comorbidity (AD+D group) (age 41.2 (SD 9.903), 22% females) and 112 healthy controls (age 35.5 (SD 8.286), 15% females). rs1108580 and rs1611115 were detected by RT-PCR.

Results: For rs161111580, frequencies of minor T allele (p=0.031) and TT genotype (p=0.017) was higher, CC genotype (p=0.042) was lower in AD group vs. controls. rs161111580 T allele and TT genotype increases the risk of AD (OR=3.715, 95%CI [1.728-7.986], P=0.001 and OR=4.009, 95%CI [1.502-10.699], P=0.006). For rs161111580, frequency of TT genotype (p=0.009) was higher in AD+D group vs. controls. For rs1108580, frequency of major A allele (p=0.059, trend) was higher in AD+D, then in AD group. Major A allele rs1108580 increases the risk of depression in alcohol-dependent patients (OR=2.74, 95%CI [1.283-5.855], P=0.001).

Conclusions: It was shown that the DBH rs1108580 increases the risk of depression in patients with alcohol dependence.

Disclosure: No significant relationships.
Keywords: Network Analysis; comorbidity; diabetes; diabetes-distress

EPP0502
Evaluation of the role of lisdexamfetamine on attention-deficit/hyperactivity disorder common psychiatric comorbidities: mechanistic insights on binge eating disorder and depression
1Hospital Perpetuo Socorro, Unidad Ambulatoria De Psiquiatría Y Salud Mental De La Infancia, Nínñez Y Adolescencia, Badajoz, Spain; 2Hospital Universitario Infanta Leonor, Universidad Complutense, Servicio De Psiquiatría, Madrid, Spain; 3Takeda Farmacéutica Española, Medical Department, Madrid, Spain; 4Anaxomics Biotech, Molecular Health Department, Barcelona, Spain and 5Anaxomics SL, Molecular Physiology, Barcelona, Spain
*Corresponding author.
doi: 10.1192/j.eurpsy.2022.737

Introduction: Attention-deficit/hyperactivity disorder (ADHD) is a psychiatric condition in which children suffer from inattentiveness, hyperactivity, and or impulsivity. ADHD patients frequently present comorbid psychiatric disorders: in adults, the most common are depression, substance-related disorders, anxiety, and eating disorders. Children and adolescents present conduct disorders, learning disorders, anxiety and depression. Since ADHD and its psychiatric comorbidities share similarities, a partial overlap of their pathophysiological mechanisms has been suggested. ADHD, can be treated with lisdexamfetamine (LDX), a prodrug indicated by the FDA as treatment for binge eating disorder (BED) and ADHD.

Objectives: To evaluate, through a systems biology-based in silico method, the efficacy of LDX as first-line ADHD treatment to improve ADHD psychiatric comorbidities. Furthermore, we explored the molecular mechanisms behind LDX’s action.

Methods: We used the systems biology- and artificial intelligence-based Therapeutic Performance Mapping System (TPMS) technology to characterise and model ADHD comorbidities. Artificial neural networks (ANNs) algorithms were used to identify specific relationships between protein sets. Finally, we modelled the mechanisms of LDX for the most relevant comorbidities by using sampling methods and comorbidity-specific virtual patients in each case.

Results: This study predicts a strong relationship between LDX’s targets and proteins involved in BED and depression (Fig 1). Our results could be explained not only by LDX role in neurotransmitter regulation, but also by modulation of neuroplasticity (BDNF/NTRK2, GSK3), neuroinflammation (interleukins, inflammasome), oxidative stress (NOS2, SOD), and the hypothalamic-pituitary-adrenal (HPA) axis (CRH, CRHR1).