𝐵 𝑊2 is irreducible;
2. For every 𝐷 ∈ 𝑁1 (𝑊)R, there exist 𝐷1 ∈ 𝑁1(𝑊1)R and 𝐷2 ∈ 𝑁1 (𝑊2)R such that

𝐷 = 𝑝∗
1𝐷1 + 𝑝∗

2𝐷2.

Proof of Theorem 1.4. Let us fix 𝐷 ∈ Nef (𝑊) and consider a decomposition in real classes

𝐷 = 𝑝∗
1𝐷1 + 𝑝∗

2𝐷2 ∈ 𝑁1(𝑊)R

as in Assumption (2) right above. We prove three lemmas regarding the positivity of these two summands
𝐷1 and 𝐷2.

Lemma 3.1. Fix 𝑖 = 1, 2. Let 𝐶𝑖 be a curve contained in a fiber of 𝜙𝑖 : 𝑊𝑖 → 𝐵. Then 𝐷𝑖 · 𝐶𝑖 ≥ 0.

Proof. By symmetry, we can focus on 𝑖 = 1. Fix any point 𝑠 ∈ 𝜙−1
2 (𝜙1 (𝐶1)) and consider the fiber

product 𝐶1 := 𝐶1 ×𝐵 {𝑠}, which can be seen as a curve in 𝑊1. We have

0 ≤ 𝐷 · 𝐶1 = (𝑝∗
1𝐷1 + 𝑝∗

2𝐷2) · 𝐶1 = 𝐷1 · 𝑝1∗𝐶1 + 𝐷2 · 𝑝2∗𝐶1 = 𝐷1 · 𝐶1.

This proves the lemma. �

Lemma 3.2. Either 𝐷1 or 𝐷2 is nef.

Proof. Assume by contradiction that both 𝐷1 and 𝐷2 are not nef. Then for each i, there exists a curve
𝐶𝑖 in 𝑊𝑖 such that 𝐷𝑖 ·𝐶𝑖 < 0. Note that since the fiber product W is assumed to be irreducible, the base
B is also irreducible. Hence, and by Lemma 3.1, we have 𝜙𝑖 (𝐶𝑖) = 𝐵. So the (possibly reducible) fiber
product 𝐶1 ×𝐵 𝐶2 contains a curve 𝐶 dominating B. Let 𝛽1, 𝛽2 ∈ Z>0 be such that 𝑝𝑖∗𝐶 = 𝛽𝑖𝐶𝑖 . Then
on one hand,

𝛽1𝐷1 · 𝐶1 + 𝛽2𝐷2 · 𝐶2 < 0,

and on the other hand,

𝛽1𝐷1 · 𝐶1 + 𝛽2𝐷2 · 𝐶2 = (𝑝∗
1𝐷1 + 𝑝∗

2𝐷2) · 𝐶 = 𝐷 · 𝐶 ≥ 0.

This is a contradiction. �

For the third lemma, we fix a point 𝑏 ∈ 𝐵.

Lemma 3.3. Fix 𝑖 = 1, 2. Then there exists 𝑁𝑖 ∈ R such that for any real number 𝑛 ≥ 𝑁𝑖 , the divisor
𝐷𝑖 + 𝑛𝜙∗

𝑖O𝐵 (𝑏) is nef.

Proof. By symmetry, we can focus on 𝑖 = 2. Let 𝐶1 be a curve in 𝑊1 such that 𝜙1(𝐶1) = 𝐵. Set

𝑁2 :=
𝐷1 · 𝐶1

deg(𝐶1
𝜙1
−−→ 𝐵)

and consider the following classes

𝐷 ′
1 := 𝐷1 − 𝑁2𝜙∗

1O𝐵 (𝑏) and 𝐷 ′
2 := 𝐷2 + 𝑁2𝜙∗

2O𝐵 (𝑏).

By construction, we have 𝐷 ′
1 · 𝐶1 = 0 and 𝐷 = 𝑝∗

1𝐷 ′
1 + 𝑝∗

2𝐷 ′
2.

We want to show that 𝐷 ′
2 is nef. Let 𝐶2 be a curve in 𝑊2. If it is contained in a fiber of 𝜙2, then

𝐷 ′
2 ·𝐶2 ≥ 0 by Lemma 3.1. Suppose now that 𝜙2(𝐶2) = 𝐵, let 𝐶 be a curve in the fiber product 𝐶1 ×𝐵 𝐶2
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dominating B, and define 𝛽1, 𝛽2 ∈ Z>0 such that 𝑝𝑖∗𝐶 = 𝛽𝑖𝐶𝑖 . We have

𝛽2𝐷 ′
2 · 𝐶2 = 𝛽1𝐷 ′

1 · 𝐶1 + 𝛽2𝐷 ′
2 · 𝐶2

= (𝑝∗
1𝐷 ′

1 + 𝑝∗
2𝐷 ′

2) · 𝐶

= 𝐷 · 𝐶 ≥ 0.

So 𝐷 ′
2 is nef. A fortiori, for 𝑛 ≥ 𝑁2, the following class

𝐷2 + 𝑛𝜙∗
2O𝐵 (𝑏) = 𝐷 ′

2 + (𝑛 − 𝑁2)𝜙
∗
2O𝐵 (𝑏)

is also nef. �

Let us resume the proof of Theorem 1.4. For any 𝑡 ∈ R, let

𝐷1 (𝑡) := 𝐷1 − 𝑡𝜙∗
1O𝐵 (𝑏) and 𝐷2 (𝑡) := 𝐷2 + 𝑡𝜙∗

2O𝐵 (𝑏).

By Lemma 3.3, we can define intervals

𝐼1 =] − ∞,−𝑁1,min] and 𝐼2 = [𝑁2,min, +∞[

such that 𝐷𝑖 (𝑡) is nef if and only if 𝑡 ∈ 𝐼𝑖 . Since we have for all 𝑡 ∈ R,

𝐷 = 𝑝∗
1𝐷1 (𝑡) + 𝑝∗

2𝐷2 (𝑡),

Lemma 3.2 shows that either 𝐷1 (𝑡) or 𝐷2 (𝑡) is nef, that is, 𝐼1 ∪ 𝐼2 = R. Hence, 𝐼1 ∩ 𝐼2 is nonempty and
fixing an element t in this intersection, both 𝐷1 (𝑡) and 𝐷2 (𝑡) are now nef, giving a desired decomposition.

The decomposition of the ample cone of W finally follows from the decomposition of the nef cone
by [41, Corollary 6.6.2]. �

Remark 3.4. In the setup of Theorem 1.4, we also have a decomposition of the relative nef cone

Nef (𝑊/𝐵) = 𝑝∗
1Nef (𝑊1/𝐵) + 𝑝∗

2Nef (𝑊2/𝐵)

by the projection formula – this is exactly Lemma 3.1.

As a consequence of Theorem 1.4, we prove Corollary 1.5.

