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Abstract

A plane strain or plane stress configuration of an inextensible transversely
isotropic linear elastic solid with the axis of symmetry in the plane, leads to a
harmonic lateral displacement field in stretched coordinates. Various displace-
ment and mixed displacement-traction boundary conditions yield standard
boundary-value problems of potential theory for which uniqueness and
existence of solutions are well established. However, the important case of
prescribed tractions at each boundary point gives a non-standard potential
problem involving linking of boundary values at opposite ends of chords
parallel to the axis of material symmetry. Uniqueness and existence of
solutions, within arbitrary rigid motions, are now established for the traction
problem for general domains.

1. Introduction

The common practice of reinforcing an elastic matrix by strong fibres
produces, in the simplest case of approximately homogeneous and parallel
embedding, a relatively inextensible elastic material transversely isotropic
about the fibre direction. For infinitesimal deformations in plane strain or plane
stress configurations containing the fibre direction, a stress function satisfying
a generalised biharmonic equation is obtained. However, if the inextensible
limit is taken, the inextensible theory (IT) described by Morland [1] and
England et al. [2], leads to the lower order potential theory in which the lateral
displacement is harmonic in stretched coordinates. This simplification is
helpful for both analytic and numerical purposes. Typical displacement and
mixed displacement — traction boundary conditions for domains with no finite
boundary section parallel to the fibre direction lead to standard boundary-value

* On leave from the School of Mathematics and Physics, University of East Anglia, Norwich,
U.K.

40

https://doi.org/10.1017/S033427000000093X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000093X


[2] Plane traction problems for inextensible solids 41

problems of potential theory [1] with one exception, a mixed displacement—
traction problem. Also the important traction problem, in which the traction is
prescribed at each point of'the boundary, leads to non-standard boundary
conditions.

In the traction problem boundary values at the ends of chords parallel to
the fibre direction (fibre chords) where they intersect the domain boundary are
linked. When the boundary is not convex to a given fibre line, more than one
fibre chord exists on that line, and boundary values are linked in pairs from the
ends of each chord. Iterative or other approximate numerical methods will be
required for general domains, so it is important to establish uniqueness and
existence of solutions for these non-standard boundary conditions to show that
the potential theory is a compatible approximation to the full equations
allowing low extensibility.

A proof of uniqueness, within an arbitrary rigid motion for the traction
problem, is now presented for the typical boundary conditions listed in [1]. It is
assumed that prescribed boundary displacements are continuous and pre-
scribed boundary tractions are piecewise-continuous and bounded. Then the
traction problem is discussed and under a weak restriction on the form of
boundary existence is established for a domain which has a Green's function of
the second kind (Neumann function); that is, for which the standard Neumann
problem has a solution. A simply connected bounded domain convex to all fibre
lines, and with no finite boundary section parallel to the fibre direction, is treated
first, and the problem is reduced to a Fredholm integral equation of the second
kind with a weakly singular symmetric kernel. The homogeneous equation has
a single eigenfunction corresponding to a rigid motion and orthogonal to the
right-hand function of the non-homogeneous equation, so existence of a
solution in L2 is established. It then follows that the solution corresponds to
continuous shear and transverse stress in the interior of the domain.

The same integral equation is obtained if finite boundary sections parallel
to the fibre direction are included, provided that the prescribed tangential
traction is not met continuously on such sections. That is, there exists a unique
stress field in the potential theory if shear stress discontinuity is allowed at such
parallel boundary sections. This boundary layer effect has been explained by
Everstine and Pipkin [3] for the idealised theory (IDT) which assumes
inextensibility in two orthogonal directions in the plane. The shear stress
discontinuity arises in general on boundaries parallel to either direction when
both normal and tangential tractions are prescribed, but some simple exact
solutions illustrate how the shear stress discontinuity is the limit (as extensibil-
ity approaches zero) of a thin boundary layer of high shear stress gradient. A
singular perturbation scheme for low extensibility based on IDT has been
applied to a cantilever beam problem by Everstine and Pipkin [4], and recently
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42 L. W. Morland [3]

Spencer [5] has developed boundary layer approximations based on IT.
Uniqueness and existence for the traction problem in IDT has been established
by Pipkin and Sanchez [6] for a simply connected bounded domain convex to
both sets of fibre lines.

