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Abstract. A construction of differential constraints compatible with the Gibbons-
Tsarev equation is considered. Certain linear determining equations with parameters
are used to find such differential constraints. They generalize the classical determining
equations that are used in searching for Lie operators. We introduce the notion of an
invariant solution under an involutive distribution and give sufficient conditions for
existence of such solutions.

2000 Mathematics Subject Classification. 34G20, 35K57.

1. Introduction. As is well known, one can produce many exact solutions of
partial differential equations by means of additional constraints [1], [2]. Differential
constraints arose originally in the theory of partial differential equations of the first
order. Lagrange in particular used differential constraints to find the total integral of
the nonlinear equation

F(x, y, u, ux, uy) = 0.

Darboux [3] applied differential constraints to integrate partial differential equations
of second order. The detailed description of the Darboux method can be found in
[1], [4].

The general formulation of the method of differential constraints requires that the
original system of partial differential equations

F1 = 0, . . . , Fm = 0 (1.1)

be enlarged by appending additional differential equations (differential constraints)

h1 = 0, . . . , hp = 0, (1.2)

such that the over-determined system (1.1), (1.2) satisfies some conditions of
compatibility.

The theory of over-determined systems was developed by Delassus, Riquier,
Cartan, Ritt, Kuranishi, Spencer and others. One can find references in the book
of Pommaret [5]. Now the applications of over-determined systems include such
diverse fields as differential geometry, continuum mechanics and nonlinear optics.
Unfortunately the problem of finding all differential constraints compatible with
certain equations can be more complicated than the investigation of the original
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equations. Therefore it is better to content oneself with finding constraints in some
classes, and these classes must be chosen using additional considerations.

Recently a new method was proposed for finding differential constraints, which
uses linear determining equations. These equations are more general than the classical
determining equations for Lie generators [6] and depend on some parameters. Given
an evolution equation

ut = F(t, x, u, u1, . . . , un), (1.3)

where uk = ∂ku
∂xk , then according to [7] the linear determining equation corresponding

to (1.3) is of the form

Dt(h) =
n∑

i=0

i∑

k=0

bi kDi−k
x (Fun−k )Dn−i

x (h), bi k ∈ R. (1.4)

Here, and throughout, Dt, Dx are the operators of total differentiation with respect to
t and x. Equality (1.4) must hold for all solutions of (1.3). The function h may depends
on t, x, u, u1, . . . , up. The number p is called the order of the solution of the equation
(1.4). If we have some solution h, the corresponding differential constraint is

h = 0. (1.5)

It was also shown in [7] that the equations (1.4) and (1.5) constitute a compatible
system. Applications of this approach to diffusion equations can be found in [8].

The organization of this chapter is as follows. In section 2 we focus on solutions
of second and third order to the linear determining equation for the Gibbons-Tsarev
equation [9]

ut t = uxut x − utux x + 1. (1.6)

This gives the corresponding differential constraints and allow us to find some exact
solutions of (1.6). In the final section, the invariant solutions under an involutive
distribution are discussed. We consider the problem of finding involutive distributions
that enable us to obtain invariant solutions to evolution equations.

2. Gibbons-Tsarev equation. In this section we will consider the Gibbons-Tsarev
equation [9]

zx x + zyzx y − zxzy y + 1 = 0, (2.1)

which arises in reductions of the Benney equation.
The linear determining equation has the form

D2
xh + zyDxDyh − zxD2

yh + b1zy yDxh + b2zx yDyh = 0, (2.2)

the constants b1 and b2 are to be determined together with the function h. It can be
shown that the equation (2.2) has a solution of the form

h = zy y + g(x, y, z, zx, zy, zx x)
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if and only if the function g is independent of zx x. Therefore we shall start with solutions
of the second order

h = zy y + g(x, y, z, zx, zy). (2.3)

Substituting (2.3) into (2.2) leads to an equation which includes derivatives of the third
order. We can express all mixed derivatives by means of (2.1). Setting the coefficients
of zx x x and zy y y equal to zero we obtain:

b1 = 1, b2 = −1.