Proof of Corollary 1.5. First, consider 𝐸 ∈ Nef (𝑊) spanning an extremal ray of Nef (𝑊). Then by
Theorem 1.4, there is a decomposition 𝐸 = 𝑝∗

1𝐸1 + 𝑝∗
2𝐸2, with 𝐸𝑖 ∈ Nef (𝑊𝑖), and either 𝐸1 or 𝐸2

is nonzero. By extremality, E is thus either in 𝑝∗
1Nef (𝑊1), or in 𝑝∗

2Nef (𝑊2). By symmetry, we can
assume that 𝐸 = 𝑝∗

1𝐷, for some 𝐷 ∈ Nef (𝑊1). Let us show that D spans an extremal ray in Nef (𝑊1).
Let 𝐷 = 𝐹 + 𝐹 ′ be any decomposition with 𝐹, 𝐹 ′ ∈ Nef (𝑊1). Then 𝐸 = 𝑝∗

1𝐷 = 𝑝∗
1𝐹 + 𝑝∗

1𝐹 ′ with
𝑝∗

1𝐹, 𝑝∗
1𝐹 ′ ∈ Nef (𝑊), and thus by extremality, 𝑝∗

1𝐹 and 𝑝∗
1𝐹 ′ are proportional. Since 𝑝∗

1 : 𝑁1(𝑊1)R →

𝑁1 (𝑊)R is injective, F and 𝐹 ′ are proportional as well. This shows that D spans an extremal ray.
We thus know that every extremal ray of Nef (𝑊) is obtained by pulling back an extremal ray of

either Nef (𝑊1) or Nef (𝑊2).
Next, assume that 𝐷 ∈ Nef (𝑊1) is extremal, and let us prove that 𝑝∗

1𝐷 is extremal in Nef (𝑊). Let
𝑝∗

1𝐷 = 𝐸 + 𝐸 ′ be a decomposition with 𝐸, 𝐸 ′ ∈ Nef (𝑊). Up to adding terms to 𝐸 ′, we can assume that
E spans an extremal ray of Nef (𝑊). By Theorem 1.4, we can write

𝐸 = 𝑝∗
1𝐸1 + 𝑝∗

2𝐸2, and 𝐸 ′ = 𝑝∗
1𝐸 ′

1 + 𝑝∗
2𝐸 ′

2

with 𝐸𝑖 , 𝐸 ′
𝑖 ∈ Nef (𝑊𝑖). As E is extremal, the divisors E, 𝑝∗

1𝐸1 and 𝑝∗
2𝐸2 are proportional. Moreover

𝑝∗
1 (𝐷 −𝐸1 −𝐸 ′

1) = 𝑝∗
2 (𝐸2 +𝐸 ′

2) ∈ Nef (𝑊). Hence, by the projection formula, 𝐷 −𝐸1 −𝐸 ′
1 is nef. But D
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is extremal in the cone Nef (𝑊1), so D, 𝐸1, and 𝐸 ′
1 are proportional. In particular, 𝑝∗

1𝐷, 𝑝∗
1𝐸1, 𝑝∗

1𝐸 ′
1 and

𝑝∗
2𝐸2 are all proportional, which shows that E and 𝐸 ′ are proportional and thus concludes the proof. �

We now construct various fiber products showing that Theorem 1.4 fails in general over bases B
of dimension at least 2. Two types of constructions are provided: In Example 3.5, the surjective maps
𝜙1 and 𝜙2 are birational morphisms; in Example 3.6, they are smooth fibrations. The first construction
simply involves (−1)-curves on blow-ups of P2; the second construction uses Serre’s construction of
vector bundles of rank two.
Example 3.5. Take 𝑆 := P2, and take four points 𝑃1, 𝑃2, 𝑃3, 𝑃4 in S so that no three of them lie on a
line. Let ℓ1 be the line through 𝑃1, 𝑃2 and let ℓ2 be the line through 𝑃3, 𝑃4. Take

𝑊1 := Bl𝑃1 ,𝑃2 (𝑆) and 𝑊2 := Bl𝑃3 ,𝑃4 (𝑆).

We let
𝑊 := 𝑊1 ×𝑆 𝑊2.

As the blown-up points are distinct, W is isomorphic to Bl𝑃1 ,𝑃2 ,𝑃3 ,𝑃4 (𝑆), which is smooth. Moreover,
the decomposition of the Picard group

Pic(𝑊) = 𝑝∗
1Pic(𝑊1) + 𝑝∗

2Pic(𝑊2)

clearly holds.
Denote by ℓ′1 and ℓ′2 the strict transforms of ℓ1 and ℓ2 in 𝑊1 and 𝑊2, respectively. Then ℓ′𝑖 is an

effective non-nef divisor on 𝑊𝑖 as (ℓ′𝑖 )
2 = −1. Let

𝐷 := 𝑝∗
1ℓ′1 + 𝑝∗

2ℓ′2.

We show that D is nef; this also shows that Lemma 3.2 fails when dim 𝐵 ≥ 2. As D is effective, it
is enough to check that its intersections with its components are all nonnegative. By symmetry, it is
enough to compute

𝐷 · 𝑝∗
1ℓ′1 = (ℓ′1)

2 + ℓ′2 · 𝜙∗
2ℓ1 = −1 + 1 = 0.

So D is nef and has vanishing intersection with the curves 𝑝∗
1ℓ′1 and 𝑝∗

2ℓ′2.
Now, assume by contradiction that D has another decomposition 𝐷 = 𝑝∗

1𝐷1 + 𝑝∗
2𝐷2 with 𝐷𝑖 ∈

Nef (𝑊𝑖). Then we have
𝑝∗

1 (ℓ
′
1 − 𝐷1) = 𝑝∗

2 (𝐷2 − ℓ′2).

As 𝑝∗
1𝑁1 (𝑊1)R ∩ 𝑝∗

2𝑁1 (𝑊2)R clearly has dimension one, it equals R[𝑝∗OP2 (1)], where p is the natural
projection 𝑊 → 𝑆. Hence, for some 𝑐 ∈ R, we have

𝑝∗
1 (ℓ

′
1 − 𝐷1) = 𝑝∗

2 (𝐷2 − ℓ′2) = 𝑐𝑝∗OP2 (1).

Since
𝑝∗

1𝐷1 · 𝑝∗
𝑖 ℓ

′
𝑖 + 𝑝∗

2𝐷2 · 𝑝∗
𝑖 ℓ

′
𝑖 = 𝐷 · 𝑝∗

𝑖 ℓ
′
𝑖 = 0,

and both 𝑝∗
1𝐷1 and 𝑝∗

2𝐷2 are nef, we have 𝑝∗
𝑖 𝐷𝑖 · 𝑝∗

𝑖 ℓ
′
𝑖 = 0. Thus,

−1 = 𝑝∗
1ℓ′1 · 𝑝∗

1 (ℓ
′
1 − 𝐷1) = 𝑐𝑝∗

1ℓ′1 · 𝑝∗OP2 (1) = 𝑐

and similarly,

1 = 𝑝∗
2ℓ′2 · 𝑝∗

2 (𝐷2 − ℓ′2) = 𝑐𝑝∗
2ℓ′2 · 𝑝∗OP2 (1) = 𝑐,

which is a contradiction.
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Example 3.6. Take 𝑆 := P2. Let us fix a closed subscheme 𝑍2 of P2 consisting of two distinct (reduced)
points. We fix another closed subscheme 𝑍1 of P2 consisting of two distinct (reduced) points, chosen
generally with respect to 𝑍2.

For each 𝑖 = 1, 2, Serre’s construction (see, e.g., [19, Theorem 5.1.1]) produces a locally free sheaf
𝐸𝑖 of rank 2 on P2, which fits into the short exact sequence

0 → OP2 → 𝐸𝑖 → I𝑍𝑖 (𝑖) → 0. (3.1)

Set 𝑊𝑖 := P(𝐸𝑖); see [16, Definition in p.162]. Consider

𝑊 � 𝑊1 ×𝑆 𝑊2

𝑝1������
����

�

𝑝

��

𝑝2 �����
����

��

𝑊1 = P(𝐸1)

𝜙1 �����
���

���
𝑊2 = P(𝐸2) .