For the bounded domain not convex to all fibre lines, simply or multiply
connected, the traction problem is reduced to a system of Fredholm equations
which in turn can be transformed into a single equation of the previous form.
Again there is an eigenfunction corresponding to rigid motion and orthogonal to
the right-hand function; but now the interior stress may have shear stress
discontinuities (interior boundary layers) along limit fibre lines intersecting the
boundary at turning points. When the domain extends to infinity, appropriate
limit behaviour leads to a standard boundary value problem.

For domains and boundary tractions which do not lead to boundary layers
at external boundaries or at limit lines in the interior, the potential solution
satisfies the full boundary conditions and is the zero order approximation to a
regular perturbation for low extensibility.

2. Elasticity Equations and Potential Theory

Plane strain or plane stress in the Oxy plane of rectangular Cartesian
coordinates are considered, and infinitesimal strain is assumed. For a linear
elastic material inextensible in the Ox direction and transversely isotropic
about Ox, the in-plane stress-displacement relations [1] are

flL dv / dv till

where fx.L is the longitudinal shear modulus and

or /**•(**•+ f*r) (2.2)
4/X-r/Cr

for plane strain or plane stress respectively, where /xT, kT are the transverse
shear and bulk moduli respectively. It is supposed that c2 is of order unity. The
displacement field has components

ux = M(y), uy = v(x, y), (2.3)

where the dependence «(y) reflects the inextensibility. The stress crxx is
arbitrary, not determined by the deformation, until determined by boundary
conditions.

In the absence of body force equilibrium in the x and y directions gives
repectively

[ ^ (2.4)

https://doi.org/10.1017/S033427000000093X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000093X
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2 ^ + ̂  = 0

The arbitrary fibre direction tension is now represented by the function f(y).
However, at boundaries y = constant, t(y), «(y) are constants and in general
there is no solution of (2.5) compatible with prescribed shear and normal
tractions crx,, ayy [1]. Some simple exact solutions for small finite extensibility
[3] demonstrate the existence of boundary layers of high shear stress gradient
and high tension in the fibre direction, approximated in the inextensible case by
shear stress discontinuity and infinite fibre tension. Thus, across an infinitesi-
mal layer of thickness 8 at a boundary y = constant, equilibrium in the
x- direction requires

^ + [ < r * , ] = 0, (2.6)

where £„ = \im(8crxx) as 8 —»0 is the total finite tension in the layer. The shear
stress jump allows the prescribed shear traction to differ from the interior
solution given by satisfying the prescribed normal traction condition. Such
shear stress discontinuities can also arise at interior limit lines in the x-
direction starting at turning points of internal boundaries.

Introducing stretched coordinates

X = x, Y = cy, (2.7)

and writing

u = U(Y), v = V(X,Y), t = T(Y), (2.8)

the basic equations become

f „.„ (2-9)
<TXX = flL | 'lT(Y)-c2XU"(Y)-c~

Thus the lateral displacement function V(X, Y) is harmonic and the complete
field description contains two further functions of a single variable: U(Y),
T(Y).

Figures 1 and 2 show typical domains in the stretched coordinate plane
OXY of simply connected bounded cross-sections of a body. In Fig. 1 the
domain D is convex to all fibre lines and the boundary C is the union of two
simple arcs CL and CR (left and right sections) each spanning an interval
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Fig. 1. Domain convex to fibre lines.

I(Y0, Y>). At each point on C (S, N) denote local tangential and outward normal
coordinates and <\> is the inclination of the outward normal to OX. If D is
extended by taking CR along the dashed contour abe, then the case of a
boundary section ab parallel to the fibre direction is included.

Figure 2 illustrates a domain not convex to all fibre lines. Constructing
interior limit lines Y = constant through the re-entrant turning points A, B, E in
the Y-direction subdivides D into a set of domains Di - D7 each convex to fibre
lines. A similar partition can be made for multiply connected domains. Each
subdomain Dr(r = 1, • • •, R in general) has a boundary formed by subsections
of CL and CR, defined as boundary sections with TT/2< 4> <37r/2 and - TT/2<

<f> < nli respectively, and a limit line Y = constant, and spans a Y-interval Ir.
Each fibre chord meets CL and CR at its end points. However, a given fibre line
Y = constant may pass through several of the convex subdomains, in Fig. 2 for
example there are fibre lines common to D, and D2, Dt and D5, D4, D6 and D7, D6

and D7. The functions U(Y), T(Y) need not be identical on disjoint fibre
chords of a common fibre line, so it is convenient to introduce single-valued
functions Ur(Y) Tr(Y) on the interval Ir of each subdomain Dr. The displace-
ment U(Y) must be continuous across a limit line, but the tension T(Y) must
may be discontinuous there. Thus

Dr: U = Ur(Y), Y <E Ir. (2.11)
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Fig. 2. Non-convex domain.

