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COUNTING RATIONAL POINTS ON CUBIC
HYPERSURFACES: CORRIGENDUM

T. D. BROWNING

There is an error in [1] which invalidates the proof of the main theorem
from [1] and also the proof of Lemma 11 from [2]. In attempting to apply
Proposition 3 in [1, §5], it is claimed that

Y oM< Y max  ged(by, N2
Ro<b1<2Rg Ro<b1 <2Ro 0<N <K (HP)?
< Ry max S ged(hr, M2
0<NKHPY p 4=y p
< Ry (HP)®.

The second line is false and in fact one has M1 = 1 in Proposition 3. The author
is very grateful to Professor Hongze Li for drawing his attention to this flaw.

The error can be fixed by introducing an average over b; into the statement
of Proposition 3. This allows us to recover the main theorem in [1], and also
[2, Lemma 11], via the following modification.

PROPOSITION 3. Let w € W, let ¢ >0 and let g € Z[x1, ..., xy] be a
cubic polynomial such that gg is non-singular and ||g||p < H, for some H < P.

Letg = b%czd, where
bg::l_[p, d:= l—[ D,

P*1q r°lg
=3, 2fe
and let Ry > 1/2. Define
V= Rog P! max{1, |z|P3}, (4.2)
and
W=V + (). (4.3)

Then there exists a positive number 6 such that

> 1Subid: )| < HY (Rog) 2! prte

Ro<b1<2Ry
by square-free

x (W"M, + Ry min{M>, M3)}),
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where

_ p3/4
My = min{Ro, ~—}
g2

1% n—3/2 C2d n/2
M, :=c”<1+—> , Ms = V”<1+ ) .
C

and

V3
In order to prove this result we will need a new technical lemma, which allows
us to separate variables at a crucial point in our argument.

LEMMA A. Leth € R", let M, N > 0 and let f(m; n) > 0 for every m € N
andn € 7"". Then we have

> Yoo fmm< > > > fmm,

M<m<2M  neZ" 1<i<I neZ" M<m<2M
In—mh|<N In—M;h|<2N

for appropriate M; € (M, 2M], where I = Mmin{1, |h|/N} + 1.
Proof. We break the outer sum into smaller intervals of length U > 1, writing
M. 2Ml1= | (M Mig],
1<i<M/U+1
with M; =M + (i — 1)U. We will take U to be maximal so that U > 1 and
[h|U < N. Letm € (M;, M;11] and note that
N > |n — mh| = |n — Mjh 4+ M;h — mh| > ||n — M;h| — (m — M;)|h||.

Since m — M; < M;+1 — M; = U, we see that the overall contribution to the
left-hand side from such m is at most

> Yo fmw.

M;<m<M;q neZ"
[In—M;h|<2N

We conclude the proof on enlarging the outer sum to all m € (M, 2M] and
interchanging it with the sum over n. O

Proof of Proposition 3. We adopt the equation numbering from [1] and write
B for the set of square-free integers b € (Ry, 2Ro]. For given by € B we write
g=bigandb = blb%. Our chief difficulty in introducing averaging over b will
be that we can no longer merely take a maximum over vy < HP in (4.5) in every
case. We begin, using (4.5) and (4.11), by noting that

Sulg; 2) < P‘N+q‘”/ Y ISulgs )ldx,
XKP ly—qzvg(x)|<PeV
where

Su(q: v) < HOb D248 procd(by, u, g*(v)!/?

X max |Su,;2(c2d; bv)|. (*)
be(Z/c2dZ)*
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Let S>(vp) be the overall contribution obtained by taking u = 0 and summing
the right-hand side of () over |[v — vg| < P?V for which g*(v) = 0. Then

> q_”/ S2(gzVg (X)) dx < Y ¢ " P" max Sy(vp).
b] eB xLKP b] eB V()<<HP

But the treatment of S(vg), which is uniform in v, is correct and leads via
(4.15)—(4.16) to

Y g | SagzVg(x) dx < H Ro(Rog) /T P min{M,, M),
b1€8 XKP

the effect of the sum over b being merely to multiply the bound by Ry.
Interchanging the sum over b; and the integral over x, we are now led to
examine