𝜙2������
����

��

𝑆 = P2

As a projectivized vector bundle, each 𝑊𝑖 is endowed with a tautological line bundle 𝜁𝑖 satisfying
𝜙𝑖∗𝜁𝑖 = 𝐸𝑖 . In particular, this line bundle has a distinguished section given by the inclusion morphism
in Equation (3.1), whose zero locus we denote by 𝑆𝑖 . We will describe the geometry of 𝑆𝑖 later.

Note that the Néron–Severi space of W decomposes. Indeed, the smooth fibration 𝑝1 : 𝑊 → 𝑊1
identifies with the projectivization of the vector bundle 𝜙∗

1𝐸2 over 𝑊1, which has tautological line bundle
𝑝∗

2𝜁2, so

𝑁1(𝑊)R = 𝑝∗
1𝑁1 (𝑊1)R + R · 𝑝∗

2 [𝜁2]

= R · 𝑝∗
1 [𝜁1] + 𝑝∗𝑁1 (𝑆)R + R · 𝑝∗

2 [𝜁2]

= 𝑝∗
1𝑁1 (𝑊1) + 𝑝∗

2𝑁1(𝑊2).

Define the line bundle
𝐷 = 𝑝∗

1𝜁1 + 𝑝∗
2𝜁2

on W. It is effective, as the 𝜁𝑖 both are. To prove that D is nef, let us describe the geometry of the zero
loci 𝑆𝑖 .

By [15, Proposition 3.6.2], and since the closed subschemes 𝑍𝑖 are locally complete intersections,
each zero locus 𝑆𝑖 is in fact a (reduced irreducible) surface, isomorphic to Bl𝑍𝑖P

2 
 P(I𝑍𝑖 (𝑖)) naturally
embedded in P(𝐸𝑖) through the surjection in Equation (3.1). Through this identification, the restricted
line bundle 𝜁𝑖 |𝑆𝑖 corresponds to the tautological line bundle of P(I𝑍𝑖 (𝑖)), which in Bl𝑍𝑖P

2 corresponds
to the dual of the exceptional line bundle twisted by 𝜙∗

𝑖OP2 (𝑖). For 𝑖 = 1, this line bundle corresponds
to the divisor obtained by strict transform of the line ℓ1 passing through the two points of 𝑍1 with the
following properties:
◦ It is effective and has a unique section which is irreducible;
◦ It has negative square.
For 𝑖 = 2, it is the strict transform of any conic through the two points of 𝑍2 with the following properties:
◦ It is effective and admits an irreducible section;
◦ It has positive square.

Let us summarize: On one hand, 𝜁1 has exactly one negative curve ℓ′1 on 𝑊1, which is contained in
𝑆1 and has negative square there. On the other hand, 𝜁2 is nef on 𝑊2.

We now prove that D is nef, arguing by contradiction: Assume that there is a curve C in W such that
𝐷 · 𝐶 < 0. We just proved that 𝑝∗

2𝜁2 is nef, so 𝜁1 · 𝑝1∗𝐶 < 0, and so there is a positive integer m such
that 𝑝1∗𝐶 = 𝑚ℓ′1; moreover, C must lie in 𝑝−1

1 (ℓ′1). The restricted map 𝜙1 : ℓ′1 → ℓ1 is an isomorphism,
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so its base change 𝑝2 : 𝑝−1
1 (ℓ′1) → 𝜙−1

2 (ℓ1) 
 P(𝐸2 |ℓ1) is an isomorphism too. Thus, 𝑝2∗𝐶 is a reduced
curve 𝐶2 in 𝑊2, and 𝜙2∗𝐶2 = 𝑚ℓ1. By the projection formula,

𝐷 · 𝐶 = 𝑚𝜁1 · ℓ′1 + 𝜁2 · 𝐶2.

We have 𝜁1 |𝑆1 = ℓ′1, so 𝜁1 · ℓ′1 = −1. Moreover, by [39, Example 1 in §5.2, Chapter 1], and since we
chose 𝑍1 generally with respect to 𝑍2, we have

𝐸2 |ℓ1 
 OP1 (1) ⊕ OP1 (1), (3.2)

so 𝐸2 |ℓ1 ⊗Oℓ1 (−1) is nef, in particular 𝜁2 ·𝐶2 ≥ 𝜙∗
2Oℓ1 (1) ·𝐶2 = 𝑚. Hence, we finally have 0 > 𝐷 ·𝐶 ≥

−𝑚 + 𝑚 = 0, contradiction. So D is nef.
We conclude this example by picking a decomposition of D as 𝑝∗

1𝐷1 + 𝑝∗
2𝐷2 with 𝐷𝑖 ∈ 𝑁1(𝑊𝑖)R,

and proving that at least one of the 𝐷𝑖 is not nef. Since the intersection of 𝑝∗
1𝑁1(𝑊1)R with 𝑝∗

2𝑁1(𝑊2)R
is the subspace R · 𝑝∗ [OP2 (1)], and since we already have 𝐷 = 𝑝∗

1𝜁1 + 𝑝∗
2𝜁2, there exists 𝑎 ∈ R such that

𝐷1 = 𝜁1 + 𝑎𝜙∗
1OP2 (1), 𝐷2 = 𝜁2 − 𝑎𝜙∗

2OP2 (1).

In particular,
𝐷1 · ℓ′1 = 𝜁1 · ℓ′1 + 𝑎OP2 (1) · 𝜙1∗ℓ

′
1 = −1 + 𝑎.

Moreover, by [39, Example 1 in §5.2, Chapter 1] again, there exists a line ℓ2 in P2 such that

𝐸2 |ℓ2 
 OP1 ⊕ OP1 (2), (3.3)

and so there is a section ℓ′2 of the fibration 𝜙2 : P(𝐸2 |ℓ2) → ℓ2 such that 𝜁2 · ℓ′2 = 0. In particular,

𝐷2 · ℓ′2 = 𝜁2 · ℓ′2 − 𝑎ℓ2 · 𝜙2∗ℓ
′
2 = −𝑎.

Since at least one of the two numbers 𝑎 − 1 and −𝑎 is negative, 𝐷1 and 𝐷2 cannot both be nef.

We now use Examples 3.5 and 3.6 to build similar counterexamples over bases of higher dimension.

Example 3.7. Take W, 𝑊1, 𝑊2 and S as in Example 3.5 or Example 3.6. Note that they all are rationally
connected: It is clear in Example 3.5 and follows from [13, Corollary 1.3] in Example 3.6. Introduce

𝑊 × 𝑇 = (𝑊1 × 𝑇) ×(𝑆×𝑇 ) (𝑊2 × 𝑇),

where T is an arbitrary smooth projective variety. Since W, 𝑊1 and 𝑊2 are rationally connected and
smooth, they have trivial irregularity so that

𝑁1(𝑍 × 𝑇)R = 𝑝∗
𝑍 𝑁1(𝑍)R ⊕ 𝑝∗

𝑇 𝑁1 (𝑇)R,

for 𝑍 = 𝑊 , 𝑊1 or 𝑊2. This implies that

𝑁1(𝑊 × 𝑇)R = (𝑝1 × id𝑇 )∗𝑁1(𝑊1 × 𝑇)R + (𝑝2 × id𝑇 )∗𝑁1 (𝑊2 × 𝑇)R.