The left-hand side of (2.2) is a polynomial with respect to zx x and zy y. This polynomial
must identically vanish. Collecting similar terms we have the following equations:

pgp p + qgp q − gq q + 2gp = 0, (2.4)

(−q2 − 2p)gp p + 2gq q + q2gx p + q(q2 + 2p)gy p + q2(q2 + 3p)gz p

− 2qgx q − q2gy q − q(q2 + 2p)gz q + qgy + q2gz − 4gp = 0, (2.5)

2p2gp p − (q2 + 2p)gq q + pq2gx p − 2p2qgy p − p2q2gz p

+ q(q2 + 2p)gx q − pq2gy q + 2p2qgz q + q2gx − pqgy + 4pgp = 0, (2.6)

pgp p − gp q − gq q + q2gx p − 2pqgy p − pq2gz p + 2qgx q + q2gy q + q(q2 + 2p)gz q

− q2(q2 + 2p)gx z + pq3gy z − p2q2gz z + 2gp − q2gx x − q3gx y + pq2gy y − qgy = 0,

(2.7)

where p = zx and q = zy.
It is possible to show that the general solution of the equations (2.4)–(2.7) is

h = zy y + c1
(
z4

y + (3zx + 4x)z2
y + 3yzy + (zx + 2x)2 + 2z

)

+ c2
(
z3

y + (2zx + 3x)zy + 2y
) + c3

(
z2

y + zx + 2x
) + c4zy + c5.

Hence the differential constraint h = 0 is compatible with the Gibbons-Tsarev equation
(2.1). In the case c1 = c2 = c3 = 0 we obtain the differential constraint

zy y + c4zy + c5 = 0. (2.8)

From (2.8) we find the following representation

z = a1 exp(−c4y) − c5y/c4 + a2, (2.9)

where a1 and a2 depend on x. Substituting (2.9) into (2.1) we derive two ordinary
differential equations

a′′
2 + 1 = 0, a′′

1 + c5a′
1 − c2

4a1a′
2 = 0.

The first equation has the solution

a2 = −x2/2 + c6x + c7, c6, c7 ∈ R.

In this case the second equation is

a′′
1 + c5a′

1 + c2
4(x − c6)a1 = 0.
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Setting a1 = exp(−c5x/2)v(x) we obtain the equation

v′′ + (A + Bx)v = 0, A, B ∈ R.

According to [10] the solutions of the last equation can be expressed in terms of Airy
functions.

It can be shown that the linear determining equation (2.2) has the following
solution of third order

h = zy y y + c1
(
3z5

y + (10zx + 12x)z3
y + 6yz2

y + (
6z2

x + 18xzx + 2z + 12x2)zy + 4yzx + 6xy
)

+ c2
(
5z4

y + (12zx + 15x)z2
y + 6yzy + 3z2

x + 10xzx + 15/2x2 + z
)

+ c3
(
2z3

y + (3zx + 4x)zy + y
) + c4

(
3z2

y + 2zx + 3x
) + c5zy + c6.

The corresponding constants b1 and b2 in (2.2) are given by

b1 = 2, b2 = −2.

In the case c1 = c2 = c3 = c6 = 0 and c5 = −1 the function h gives the differential
constraint

zy y y − zy = 0. (2.10)

From (2.10) we obtain the following representation

z = s1(x) + s2(x)ey + s3(x)e−y.

The functions s1(x), s2(x) and s3 must satisfy the equations

s′′
2 − s′

1s2 = 0, s′′
1 − 2s3s′

2 − 2s2s′
3 + 1 = 0, s′′

3 − s′
1s3 = 0.

If s3 = as2 then the last system reduces to the two equations

s′′
2 − s′

1s2 = 0, s′′
1 − 4as2s′

2 + 1 = 0, a ∈ R. (2.11)

Integrating the second equation, we find that

s′
1 = −x − b + 2as2

2, b ∈ R.

We can insert this expression in (2.11) and obtain the second-order equation

s′′
2 + (

x + b − 2as2
2

)
s2 = 0.

Using the transformations t1 = x + b and w = √
as2, we take the equation in s2 to the

second Painlevé equation [11]

w′′ = 2w3 − t1w.