J = Z Sl(bléng(X)),
b1eB

for given x « P, where for given vy € R"”, we denote by S;(vg) the overall
contribution from summing () over |v — vg| < P?V for which

(u, g*(v)) # (0, 0).
We will produce two bounds for J. The first arises from taking
ged(by, u, g5 (V) < by

in the existing argument and summing trivially over b;. This leads to the
estimate

To deduce an alternative estimate we first analyze

J(vo) = Y Si(vo)

b]GB

< HeR(()"Jrl)/erglag”J“g :_ max |Sul;2(C2d; 5v)|}
‘V7v0|<P£V bE(Z/LZdZ)*
(u,g*(v))#(0,0)
x Y ged(by, u, g* (V)2
bIEB
for fixed vp € R”. The inner sum over b; is O(RoP?), by the third displayed
equation on page 107 of [1], whence

J(vo) < HORGH)Ppt2pe 3 max S T, s by,

L 2 *
[v—vo|<PEV be(Z/c%dZ) a mod ¢2d

gcd(a,c2d)=1
where T (a, ¢2d; bv) is given by (4.6). The path is now clear for the final bound
J(vo) < H'Ry*(Rog)"/* 1 +ew,
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which is obtained by combining [3, Lemmas 11, 15 and 16] in the manner
indicated at the close of [3, §5]. In particular, this bound is uniform in vy.
Returning to the estimation of J we apply Lemma A with

M=Ry, N=PV, h=§zVg®),

which leads to the bound

. Rog|z|HP?
J < min{ Rg, ———— ¢ max J(vgp)
\% Vo< HP
p3/2
< H. [ —— max J(vp),
Rog vo<HP

since

Roglz| P? p? p3/2
0glelP” _ Il <YlIPP< [ o=
14 max{1, /|z| P3} Rog

by (3.2). Drawing our argument together with (), this therefore shows that

(Rog) ™" Y SilqzVe) dx < HP (Rog) "> P W M,
xLP b]GB

which concludes our proof of the proposition. O

It remains to show that our modified Proposition 3 suffices to prove
[1, Proposition 1] and [2, Lemma 11].

Proof of Proposition 1. Let us adopt the equation and page numbering from
[1]. We begin as in §5, with the aim of showing (5.2) for i = 1, 2, under the
assumption that n > 5 and s(go) = —1. We supplant Lemma 3 with the modified
bound

#{g = b3c?d : (5.1) holds} < Ry Ry Ry/>.
The estimation of X3(R, R;t) = Z7(R, R) in §5.1 begins with (5.5), the
estimation of %, j, running through unchanged. On the other hand, we now have

Ez,a < H9Pl’l—3+€M Z Ré/le—n/Zl ‘ H(]Rflé) | Wn,
~ ZI=x -
q

where

M= min{Rl/2 P3/4}

0 RI2

and the summation over g is over all g = b%czd such that by, ¢, d are constrained
to lie in the dyadic ranges (5.1). Hence
n—3+e¢

0
EZ,a < H —R”/2_3/2

M(RYVZP=Y4 1 (R3R3)'/P)". )
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This is the same bound for X , that features in the middle of page 107, except
that we have an additional factor M. The term involving R'/?2P~1/4 is now
found to contribute

since R < P3/%, whereas the term involving (R§R3)1/ 3 contributes

Pn_3+3/4+g(R%R3)n/3

0 0pn—343/4+s pl—n/6
< H = < HP R'="/S,
since R%R3 <« R. Both of these are satisfactory, concluding the proof of (5.7).
We now turn to the treatment of X1 (R, R; 7) in §5.2, with the estimation of

21, running through unchanged. On the other hand, we now have

R3/2—n/2 V4 RZR 1/3\n
Tla <<H9P”+8t/\/l< (V+ (RyRs) 7) )