Note that by the projection formula,

Nef (𝑍 × 𝑇) = 𝑝∗
𝑍Nef (𝑍) ⊕ 𝑝∗

𝑇 Nef (𝑇),

for 𝑍 = 𝑊 , 𝑊1 or 𝑊2. So, if we assume by contradiction that

Nef (𝑊 × 𝑇) = (𝑝1 × id𝑇 )∗Nef (𝑊1 × 𝑇) + (𝑝2 × id𝑇 )∗Nef (𝑊2 × 𝑇),

we get Nef (𝑊) = 𝑝∗
1Nef (𝑊1) + 𝑝∗

2Nef (𝑊2), which contradicts Example 3.5 or Example 3.6.
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Remark 3.8. We note that Theorem 1.4 also fails if the nef cones are replaced by the movable cones. In
general, let X be a smooth projective variety and recall that a divisor D on X is called movable, if there
is a positive integer m such that 𝑚𝐷 is effective and the base locus of the linear system |O𝑋 (𝑚𝐷) | has
no component of codimension 1. The closed movable cone Mov(𝑋) is then defined as the closure of the
convex cone in 𝑁1(𝑋)R generated by the classes of movable divisors. It always holds Nef (𝑋) ⊂ Mov(𝑋),
and, if moreover X is a surface, then Nef (𝑋) = Mov(𝑋).

Take a general fiber product 𝑊 = 𝑊1 ×P1 𝑊2 of two very general rational elliptic surfaces 𝑊1 → P1

and 𝑊2 → P1 with sections. Then W is a strict Calabi–Yau threefold and has nontrivial algebraic flops
(see [37]). Thus, Nef (𝑊) � Mov(𝑊). But since the 𝑊𝑖 are surfaces, we have

𝑝∗
1Mov(𝑊1) + 𝑝∗

2Mov(𝑊2) = 𝑝∗
1Nef (𝑊1) + 𝑝∗

2Nef (𝑊2) = Nef (𝑊) � Mov(𝑊),

where the second equality follows from Theorem 1.4.
Even in this particular case, the version of the cone conjecture stated in [48, Conjecture 2.1.(2)] is

not known.

We conclude this section with a corollary of Theorem 1.4 that will be key in the proof of Theorem 1.6.
For a morphism 𝜋 : 𝑋 → 𝑌 , we define

Aut(𝑋/𝑌 ) = {𝑔 ∈ Aut(𝑋) | 𝜋 ◦ 𝑔 = 𝜋}.

Corollary 3.9. For 𝑖 = 1, 2, let 𝜙𝑖 : 𝑊𝑖 → 𝐵 be a surjective morphism from a projective variety to a
projective curve B; let 𝐻𝑖 be a subgroup of Aut(𝑊𝑖/𝐵). Assume that

1. The fiber product 𝑊 = 𝑊1 ×𝐵 𝑊2 is irreducible;
2. It holds

𝑝∗
1𝑁1(𝑊1)R + 𝑝∗

2𝑁1 (𝑊2)R = 𝑁1(𝑊)R,

where 𝑝𝑖 denotes the projection from W onto 𝑊𝑖;
3. For each 𝑖 = 1, 2, there exists a rational polyhedral coneΠ𝑖 in Nef+(𝑊𝑖) such that Amp(𝑊𝑖) ⊂ 𝐻𝑖 ·Π𝑖 .

Then, for any subgroup H of Aut(𝑊) containing 𝐻1 × 𝐻2, there is a rational polyhedral fundamental
domain for the H-action on Nef+(𝑊).

Proof. Let Π be the convex hull of 𝑝∗
1Π1 + 𝑝∗

2Π2. Then Π is a rational polyhedral cone contained in
Nef+(𝑊). Moreover,

Amp(𝑊) ⊂ (𝐻1 × 𝐻2) · Π ⊂ 𝐻 · Π

as 𝑝∗
1Amp(𝑊1) + 𝑝∗

2Amp(𝑊2) = Amp(𝑊) by Theorem 1.4. The existence of a rational polyhedral
fundamental domain then follows from Proposition 2.3.(1). �

4. Construction of Schoen varieties

Schoen varieties are constructed as fiber products of two fibrations over P1. Let us first construct these
fibrations.

4.1. The factor W with a fibration over P1

This construction relies on a pencil of ample hypersurfaces in a Fano manifold.
Let Z be a Fano manifold of dimension at least 2, and let D be an ample divisor in Z such that both

O𝑍 (𝐷) and O𝑍 (−𝐾𝑍 − 𝐷) are globally generated. Note that O𝑍 (−𝐾𝑍 ) is then globally generated as
well.
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Example 4.1. Take any toric Fano manifold Z of dimension at least 2. Since nef line bundles on a
projective toric manifold are globally generated, any decomposition −𝐾𝑍 = 𝐷 + 𝐷 ′ as the sum of an
ample divisor D and a nef divisor 𝐷 ′ yields a pair (𝑍, 𝐷) satisfying the above condition.

Let 𝑊 ⊂ P1×𝑍 be a general member of the ample and basepoint-free linear system |OP1 (1)�O𝑍 (𝐷) |.
We have a fibration 𝜙 : 𝑊 → P1 via the first projection, and the second projection 𝜀 : 𝑊 → 𝑍 is the
blow-up of Z along the smooth subvariety Y of codimension two cut out by the members of the pencil in
|𝐷 | defined by W. Since Z is Fano, W is rationally connected. By construction, any point 𝑦 ∈ 𝑌 defines
a rational curve 𝜀−1(𝑦) which is a section of 𝜙 : 𝑊 → P1.

By the adjunction formula,

O𝑊 (−𝐾𝑊 ) = (OP1 (1) �O𝑍 (−𝐾𝑍 − 𝐷)) |𝑊 , (4.1)

so O𝑊 (−𝐾𝑊 ) is globally generated, a fortiori nef and effective.
If Z is chosen to be a del Pezzo surface, then the surface W is described by the following lemma.

Recall that a smooth projective surface S is called weak del Pezzo if its anticanonical divisor −𝐾𝑆 is nef
and big.

Lemma 4.2. If Z has dimension 2, then either 𝐷 ∈ | − 𝐾𝑍 | and 𝑊
𝜙
−→ P1 is a rational elliptic surface

with globally generated anticanonical line bundle, or W is a weak del Pezzo surface.

Proof. Since W is rationally connected and dim 𝑊 = 2, we know that W is rational. If 𝐷 ∈ | − 𝐾𝑍 |,
then O𝑊 (−𝐾𝑊 ) = 𝜙∗OP1 (1), which is globally generated, and which makes W into a rational elliptic
surface.

Suppose now that 𝐷 ∉ | −𝐾𝑍 |. As −𝐾𝑍 −𝐷 is effective and nontrivial, and as −𝐾𝑍 and D are ample,
we have −𝐾𝑍 (−𝐾𝑍 − 𝐷) > 0 and 𝐷 (−𝐾𝑍 − 𝐷) > 0, and thus,

𝐾2
𝑍 > −𝐾𝑍 · 𝐷 > 𝐷2.