If iJ.Ltx, ixLty are the boundary tractions, then writing

f r f s ' = - [ (cos2

o C Jo
sin2

(cos2 <f> + c2 sin2 <j>)hy=f(S),

(2.12)

(2.13)

where s denotes arc length on the boundary in Oxy coordinates, it follows that
on C [1],

(2.14)

(2.15)

where

V + cXU'(Y) = g(S) + J(Y),

j ^ + c cos 4>U'(Y) = f(S),

J(Y)=--\ cos<f>T(Y')dS' = - I T(Y')dY'. (2.16)

For the non-convex domain the first integral defines distinct functions J,(Y) on
each Dr, continuous at the common end points YA • • • between subdomains; it is
supposed that T is bounded.
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3. Boundary Conditions and Uniqueness

Since U'{Y), J(Y) in (2.14), (2.15) are constant along fibre chords it is
helpful [1] to describe boundary conditions with explicit reference to CL and
CR, specifically at opposite ends of fibre chords in both convex and non-convex
domains. Prescribed displacement component U on CL and CR must be
compatible with inextensibility — constant on a fibre chord. If different
conditions are applied on CL and CR there is a corresponding problem with CL

and CR interchanged, and pairing of conditions on CY and CR applies also to
subsections of CL and CR over a common Y- interval. A list of typical boundary
conditions is given in [1].

Let V(S), g(S) • • • denotes boundary values of V, g, • • • respectively at the
opposite end of the fibre chord through the arc point S. J(Y) may be elimated
from (2.14) to give

c(X-X)U'(Y) = g-g-.(V-V) (3.1)

in terms of values at both ends of the fibre chord, and substituting in (2.15)
gives

WSol± ^ * g ) . (3.2)( ) f r ( g g )
dN X - X X-X

In the traction problem tx, t,, and hence g, f, are prescribed on each point of C,
and (3.2) is a non-standard boundary condition for harmonic V, involving the
values V and V at each S.

In the mixed problem

tx, V on CL> tx, ty on CR, (3.3)

g is given everywhere on C, together with

V =VL on CL, f = fR on CR. (3.4)

Now (3.1) relates U'(Y) to the unknown V on CR, and taking V in (3.2) to
signify VL, etc., (3.2) gives

(3.5)
dN X-X X-X

which, with the first of (3.4), defines a mixed boundary value problem for V, but
the coefficient cos<£/(X-X) is negative on CR in contrast to the standard
Robin condition. The other sets of boundary conditions listed in [1] prescribe
standard boundary value problems for V.

Before investigating existence of solutions V for the traction conditions
(3.2) it is important to establish uniqueness properties. If U, V are the
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displacement difference of two possible solutions for given boundary condi-
tions, corresponding to a stress difference equilibrating with zero body force, it
follows that

j { [ j g ] 2 ( { £ ) } dA 0.6)
where D is the body cross-section in Oxy. Thus for all boundary conditions
which make the difference integrand of the LHS vanish everywhere, which
include the traction problem and (3.3) and the list in [1], the RHS integrand
must vanish on D. Hence the difference displacement has the linear form

V=V0+V, X, U =U0-^VtY, (3.7)

representing a rigid translation and rotation, arbitrary for the traction problem.
For the conditions (3.3) the difference reduces to

U = C/o, (3.8)

a rigid translation in the x-direction.
For an unbounded domain with finite stress at infinity, a corresponding

homogeneous stress field can first be subtracted. However, tx traction on finite
boundary sections may penetrate to infinity — finite T(Y) — within the
influence strip (Y-interval) of the finite boundary section. An illustration is
seen in [1]. By (2.9), bounded axx as X-*±<x> implies U"(Y) = 0, and
continuity of U across the limit lines of the strip, supposed zero at infinity
outside the strip, implies U = 0 except in subdomains not extending to infinity
in the X- direction. Here rigid motion at infinity is assumed absent. Thus there
is no contribution to the boundary integral of (3.6) from finite T(Y) at infinity,
and the uniqueness result follows. Note that U = 0 on a boundary section
reduces a ty prescription (2.15) to a standard normal derivative condition.