The differential constraint

zy y y = 0

leads to a solution of (2.1) which is expressed in terms of elementary functions.
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3. Invariant solutions under involutive distributions. In this section we introduce
invariant solutions under involutive distributions. Suppose that a collection of p vector
fields

Xs =
n∑

i=1

ξ i
s(x)∂xi

is given on an open set U ⊂ Rn. If this collection is linearly disconnected, i.e., the rank
of the matrix |ξ i

s(x)| equals p for all x ∈ U and satisfies the involution condition

[Xi, Xj] =
p∑

k=1

ck
i j(x)Xk, ∀ 1 ≤ i, j ≤ p, (3.1)

where ck
i j are smooth functions, then this collection generates an involutive

p-dimensional distribution Dp. A collection of vector fields with these properties is
called an involutive basis or just a basis. It is well known that a distribution Dp is
involutive if and only if it possesses at least one involutive basis.

DEFINITION. A solution u = ϕ to a system of partial differential equation E is
invariant under an involutive distribution Dp if Dp is tangent to the manifold S =
{(x, u) : u = ϕ(x)}. Obviously, the invariance of a solution under Dp amounts to its
invariance under the operators of an arbitrary involutive basis for Dp.

Now, consider the system of evolution equations

ui
t = Fi(t, x, u, uα), i = 1, . . . , m, (3.2)

where t and x = (x1, . . . , xn) are independent variables, u1, . . . , um are functions, u =
(u1, . . . , um), and uα stands for various partial derivatives with respect to x1, . . . , xn.
Denote the total derivatives with respect to t and xi by the symbols Dt and Dxi .

Let Jk(U, Rm) be the space of k-jets on U ⊂ Rn. Recall that a manifold H ⊂
Jk(Rn+1, Rm), defined by the equations

hj(t, x, u, uβ ) = 0, j = 1, . . . , s, (3.3)

is an invariant manifold for (3.2) if the following identity holds on the set [E] ∩ [H]:

Dthj = 0.

Here [E] and [H] stand for the differential consequences of (3.2) and (3.3) with respect
to x1, . . . , xn. Denote the involutive distribution generated by vector fields X1, . . . , Xr

by 〈X1, . . . , Xr〉.

LEMMA 1. Suppose that vector fields

Xk =
n∑

i=1

ξ i
k(t, x, u)∂xi +

m∑

j=1

η
j
k(t, x, u)∂u j , k = 1, . . . , n, (3.4)
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generate an involutive distribution and that det(ξ i
k) �= 0. If the manifold defined by the

equations

hj
k =

n∑

i=1

ξ i
kuj

xi
− η

j
k = 0, 1 ≤ j ≤ m, 1 ≤ k ≤ n, (3.5)

is invariant with respect to (3.2) then system (3.2) has invariant solutions under this
involutive distribution.

Proof. Write down the collection of fields X1, . . . , Xn in vector form as follows:

X = ξ∂x + η∂u.

Acting by the matrix ξ−1 on X , we obtain the involutive collection

Z = ∂x + η̃∂u,

where η̃ = ξ−1η. The distribution 〈Z1, . . . , Zn〉 is involutive.
The invariant solutions under 〈X1, . . . , Xn〉 must satisfy (3.5). The invariant

solutions under 〈Z1, . . . , Zn〉 must satisfy the equations

uj
xk

= η̃
j
k(t, x, u). (3.6)

Obviously, (3.5) and (3.6) have the same solutions. Since Z is an involution distribution,
the Poisson bracket [Zi, Zk] vanishes. Consequently, we have

Zi
(
η̃

j
k

) = Zk
(
η̃ j

i

)
,

which means that the consistency conditions for (3.6) are satisfied.
Using (3.6) and inserting the derivatives of the functions uj with respect to xk in

the right-hand side of (3.2), we come to the system

uj
t = Gj(t, x, u), j = 1, . . . , m. (3.7)

By the Frobenius theorem, the system of (3.6) and (3.7) is compatible if the relations

Dxk Gj = Dtη̃
j
k, j = 1, . . . , m; k = 1, . . . , n (3.8)

are valid by virtue of (3.7) and (3.8). Validity of these conditions follows from the
invariance of (3.5) with respect to (3.2). Indeed, this invariance means that

Dt
(
uj

xk
− η̃

j
k

) = Dxk F j − Dtη̃
j
k = 0. (3.9)

Inserting the derivatives with respect to xk in (3.9), we see that (3.9) coincides with
(3.8). �

REMARK. If an involutive distribution is generated by analytic vector fields
X1, . . . , Xp, where p < n, (3.2) is a system of first-order equations with analytic right-
hand sides, and the rank of the matrix (ξ i

k) equals p, then (3.2) has an invariant solution
relative to X1, . . . , Xp. The proof is carried out by the above scheme, but instead of
the Frobenius theorem we should use the Riquier theorem on the existence of analytic
solutions to an autonomous system with analytic right-hand sides [5].
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To exemplify the application of a distribution to constructing solutions, consider
the equation

ut = � ln u, � = ∂2

∂x2
+ ∂2

∂y2
, (3.10)

which arises in various application [12, 13] and possesses an infinite-dimensional
algebra of point symmetries [14]. Some exact solutions to this equation can be found
in [15, 16]. We give a solution to this equation which is invariant relative to the pair of
commuting operators

X1 = ∂x − (u2 + (t u2 − x u2 + u) tan(t))∂u,

X2 = ∂y − (t u2 + u − x u2)∂u.

The corresponding manifold for these vector fields is

ux + u2 + (t u2 − x u2 + u) tan(t) = 0, (3.11)

uy + t u2 + u − x u2 = 0. (3.12)

It is easy to verify that this is an invariant manifold for (3.10). Note that the vector
fields X1 and X2 do not belong to the algebra of symmetries of (3.10). The general
solution to (3.11), (3.12) and (3.10) has the form

u = 1
A[exp((x − t) tan(t) + y)] cos t + x − t

, A ∈ R.

To use vector fields and distributions, we need a method for finding them. The
classical approach to constructing vector fields relative to which the given differential
equations are invariant was proposed by S. Lie. A modern exposition with many
examples and new results was given by L. V. Ovsyannikov [6].

A determining equation enables us to find differential constraints compatible with
the original equation. In the case of differential equations in more than two independent
variables, we can propose systems of defining equations which would enable us to find
involutive distributions.

Consider the system of involution equations (3.2) and the manifold in J1(U, Rm)
defined by

hi
j = ui

xj
+ gi

j(t, x, u) = 0, (3.13)

where i = 1, . . . , m, and j = 1, . . . , n.

THEOREM. Suppose that the manifold (3.13) is invariant under the system (3.2) whose
right-hand sides are polynomials in derivatives whose coefficients depend on t, x1, . . . , xn

and u1, . . . , um. Then the functions hi
j satisfy the following system:

Dthi
j + mi j(h)|[E] = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n. (3.14)

Here mi j(h) is some operator representing a polynomial in hk
l ,Dx1 hk

l , . . . ,Dxn hk
l , . . . , Dαhk

l
(k = 1, . . . , m, l = 1, . . . , n). The operators mi j(h) vanish whenever all hk

l are zero.

Proof. We first show that the total derivative of hi
j with respect to t is representable

as

Dthi
j = mi j(h) + γi j, (3.15)
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where mi j are operators whose shape is described in the theorem and γi j are functions
which may depend only on t, x and u.

The following identities are valid on [E]:

Dthi
j = Dxj F

i + ∂gi
j

∂t
+

m∑

k=1

Fk
∂gi

j

∂uk
. (3.16)

Let ∂ |s|uk

∂x
s1
1 ···∂xsn

n
be a derivative of maximal order on the right-hand side of (3.16) and

sp �= 0 for some p. By (3.16) and the assumptions of the theorem, this derivative enters
(3.16) polynomially. Using (3.13), we can write down this derivative as follows:

Ds1
x1

· · · Dsp−1
xp · · · Dsn

xn

(
hk

p

) − Ds1
x1

· · · Dsp−1
xp · · · Dsn

xn

(
gk

p

)
.

Note that the second summand involves no derivatives of order |s| and is a polynomial
in derivatives. Thus, all derivatives of maximal order on the right-hand side of (3.16)
can be expressed in terms of the total derivatives of the functions hr

q(r = 1, . . . , m, and
q = 1, . . . , n). Afterwards, it is possible to express the derivatives of order |s| − 1, etc.
down to the first-order derivatives.

We are left with demonstrating that the functions γi j in (3.15) are all zero. By
the conditions of the theorem, the manifold (3.13) is an invariant manifold for (3.2).
Consequently, the following identity holds on [E] ∩ [H]:

mi j(h) + γi j = Dthi
j = 0.