As W is the blowup of Z at (𝐷2) points, we have 𝐾2
𝑊 = 𝐾2

𝑍 − 𝐷2 > 0. Since −𝐾𝑊 is nef, W is a weak
del Pezzo surface. �

Remark 4.3. Note that, in the case where W is a rational elliptic surface, the fact that it has a section
and that it is chosen general in its pencil on P1 × 𝑍 implies that it is isomorphic to P2 blown-up in the
base locus of a general pencil of cubics. In particular, W has topological Euler characteristics 12, the
canonical fibration 𝑊 → P1 has some singular fibers but no multiple fibers. The fact that the rational
elliptic surface W is general implies that the singular fibers of 𝑊 → P1 are exactly 12 nodal rational
curves ([34, p.8]).

Considering the j-invariant in family for the fibration 𝑊 → P1, we obtain a proper surjective map
𝑗 : P1 → P1 which is finite of degree 12 and has 12 simple poles which occur at the 12 image points of
the 12 singular fibers ([34, Lemma (IV.4.1), Corollary (IV.4.2)]).

In general, the construction of W described above ensures the following properties.

Proposition 4.4. We have

Nef𝑒 (𝑊) = Nef+(𝑊) = Nef (𝑊).

Moreover, if dim 𝑊 ≥ 3 or if W is a weak del Pezzo surface, then the cone Nef (𝑊) is rational polyhedral,
spanned by classes of semiample divisors.

Proof. We start with the ‘moreover’ part. It is a corollary of some known results. If W is a weak del
Pezzo surface, then W is log Fano (see, e.g., [33, Proposition 2.6]). Hence, by the cone theorem [26,
Theorem 3.7], its nef cone is a rational polyhedral cone spanned by classes of semiample divisors.
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Assume that dim 𝑊 ≥ 3. Since P1 × 𝑍 is a smooth Fano variety of dimension at least four, and since
𝑊 ⊂ P1 × 𝑍 is a smooth ample divisor such that

OP1×𝑍 (−𝐾P1×𝑍 − 𝑊) = O𝑍 (−𝐾𝑍 − 𝐷) �OP1 (1)

is nef, we can apply [1, Proposition 3.5] (which generalizes [3, Appendix]). It yields an isomorphism

𝑗∗ : NE(𝑊)
∼
−→NE(P1 × 𝑍)

induced by the inclusion 𝑗 : 𝑊 ↩→ P1 × 𝑍 . Dually, we obtain an isomorphism

𝑗∗ : Nef (P1 × 𝑍)
∼
−→Nef (𝑊).

As Nef (P1 × 𝑍) is rational polyhedral and spanned by classes of semiample divisors, so is Nef (𝑊).
We now prove the equality of the three cones Nef𝑒 (𝑊), Nef+(𝑊), and Nef (𝑊). If dim 𝑊 ≥ 3 or if W

is a weak del Pezzo surface, the equality clearly follows from the fact that Nef (𝑊) is rational polyhedral,
spanned by classes of semiample divisors. So by Lemma 4.2, we can focus on the case where W is a
rational elliptic surface.

Clearly, Nef𝑒 (𝑊) and Nef+(𝑊) are subcones of Nef (𝑊). Moreover, Nef+(𝑊) ⊂ Nef𝑒 (𝑊) by [48,
Lemma 4.2]. We only need to show that Nef (𝑊) = Nef+(𝑊). By [38, Corollary 3.3. (c)], the cone NE(𝑊)

is generated by curve classes, so dually, Nef(𝑊) is spanned by Cartier divisors. So Nef (𝑊) = Nef+(𝑊)

indeed. �

Let us conclude the description of W by describing the general fiber of 𝜙 : 𝑊 → P1, under the
assumption that 𝐷 ∈ | − 𝐾𝑍 |.

Lemma 4.5. Suppose that 𝐷 ∈ | − 𝐾𝑍 |. Then the general fiber F of 𝜙 : 𝑊 → P1 is a Calabi–Yau
manifold (as in Definition 2.2).

Proof. Since 𝐷 ∈ | − 𝐾𝑍 |, the general fiber F is linearly equivalent to the anticanonical divisor −𝐾𝑊

by Equation (4.1). By adjunction, F has trivial canonical bundle. We also have an exact sequence

0 → O𝑊 (−𝐾𝑊 ) → O𝑊 → O𝐹 → 0.

Since W is rationally connected, we have

ℎdim𝑊−𝑖 (𝑊,−𝐾𝑊 ) = ℎ𝑖 (𝑊,O𝑊 ) = 0

for 𝑖 ≥ 1. Hence, ℎ𝑖 (𝐹,O𝐹 ) = 0 whenever 1 ≤ 𝑖 ≤ dim 𝑊 − 2 = dim 𝐹 − 1. �

4.2. The fiber product 𝑋 = 𝑊1×P1𝑊2

We are ready to generalize Schoen’s construction and obtain Calabi–Yau pairs in arbitrary dimension.
For 𝑖 = 1, 2, let 𝑍𝑖 , 𝐷𝑖 , 𝑊𝑖 be as in §4.1. We denote by 𝜙𝑖 : 𝑊𝑖 → P

1 the associated fibration and recall
that it has a section.

We add one assumption, which is automatically satisfied by taking the fibrations 𝜙𝑖 for 𝑖 = 1, 2 to be
general with respect to one another:

For every 𝑡 ∈ P1, the fiber of at least one of the 𝜙𝑖 above 𝑡 is smooth.

In the case where both 𝑊𝑖 are rational elliptic surfaces, this assumption has an important consequence.

Lemma 4.6. Let 𝑊1 and 𝑊2 be general rational elliptic surfaces, with their canonical fibrations
𝜙𝑖 : 𝑊𝑖 → P

1, each admitting a section. Assume that for every 𝑡 ∈ P1, there is i such that the fiber 𝜙−1
𝑖 (𝑡)
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is smooth. Then, for a very general point 𝑡 ∈ P1, the fibers 𝜙−1
1 (𝑡) and 𝜙−1

2 (𝑡) are smooth, nonisogenous
elliptic curves.

Proof. For 𝑖 = 1, 2, consider the finite morphism 𝑗𝑖 : P1 → P1 induced by the j-invariant of the elliptic
fibration 𝜙𝑖 (see Remark 4.3). Define the morphism 𝐽 := ( 𝑗1, 𝑗2) : P1 → P1 × P1. Its image is an
irreducible curve in P1 × P1.

For each positive integer n, let 𝐹𝑛 (𝑥, 𝑦) ∈ Z[𝑥, 𝑦] be the polynomial as in [45, Theorem 6.3 in p.146].
Then by [45, Exercise 2.19. (a) in p.182], we have 𝐹𝑛 ( 𝑗 (𝜙−1

1 (𝑡)), 𝑗 (𝜙−1
2 (𝑡))) = 0 if and only if there is

an isogeny 𝜙−1
1 (𝑡) → 𝜙−1

2 (𝑡) of degree n. By [45, Exercise 2.18. (e) in p.181], each 𝐹𝑛 (𝑥, 𝑦) is a product
of some polynomials Φ𝑚(𝑥, 𝑦) indexed by positive integers. By the expression in [45, Exercise 2.18 in
p.181], each Φ𝑚(𝑥, 𝑦) viewed as a polynomial in the single variable x has leading coefficient 1. Together
with [45, Exercise 2.18.(b) in p.181], we obtain the irreducibility of Φ𝑚(𝑥, 𝑦) in C[𝑥, 𝑦].