Summarizing, for displacement and traction conditions which make the
boundary integral in (3.6) of a possible difference solution vanish, and on a
domain for which the divergence theorem holds, there can be only one interior
stress field with bounded gradient. For the pure traction problem the possible
displacement difference represents a rigid motion.

4. Traction Problem for Convex Domain

First consider a bounded simply connected domain D convex to all fibre
lines, and with no boundary section parallel to the fibre direction, as illustrated
by the solid boundary in Fig. 1. U(Y), J(Y) are defined on an interval
I(Y0< Y < y,), and the left and right-hand boundary arcs can be represented
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as
CcS = SL(Y), CR:S = SR(Y), Y G I. (4.1)

Each arc CL, CR may have a finite number of points at which the tangent turns
through an angle < IT (no cusps), but a smoothness restriction at the turning
points at Yo, Y, is found to be necessary. It is assumed that the prescribed
tractions ix, iy are bounded and picccwisc continuous, so that g(s) is bounded,
continuous, and piecewise differentiable, and /(s) is bounded and piecewise
continuous. In fact, from self-equilibration of the tractions, g(s) is periodic
over the contour length and hence single-valued at each point on C, and

0 = i t , ds = - & f(S) dS. (4.2)
J C Jc

Since cos <f> U'(Y) = - dldS[U(Y)], and U is single-valued, (2.15), (4,2) show
that

£fdS=0, (4.3)

as required for harmonic V.

The zero moment condition is

j(xty-yt,)ds=O. (4.4)

Now

j>ytxds= -j>gdy=^j>c g(S)cos<f>dS, (4.5)

since g is single-valued, and

jxtyds =i<|> Xf(S)dS, (4.6)

so (4.4) becomes

| (X/-cos4>g)dS=0. (4.7)
Jc

For a simply connected bounded domain D in the plane there exists a
symmetric Green's function of the second kind, see for example Sternberg and
Smith [7],

G(P,Q)=G(Q,P)= - ^ log r+W{P,Q) (4.8)

where P, Q are distinct points in D, r = length PQ, and W(P, Q) is analytic in P
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and Q. Then any harmonic V in D is expressed in terms of its normal
derivative on C by

V(P)=V0 + <f G(P,Q)^£&dSQ, (4.9)
Jc 0JVQ

where Vo is an arbitrary constant and the representation (4.9) is continuous
onto C. Applying (2.15) and writing G(S, £) for P at arc position 5 and Q at
position f on C,

V(S)= V0 + j>c G(S,t)f(t)dt + cjc G(S,f)l/'(ij) Jjjf d£ (4.10)

Introduce the fibre chord length

d(Y) = X[SR(Y)]-X[SL(Y)], (4.11)

and write

= g[SR(Y)], gL(Y) = g[SL(Y)], (4.12)

(4.13)

= F[SR(Y)], FL(Y) = F[SL(Y)], (4.14)

± (4.15)

F(S) is the boundary value of a harmonic function on D with normal derivative
f(S) on C, and is continuous and single-valued at each point of C. Thus H( Y) is
continuous on I and

= 0. (4.16)

Further, for Y = Yo + S or Y, - 8,

H(Y) = O(S\ogS) as 8^0. (4.17)

Eliminating V and V in (3.1) by (4.10) gives

Y(=r.d(Y)U'(Y) + ji K(Y,T))Ul(-n)d-n=H(Y), (4.18)

where

- G[SR(Y), Mr,)] + G[SL(Y),

Y), (4.19)

https://doi.org/10.1017/S033427000000093X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000093X
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using the symmetry of G(P, Q). That is, a Fredholm integral equation of the
second kind with logarithmically singular kernel. This is reduced to a standard
form, Tricomi [8]:

ji K(Y,r1)p(71)dr1=H(Y), (4.20)

by the substitutions

Y,r,), (4.21)

and K(Y, TJ) is symmetric and logarithmically singular at Y = TJ E l .