172
R,
where V has order (5.10) and the difference between this and the existing bound
for ¥, is the additional factor M. Following the argument in §5.2, we need

to check that this does not alter the truth of (5.9). Thus, when 7 > P 3, we take
M < R™'/2p3/4 and find that the term involving V makes the contribution

since 1 < (RP3/ 2)’1. This is satisfactory for n > 5. Likewise, when ¢ < P3
one obtains a satisfactory contribution. Turning to the contribution from the term
involving (R% R3)'/3, we suppose first that f < P~3. Taking Ry > (R%R3) 173 the
contribution from this case is found to be
R3/2—n/2[(R§R3)n/3

kY

< HQPnJreM

Taking M < R™1/2P3/4 gives O (HOP"—3+3/4+¢ R5=m/6) ‘which is satisfactory
since n > 5. Next, assuming that r > P 3 and adjoining Proposition 2, it remains
to analyze the contribution

R2-1/841-n/8

Opnte 3/2-n/2, ( p2 p.\n/3—1/6
<« H°P mln{MR t(R5R3) , —(R§R3)2/3P3"/8

}. (k)

For n > 6 we apply the inequality min{A, B} < A'/3B%/3 to get the overall
contribution O (HP"~2t¢ M'/3E,), with E,, given at the bottom of page 109.
When n > 13 we take r > P 3, getting

M1/3En < P—3/4R7/6—5n/36 < 1.
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When 6 <n < 12 we take t < (RP3/2)’1 to deduce that
MVBE, « p3A=n/8gl/6=n/18 |

Finally we dispatch the case n =5, for which we return to (xx**) and take
t < (RP3*)~!. This leads to the contribution

12 o2 p1/2 02 0 132 pS/Ap-5/2, p2 w32 PT/IOR
« min{ P12R2RY2(R2R)32, PS/*R5/2(R2Ry) —}
{ o ’ (R3 R3)2/3
P—7/]6R
< HPIH min:P1/2R3/2R§R3, PYARS2(R2 Ry, 2—}
(RyR3)?/3

Taking min{A, B, C} < AY/TSB2/15¢C16/25  Jeads to the contribution
O(H?P3T¢R~1/30) This is satisfactory and so concludes the proof of Propo-
sition 1 in [1]. |

Proof of Lemma 11. We now adopt the equation and page numbering from
[2]. The treatments of X ; and X5 ; go through unchanged, leaving us the task
of showing that

Ei,a < HBPn75/2+£’

for i =1,2 and n > 8. Beginning with i =2, it follows from (:xx) that our
estimate at the top of page 866 gets replaced by

n—34¢ p2 n/3 3/4

R1/2-3/2 0 RIi2

172
0

The first term is satisfactory. We take min{-, -} < R,’” in the second term and

note that R(l)/ 2(R%R3)"/ 3 « R"/3. Thus the second term is

which is satisfactory for n > §, since R < P32,
Turning to i = 1, our analogue of the third displayed equation on page 866 is

where, in view of (skskskx),

2—n/8,1-n/8
5:P"min!MR3/2—"/%(R§R3)"/3—1/6 R }

’ (R%R3)2/3 p3n/8

In our bound for X , the second and third terms correspond to the contribution
from the term involving (R§R3)1/ 3 with the second dealing with the case
t < P73 and the third dealing with the case 7> P~>. The first term
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1/2
0

is satisfactory. Taking M < R, shows that the second term makes the

satisfactory contribution
< HGPn—?a-‘rsR3/2—n/2Ré/Q(R§R3)n/3—1/6 <« P pn—3+e p4/3-n/6.

We handle £ as in [1, §5.2] by applying the inequality min{A, B} < A'/3B?/3,
to get the overall contribution O (HP"~>¢ M3 E,), with

E, = P2—n/4t1—n/12Rl1/6—n/4(R%R3)n/9—1/2'

We need to check that P2 M!/3E, « 1 for n >8. When n > 13 we take
t> P_3, getting

P1/2M1/3En « PV/ART/6=51/36 o 1
When 8 < n < 12 we take 7 < (RP3/?)~! to deduce that

PIAMIBE, « R(l)/6P1—n/8R5/6—n/6(R%R3)n/9—1/2 « pl-n/8R1/3=n/18
< 1.

This is satisfactory and so concludes the proof of Lemma 11 in [2]. O
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