Let Σ𝑚 ⊂ P1 × P1 be the irreducible curve defined by the homogenization of Φ𝑚(𝑥, 𝑦) using 𝑥 = 𝑠/𝑡
and 𝑦 = 𝑢/𝑣. We claim that 𝐽 (P1) intersects with each Σ𝑚 at finitely many points. Indeed, by our
assumption, we can take 𝑡 ∈ P1 such that the fiber 𝜙−1

1 (𝑡) is singular, while the fiber 𝜙−1
2 (𝑡) is an elliptic

curve, so 𝐽 (𝑡) = ([1 : 0], [𝛼 : 1]) for some 𝛼 ∈ C. As we mentioned before, each Φ𝑚(𝑥, 𝑦) viewed as
a polynomial in the single variable x has leading coefficient 1, so ([1 : 0], [𝛼 : 1]) ∉ Σ𝑚. This implies
𝐽 (P1) ≠ Σ𝑚, and the claim holds because both Σ𝑚 and 𝐽 (P1) are irreducible.

Let Σ ⊂ P1 × P1 be the union of the countably many curves Σ𝑚. Then the set P1 \ (𝑍1 ∪ 𝑍2 ∪

𝐽−1 (𝐽 (P1) ∩ Σ)) is nonempty with the property that each of its elements is a very general point, say t,
satisfying that the fibers 𝜙−1

1 (𝑡) and 𝜙−1
2 (𝑡) are smooth, nonisogenous elliptic curves. �

Now that we better understand the fibrations 𝜙𝑖 relatively to one another, we can consider the fiber
product over P1

𝑋 = 𝑊1 ×P1 𝑊2
𝑝1

�����
���

��

𝜙

��

𝑝2

����
���

���

𝑊1

𝜙1 ����
���

���
�� 𝑊2 .

𝜙2�����
���

���
�

P1

As for every 𝑡 ∈ P1, the fiber of at least one of the 𝜙𝑖 above t is smooth, the variety X is smooth too.
We can also view X as a complete intersection of two hypersurfaces in P1 × 𝑍1 × 𝑍2, given by general
members in the linear systems

|OP1 (1) �O𝑍1 (𝐷1) �O𝑍2 | and |OP1 (1) �O𝑍1 �O𝑍2 (𝐷2) |.

By adjunction, we obtain that

O𝑋 (−𝐾𝑋 ) =
(
OP1 �O𝑍1 (−𝐾𝑍1 − 𝐷1) �O𝑍2 (−𝐾𝑍2 − 𝐷2)

)
|𝑋 , (4.2)

which is globally generated, hence nef and effective.

Definition 4.7. A smooth projective variety X constructed as above is called a Schoen variety. A pair
(𝑋,Δ) is called a Schoen pair if X is a Schoen variety, and Δ is an effective Q-divisor such that
𝐾𝑋 + Δ ∼Q 0.

Any Schoen variety X can be associated many Schoen pairs (𝑋,Δ) as long as −𝐾𝑋 is nontrivial.
Every Schoen pair is by definition a Calabi–Yau pair (as in Definition 2.1). Moreover, if (𝑋,Δ) is a
Schoen pair, then there exists a positive integer m such that

Δ =
1
𝑚
Δ𝑚,𝑋 , with Δ𝑚,𝑋 ∈ | − 𝑚𝐾𝑋 |. (4.3)

If 𝑚 ≥ 2 and Δ𝑚,𝑋 ∈ | − 𝑚𝐾𝑋 | is general, the Calabi–Yau pair (𝑋,Δ) is klt.
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To conclude this section, we prove that, if for both 𝑖 = 1, 2, the divisor 𝐷𝑖 chosen when constructing
𝑊𝑖 is in the linear system | − 𝐾𝑍𝑖 |, then the Schoen variety X is a strict Calabi–Yau manifold.

Lemma 4.8. Any Schoen variety X is simply connected.

Proof. The proof is similar to [43, Lemma 1] and [46, Lemma 2.1].
Let 𝑈 ⊂ P1 be the open subset over which the morphism 𝜙 : 𝑋 → P1 is smooth, and set 𝑉 := 𝜙−1(𝑈).

Let 𝑖 : 𝑉 ↩→ 𝑋 and 𝑗 : 𝑈 ↩→ P1 be the natural inclusions. The restriction 𝜙′ � 𝜙|𝑉 : 𝑉 → 𝑈 is
topologically locally trivial with a fiber, say F. Since both 𝜙1 and 𝜙2 have sections, 𝜙 : 𝑋 → P1 also
admits a section 𝜎 : P1 → 𝑋 . Consider the commutative diagram

1 �� 𝜋1 (𝐹) �� 𝜋1 (𝑉)

𝑖∗
����

𝜙′
∗

�� �� 𝜋1 (𝑈)

𝑗∗
��

𝜎𝑈 ∗		 �� 1

𝜋1 (𝑋)
𝜙∗

�� �� 𝜋1 (P
1).

𝜎∗		

Here, the first row is exact by the homotopy long exact sequence, and 𝑖∗ : 𝜋1 (𝑉) → 𝜋1 (𝑋) is surjective
by [25, Proposition 2.10.1].

We claim that the image of 𝜋1 (𝐹) in 𝜋1 (𝑋) equals 𝜋1 (𝑋). Indeed, since 𝜋1 (P
1) is trivial, the

composition 𝑖∗ ◦ 𝜎𝑈 ∗ = 𝜎∗ ◦ 𝑗∗ is trivial. Using that 𝑖∗ is surjective, that this composition is trivial and
that 𝜋1 (𝑉) is generated by the union of its subgroups 𝜋1 (𝐹) and 𝜎𝑈 ∗𝜋1 (𝑈), we obtain

𝜋1 (𝑋) = 𝑖∗𝜋1 (𝑉) = 𝑖∗𝜋1 (𝐹).

We are now left to show that the image of 𝜋1 (𝐹) in 𝜋1 (𝑋) is trivial. Write 𝐹 = 𝐹1 × 𝐹2, where 𝐹𝑖 is
a general fiber of 𝜙𝑖 : 𝑊𝑖 → P

1 for 𝑖 = 1, 2. Since 𝜋1 (𝐹) = 𝜋1 (𝐹1) × 𝜋1 (𝐹2), it is enough to show that
the image of 𝜋1 (𝐹𝑖) in 𝜋1 (𝑋) is trivial, which we prove for 𝑖 = 1.

A section of 𝜙2 : 𝑊2 → P1 gives rise to a section s of 𝑝1 : 𝑋 → 𝑊1. By construction, the
homomorphism 𝜋1 (𝐹1) → 𝜋1 (𝑋) is induced by 𝐹1 ↩→ 𝑊1

𝑠
−→ 𝑋 , thus factors through 𝜋1 (𝑊1). Since it

is rationally connected, 𝑊1 is simply connected and hence the image of 𝜋1 (𝐹1) in 𝜋1 (𝑋) is trivial. �

Proposition 4.9. Suppose that 𝐷𝑖 ∈ | − 𝐾𝑍𝑖 | for both 𝑖 = 1, 2. Then the Schoen variety X is a strict
Calabi–Yau manifold (see Definition 2.2).

Proof. By Equation (4.2) and Lemma 4.8, X has trivial canonical bundle and trivial fundamental group.
We are left showing that ℎ𝑝 (𝑋,O𝑋 ) = 0 for every 0 < 𝑝 < dim 𝑋 .

Lemma 4.10. Let 𝑔 : 𝒳 → 𝒴 be a surjective morphism between smooth projective varieties. Assume
that a general fiber F of g is a Calabi–Yau manifold and that the canonical line bundle 𝜔𝒳 is trivial.
Then, for every positive integer q, we have

𝑅𝑞𝑔∗O𝒳 =

{
𝜔𝒴 , if 𝑞 = dim𝒳 − dim𝒴,

0, otherwise.