5. Integral Equation

While K (Y, TJ ) is weakly singular the kernel K (V, 17) of the standard
Fredholm equation (4.20) has additional singular behaviour at the end points
Yo, Y, of I due to the vanishing of d( Y) there. To apply the standard Fredholm
theorem [8] for L2-kernels it is required that

t K\Y,v)dYdri <oo. (5.1)

For Y = Yo + 8 or Y, - 5 let

= O(8") as 8^>0, v>0. (5.2)

From the structure (4.19) and form of G(P, Q), (4.8),K(Y, TJ)-»O linearly as
17 —» Yo, Y,, fixed Y E.I, and as Y—» Yo, Yu fixed TJ €E /, but is logarithmically
singular on Y = TJ. For each chord length associated with the points in (4.19),
writing TJ = Yo + e or Y, - e,

r 2 > ( 8 - e ) 2 , (5.3)
and hence as 8, e —* 0,

I log r I < I log (5 - e) I. (5.4)

Thus in the corners of the square Ixl where both d(Y), d(r\) vanish, the
dominant contributions to the integral (5.1) have the form

17"
Jo Jo

e
d*de.

In terms of polar coordinates (p, w), - TTU <u> < vU, the most significant term
is

Joo p y ) (cos2w)v
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so the necessary and sufficient condition for (5.1) is

v<\.

That is, a slope discontinuity (v = 1) at Yo, Y, is excluded and dY/dX vanishes
at the turning points, but the curvature need not be finite (v g |). Thus, with the
conditions (5.2), (5.5), K(Y, 17) is a symmetric L2-kernel. Further, recalling
(4.17), (4.21), H(Y) vanishes at Yo and Y,, and is continuous and bounded on I.

The homogeneous equation associated with (4.20), H( Y) = 0, corresponds
to the zero traction problem tx = ty = 0. Hence there must be an eigensolution

(5.6)

corresponding to the rigid motion (3.7). That is

(5.7)

The left hand integral is ip[SR(Y)] - ilt[SL(Y)] where

./r(S)= - £ G{S,t)cos<!>dt (5.8)

is the boundary value of a harmonic function on D with normal derivative
- cos#. Thus 41 is determined uniquely within an arbitrary contact t/»0, and is

<l> = 4to-X, (5.9)

which confirms (5.7). By the uniqueness theorem there is no other non-trivial
linearly independent eigensolution corresponding to the zero traction problem.
For /, = t, = 0 the solution (5.6), U'(Y) = constant, implies V is linear in X,
independent of Y, by (2.15), and hence J{Y) = constant and (3.7) follows by
(2.14). That is, the eigensolution (5.6) implies a rigid motion (3.7).

It remains to show that H(Y) is orthogonal to po(Y) to establish the
existence of a unique p(Y) within an arbitrary multiple of po(Y) by the
Fredholm theorem. That is

f H(Y)dHY)dY = [ H(Y)dY = 0. (5.10)
By (4.12)-(4.15),

= j cos<l>g(S)dS+j> F(S)dY. (5.11)

F(S) is the boundary value of a harmonic function on D with normal derivative
f(S) on C. Let E(S) be the boundary value of the conjugate harmonic function;
then

C:|f=-/(S), (5.12)
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and hence

- £ Xf(S)dS = -<J> E(S)dX = j> F{S)dY (5.13)

since F + iE is analytic on D, and continuous onto C. Hence, combining (5.11),
(5.13), and recalling the zero moment condition (4.7), (5.10) is satisfied.

Thus there exists an L2-soiution p(V") to (4.20). Since the integral and
H(Y) are continuous and bounded on I, then so is p(Y) and U'(Y) = 0(8'^")
near Yo, Y, at worst. But direct from (3.1), noting that g - g and V — V are
O(8S) = O(8") as Y^Y0, Y,, by (2.12) and (4.10), and \X-X\ = O(8'), it
follows that U'(Y) is bounded as Y-+ Yo, Y,. Given U'(Y) on I, (2.15) is a
standard boundary condition to determine harmonic V on D, then (2.14) gives
continuous and bounded J(Y) on I. More specific, T(Y) is determined by the
boundary derivative of (2.14) and tx.