Proof. Set 𝑟 := dim𝒳−dim𝒴. By [23, Theorem 2.1. (i)] and [24, Corollary 3.9], the sheaf 𝑅𝑞𝑔∗𝜔𝒳 =
𝑅𝑞𝑔∗O𝒳 is reflexive. Since 𝒴 is smooth, the invertibility of 𝑅𝑞𝑔∗O𝒳 follows provided it has rank
one. Its rank is explicitly given by the dimension of 𝐻𝑞 (𝐹,O𝐹 ), which is one if 𝑞 = 0 or r, and zero
otherwise. Hence, we have

𝑅𝑞𝑔∗O𝒳 =

{
a line bundle, if 𝑞 = 0 or 𝑟,

0, otherwise.
(4.4)
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By Grothendieck–Verdier duality [18, Theorem 3.34], we have

𝑅𝑔∗O𝒳 
 𝑅𝑔∗𝜔𝒳 
 𝑅H𝑜𝑚(𝑅𝑔∗O𝒳, 𝜔𝒴 [−𝑟]).

The Grothendieck spectral sequence gives

𝐸 𝑝,−𝑞
2 := E𝑥𝑡 𝑝 (𝑅𝑞𝑔∗O𝒳, 𝜔𝒴) ⇒ 𝑅𝑝−𝑞+𝑟𝑔∗O𝒳

(see, e.g., [18, Example 2.70.ii)]). But by Equation (4.4), the page 𝐸2 has exactly two nonzero entries,
namely 𝐸0,0

2 = 𝜔𝒴 , and 𝐸0,−𝑟
2 . So Lemma 4.10 follows. �

We return to our Schoen variety X. For 𝑖 = 1, 2, we let 𝑤𝑖 := dim 𝑊𝑖 . By Lemma 4.5, and as
𝑝2 : 𝑋 → 𝑊2 is a base change of 𝜙1 : 𝑊1 → P1, the general fiber of 𝑝2 is a Calabi–Yau manifold. We
can thus apply Lemma 4.10 to 𝑝2, and obtain that

𝑅𝑞 𝑝2∗𝜔𝑋 = 𝑅𝑞 𝑝2∗O𝑋 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O𝑊2 , if 𝑞 = 0,

𝜔𝑊2 , if 𝑞 = dim 𝑤1 − 1,

0, otherwise.

Together with [24, Corollary 3.2], this yields

ℎ𝑝 (𝑋,O𝑋 ) = ℎ𝑝 (𝑊2,O𝑊2) + ℎ𝑝−𝑤1+1(𝑊2, 𝜔𝑊2)

for all 0 ≤ 𝑝 ≤ dim 𝑋 . Since 𝑊2 is rationally connected, this is zero as soon as 𝑝 ≠ 0 and 𝑝 <
𝑤1 + 𝑤2 − 1 = dim 𝑋 . �

5. Application to the cone conjecture

In this section, we prove Theorem 1.6. The setup and the notations were defined in Section 4: We consider
a Schoen variety X, fitting in a Schoen pair (𝑋,Δ). Let us recall the Cartesian diagram defining X:

𝑋 = 𝑊1 ×P1 𝑊2
𝑝1

�����
���

��

𝜙

��

𝑝2

����
���

���

𝑊1

𝜙1 ����
���

���
�� 𝑊2 .

𝜙2�����
���

���
�

P1

Lemma 5.1. We have

𝑝∗
1𝑁1 (𝑊1)R + 𝑝∗

2𝑁1(𝑊2)R = 𝑁1 (𝑋)R.

Proof. Let 𝑝 ∈ P1 be a very general point, and let 𝐹𝑖 := 𝜙−1
𝑖 (𝑝) ⊂ 𝑊𝑖 .

Claim 5.2. The map

Ψ : Pic(𝐹1) × Pic(𝐹2) → Pic(𝐹1 × 𝐹2)

defined by Ψ(𝐿, 𝑀) = 𝐿 � 𝑀 is an isomorphism.

Proof. First, suppose that 𝑊1 and 𝑊2 are not both rational elliptic surfaces. If there is i such that 𝑍𝑖

has dimension at least 3, then 𝐹𝑖 is a smooth ample hypersurface in 𝑍𝑖 , and so by Lefschetz hyperplane
theorem, 𝐹𝑖 has trivial irregularity. If there is i such that 𝑍𝑖 is a surface and 𝐷𝑖 ∉ | − 𝐾𝑍𝑖 |, then 𝐹𝑖 is a
smooth curve in 𝑍𝑖 , and by adjunction, it is in fact a rational curve, which again has trivial irregularity.
In any case, Claim 5.2 follows from [16, Exercise III.12.6].
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Assume now that both 𝑊1 and 𝑊2 are rational elliptic surfaces. Then, by Lemma 4.6, the fibers 𝐹1
and 𝐹2 are smooth, nonisogenous elliptic curves. We have a short exact sequence of abelian groups
[2, Theorem 11.5.1]

0 → Pic(𝐹1) × Pic(𝐹2)
Ψ
−→ Pic(𝐹1 × 𝐹2) → Hom(𝐹1, 𝐹2) → 0,

where Hom(𝐹1, 𝐹2) denotes the group of homomorphisms from 𝐹1 to 𝐹2 preserving both the variety and
the group structure. Since 𝐹1 and 𝐹2 are nonisogenous, Hom(𝐹1, 𝐹2) = 0, which proves Claim 5.2. �

Let L be a line bundle on X. Claim 5.2 implies that

𝐿 |𝜙−1 (𝑝) 
 𝐿 |𝐹1×{𝑢 } � 𝐿 | {𝑣 }×𝐹2 ,

for any points 𝑢 ∈ 𝐹2 and 𝑣 ∈ 𝐹1.
For each 𝑖 = 1, 2, we choose a section 𝑠𝑖 : P1 → 𝑊𝑖 and let 𝜎𝑖 : 𝑊𝑖 → 𝑋 be the induced section:

𝜎1(𝑤1) := (𝑤1, 𝑠2(𝜙1(𝑤1))) ∈ 𝑊1 ×P1 𝑊2,

and similarly for 𝜎2. We have

𝐿 |𝜙−1 (𝑝) 
 𝐿 |𝐹1×{𝑠1 (𝑝) } � 𝐿 | {𝑠2 (𝑝) }×𝐹2


 (𝜎∗
1 𝐿)|𝐹1 � (𝜎∗

2 𝐿)|𝐹2


 (𝑝∗
1𝜎∗

1 𝐿 ⊗ 𝑝∗
2𝜎∗

2 𝐿)|𝜙−1 (𝑝) .