Now consider finite boundary sections parallel to the fibre direction, such
as the section ab of the dashed contour in Fig. 1. On such sections, not part of
CL nor CR, the normal traction is prescribed, hence ty and /(S) are given and
(2.15) applies, but the prescribed tangential traction tx is not satisfied continu-
ously in the potential approximation, so (2.14) is not applied. Using the
representation (4.9) for V, (4.10) follows from (2.15) but now there is no
contribution to the second integral from the contour ab where drj/df = 0. The
boundary function g(s) using the known tx on ab is defined by (2.12), but the
functions gL( Y), gR(Y) given by (4.12) do not include values from ab. Applying
(2.14), (3.1) to points on CL, CR gives the integral equation (4.18) again with the
kernel K defined by (4.19) in which the functions G(S, f) do not take values for
S, £ on ab. Also d(Y) is discontinuous at Ya.

The eigensolution property (5.6)-(5.9) holds as before since the contour
integral definition (5.8) applies with section ab included since cos <f> = 0 there.
Similarly, the gR, gL contributions in (5.11) may be expressed as the entire
contour integral, and the orthogonality condition (5.10) follows as before. Thus
the standard equation (4.20) is obtained, with kernel and H(Y) discontinuities
through d(Y). Thus there exists a unique solution U'(Y) within an arbitrary
constant which is bounded and continuous except (generally) at Ya.

For both types of convex domain, axy, a,y are continuous where U'(Y) is
continuous. By (2.14) differentiated along the boundary U"(Y) is piecewise
continuous (not defined at points such as Ya) with discontinuities correspond-
ing to those of tx and ty and implying discontinuous T(Y) and <rxx.

6. Non-convex Domain

Now consider a domain not convex to all fibre lines, as illustrated in Fig. 2.
The partition by fibre limit lines though the re-entrant turning points such as
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A, B, E subdivides D into a set of domains Dr (r = 1, •••,/?) each convex to
fibre lines and on which there are defined single-valued functions dr(Y), Ur(Y),
J,(Y), Y G Ir, with Ur(Y), Jr(Y), continuous across common limit lines. Any
multiply connected domain can be partitioned in similar manner, and where
unbounded in the X-direction any limit line extends to infinity. There CL or CR

are parts of the arc at infinity, and appropriate limit behaviour is prescribed.
Extension to boundary sections parallel to the fibre direction follows as before.

With G(P, Q) again the Green's function of the second kind for the total
domain D, the representation (4.10) becomes

V(S)=

(6.1)

Applying (3.1) separately to each subdomain Ds gives for each interval
I . ( s = l , • • , / ? ) :

f, KAYd,(Y)U's(Y)+f, KAY^mWdr, = HS(Y). (6.2)

Each Ksr(Y, 17) is defined by (4.19) with the f> arguments referring to CL, CR of
Ds and the £ arguments to CL, CR of Dr. The kernels Kn(Y, 17) have the
logarithmic singularities. HS(Y) is given by (4.15) with the boundary functions
for Ds. Substitutions of the form (4.21) reduces the equations (6.2) to a standard
system of simultaneous Fredholm integral equations [8] p. 150.

Introducing composite functions U'(Y), H(Y) over the total interval
I = I, + • • • + IR (end to end),equal to U'lY), H'lY) on each subinterval h, and a
composite kernel K(Y, 17) over the square I x I similarly, the system reduces to
a single standard Fredholm equation for U'(Y) on I. The properties (5.7) for
K(Y, TJ) and (5.10) for H(Y) again follow since the contributions from each
Kr, Hr add up to the complete contour integrals (5.8), (5.11) as before. Thus
there exists a unique solution U'(Y) within an arbitrary constant. Since H(Y)
is discontinuous (bounded) at the joining points of adjacent I, in I, U'(Y) will
also be discontinuous at these points, in general, so that shear stress discon-
tinuities arise on the interior limit lines.

Summarizing, the existence of a piecewise continuous stress field for the
traction problem has been established on a plane domain for which a Green's
function of the second kind exists (including multiply connected domains and
domains extending to infinity) under the following conditions:

a) The boundary tangent slope has only a finite number of discontinuities,
with no cusps.
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b) Approaching any turning point Y = Y, where dY/dX changes sign, the
fibre chord length d(Y) = O(\Y- Yi\"), 0< v < 1, excluding a slope discon-
tinuity there; that is, dY/dX = 0.

c) The applied boundary tractions tx, ty are bounded and piecewise
continuous.

d) On boundary sections Y = constant only the prescribed normal traction
ty is applied, and a shear traction discontinuity is allowed.
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