Since 𝑝 ∈ P1 is very general, by applying [49, Theorem 3.1 and Remark 3.3] to the smooth part of the
fibration 𝜙 : 𝑋 → P1, we obtain

𝐿 ∼Q 𝑝∗
1𝜎∗

1 𝐿 ⊗ 𝑝∗
2𝜎∗

2 𝐿 ⊗ O𝑋 (𝐷),

for a divisor D whose support is contained in a finite union of fibers of 𝜙 : 𝑋 → P1. Note that an
irreducible component R of a fiber of 𝜙 embeds in the product 𝜙−1

1 (𝜙(𝑅)) ×𝜙−1
2 (𝜙(𝑅)), of which at least

one factor 𝜙−1
𝑖 (𝜙(𝑅)) is smooth, hence irreducible. It follows that there is an irreducible component 𝑅′

of 𝜙−1
𝑗 (𝜙(𝑅)) with 𝑗 = {1, 2} \ {𝑖} such that 𝑅 = 𝑝∗

𝑗𝑅
′. Applying this to the irreducible components of

D, we obtain that

𝑁1 (𝑊1)R × 𝑁1(𝑊2)R
𝑝∗

1+𝑝
∗
2

−−−−−→ 𝑁1(𝑋)R

is surjective. �

Lemma 5.3. For every 𝐷 ∈ Nef (𝑋), one can write 𝐷 = 𝑝∗
1𝐷1 + 𝑝∗

2𝐷2, where 𝐷𝑖 ∈ Nef (𝑊𝑖).

Proof. Lemma 5.3 follows from Lemma 5.1 and Theorem 1.4. �

Theorem 5.4 (= Theorem 1.6). Let (𝑋,Δ) be a Schoen pair. Then

Nef (𝑋) = Nef+(𝑋) = Nef𝑒 (𝑋),

and moreover, there exists a rational polyhedral fundamental domain for the action of Aut(𝑋,Δ) on
Nef𝑒 (𝑋).

Proof. Since Nef (𝑊𝑖) = Nef+(𝑊𝑖) = Nef𝑒 (𝑊𝑖) by Proposition 4.4, we have, by Lemma 5.3, Nef (𝑋) =
𝑝∗

1Nef+(𝑊1) + 𝑝∗
2Nef+(𝑊2) ⊂ Nef+(𝑋), so Nef (𝑋) = Nef+(𝑋). Similarly, we have Nef (𝑋) = Nef𝑒 (𝑋).

This proves the first assertion.
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Define the subgroups 𝐻𝑖 ≤ Aut(𝑊𝑖) by

𝐻𝑖 =

{
Aut(𝑊𝑖/P

1), if 𝑊𝑖 is a rational elliptic surface,
{id𝑊𝑖 }, otherwise.

Then there exists a rational polyhedral cone Π𝑖 ⊂ Nef+(𝑊𝑖) such that 𝐻𝑖 ·Π𝑖 contains Amp(𝑊𝑖). Indeed,
the case where 𝑊𝑖 is a rational elliptic surface with −𝐾𝑊𝑖 semiample follows from [47, Theorem 8.2],
and the other cases follow from Proposition 4.4.

We claim that 𝐻1 × 𝐻2 ≤ Aut(𝑋,Δ). Note that there exists a positive integer m such that

Δ =
1
𝑚
Δ𝑚,𝑋

for some Δ𝑚,𝑋 ∈ | − 𝑚𝐾𝑋 |. If neither 𝑊1 nor 𝑊2 is a rational elliptic surface, then 𝐻1 × 𝐻2 is trivial by
definition. If both 𝑊1 and 𝑊2 are rational elliptic surfaces, thenΔ𝑚,𝑋 = 0 and clearly, 𝐻1×𝐻2 ≤ Aut(𝑋).
Finally, if one of the 𝑊𝑖 , say 𝑊1, is a rational elliptic surface, and the other, say 𝑊2, is not, then
O𝑋 (−𝐾𝑋 ) 
 𝑝∗

2O𝑊2 (−𝐾𝑍2 − 𝐷2). Since 𝑝2 is proper surjective with connected fibers, the pullback 𝑝∗
2

induces an isomorphism

𝐻0(𝑋, 𝑝∗
2O𝑊2 (−𝑚(𝐾𝑍2 + 𝐷2))) 
 𝐻0 (𝑊2,O𝑊2 (−𝑚(𝐾𝑍2 + 𝐷2))).

So Δ𝑚,𝑋 = 𝑝∗
2Δ𝑚,𝑊2 , for some divisor Δ𝑚,𝑊2 ∈ | − 𝑚(𝐾𝑍2 + 𝐷2) |. Since 𝐻2 = {id𝑊2 } in this case, it

follows that Δ𝑚,𝑋 is invariant under 𝐻1 × 𝐻2. This proves the claim.
It then follows from Corollary 3.9 that Nef𝑒 (𝑋) = Nef+(𝑋) has a rational polyhedral fundamental

domain Π for the Aut(𝑋,Δ)-action. �

Remark 5.5. In [14], the authors verified the cone conjecture for a strict Calabi–Yau threefold 𝑋 =
𝑊1 ×P1 𝑊2, where both 𝑊𝑖 are general rational elliptic surfaces with sections. They use the following
identification shown by Namikawa [37, Proposition 2.2 and Corollary 2.3]

Aut(𝑋) � Aut(𝑊1) × Aut(𝑊2),

which our proof bypasses, using Looijenga’s result (Lemma 2.4) instead.

Example 5.6. Fix an integer 𝑛 ≥ 3. Let us explain how to choose 𝑍1, 𝑍2, 𝐷1, and 𝐷2 so that our
construction produces a strict Calabi–Yau manifold X of dimension n such that Nef (𝑋) admits infinitely
many extremal rays and X satisfies the cone conjecture. We take 𝑍1 = P2 and 𝐷1 = OP2 (3) so that 𝑊1
is a general rational elliptic surface. We take 𝑍2 to be a Fano variety of dimension 𝑛 − 1 with −𝐾𝑍2

globally generated (for example, 𝑍2 = P𝑛−1), and we take 𝐷2 = −𝐾𝑍2 .
The Schoen variety X obtained from these choices is a strict Calabi–Yau manifold by Proposition

4.9, and Nef (𝑋) admits infinitely many extremal rays by Lemma 5.1, by the fact that Nef (𝑊1) admits
infinitely extremal rays already, and by Corollary 1.5.

We conclude with an unsurprising corollary of the fact that Schoen varieties satisfy the cone conjec-
ture.

Corollary 5.7. Let X be a Schoen variety. Then the group 𝜋0Aut(𝑋) is finitely presented, and there are
at most finitely many real forms for X, up to isomorphism.

Proof. The linear action 𝜌 : Aut(𝑋) → GL(𝑁1 (𝑋)) induces and factorizes through an action

𝜌 : 𝜋0Aut(𝑋) → GL(𝑁1 (𝑋)).

We let Aut∗(𝑋) = 𝜌(Aut(𝑋)) = 𝜌(𝜋0Aut(𝑋)).
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Choose an effective Q-divisor Δ on X such that (𝑋,Δ) is a Schoen pair. By Theorem 1.6, there exists
a rational polyhedral cone Π ⊂ Nef+(𝑋) such that

Amp(𝑋) ⊂ Aut(𝑋,Δ) · Π ⊂ Aut∗(𝑋) · Π.

It follows from Proposition 2.3 that there is a rational polyhedral fundamental domain for the Aut∗(𝑋)-
action on Nef+(𝑋), and that the group Aut∗(𝑋) is finitely presented. By Fujiki–Liebermann’s theorem
[5, Corollary 2.11], the kernel Ker(𝜌) is finite, and so the first claim follows from [21, Corollary 10.2].

The second claim follows from Theorem 5.8 below. �

Theorem 5.8 [10, Theorem 1.6]. Let V be a smooth complex projective variety. Assume that Nef+(𝑉)

contains a rational polyhedral cone Π such that

Amp(𝑉) ⊂ Aut(𝑉) · Π.

Then V has at most finitely many mutually nonisomorphic real forms.
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