Since the mi j’s vanish on [H], the functions γi j are zero on [E] ∩ [H]. Once the mi j’s are
independent of the derivatives of the functions uk, all mi j are identically zero. �

REMARK. As we see from the proof of the theorem, the choice of the operators mi j

is not uniquely defined.

For example, consider the second-order equation in three independent variables:

ut = G ≡ F1ux x + F2uy y + F3u2
x + F4u2

y + F5, (3.17)

where Fi are some functions depending on u. Suppose that

h1 ≡ ux + g1(t, x, y, u) = 0, h2 ≡ uy + g2(t, x, y, u) = 0 (3.18)

define an invariant manifold for (3.17). To derive a system of determining equations like
(3.14), we express the derivatives Dth1 and Dth2 in terms of hi, Dxhi, Dyhi, D2

xhi, DxDyhi,
and D2

yhi (i = 1, 2). By (3.17), the following holds:

Dth1 = DxG + ∂g1

∂t
+ ∂g1

∂u
G.

It is easy to verify that the right-hand side of the last equality is representable as

m11(h1, h2) = Gux x D2
xh1 + Guy y D2

yh1 + [
Gux + Dx (Gux x )

]
Dxh1 + Guy Dyh1

+ Dx
(
Guy y

)
Dyh2 + [

Gu − D2
x (Gux x ) − D2

y(Guy y ) + r1
]
h1 + s1h2 + γ1, (3.19)

where r1, s1, and γ1 are functions depending on h1, h2, and G. Since (3.18) is an invariant
manifold, the function γ1 equals 0. Consequently, the first defining equation has the
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form

Dth1 = m11(h1, h2).

To obtain the second defining equation

Dth2 = m12(h1, h2),

we should replace h1 in (3.12) with h2, x with y, r1 with r2, and s1 with s2. The following
lemma asserts that, under some conditions, solutions to equations like (3.13) enable us
to construct differential constraints compatible with the system of evolution equations
(3.2). It is worth noting that the form of the operators mi j is unimportant, provided
that only mi j(0) = 0.

LEMMA 2. Suppose that the functions

hi
j =

n∑

s=1

ξ s
j (t, x, u)ui

xs
− gi

j(t, x, u)

satisfy a system like (3.14) on [E] with mi j(0) = 0. If the vector fields

Xj =
n∑

s=1

ξ s
j ∂xs +

m∑

i=1

gi
j∂ui , j = 1, . . . , n

generate an involutive distribution and det(ξ s
j ) �= 0 then there is a solution to the system

of (3.2) and the equations

hi
j = 0, i = 1, . . . , m, j = 1, . . . , n. (3.20)

Proof. Since the functions hi
j satisfy (3.14), in view of mi j(0) = 0 (3.20) defines

an invariant manifold for (3.2). To complete the proof, it suffices to refer to
Lemma 1. �

Finding solutions to general nonlinear equations (3.14) might represent a very
complicated problem. To simplify the problem, we remove all terms nonlinear in hk

l
from the operators mi j as was done above in the case of an evolution equation with
one space variable. In result, we obtain some linear equation

Dthi
j + li j(h) = 0.

As we have done above, multiply the coefficients of the operators li j by undetermined
constants and write down the resultant equations as

Dthi
j + Li j(h) = 0 (3.21)

calling them linear determining equations (LDEs). For example, the LDEs for (3.17)
have the form

Dth1 =L11(h1, h2)≡a1Gux x D2
xh1+a2Guy y D2

yh1+
[
a3Gux +a4Dx (Gux x )

]
Dxh1+a5Guy Dyh1

+ a6Dx
(
Guy y

)
Dyh2+

[
a7Gu+a8D2

x (Gux x ) +a9D2
y

(
Guy y

) ]
h1, (3.22)

Dth2 = L12(h1, h2),
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where L12(h1, h2) is obtained from L11(h1, h2) by replacing h1 with h2, x with y, and ai

with bi.
Although the above arguments were for systems of evolution equations, we can

try to extend them to a more general situation. Assume given a system

ni(u) = Fi(t, x, u, uα), i = 1, . . . , m,

where ni are linear differential operators with constant coefficients and the right-hand
sides are similar to those in the evolution systems (3.2). To find the functions hi

j, we
suggest using the following equation in place of (3.21):

Ni
(
hi

j

) + Li j(h) = 0, (3.23)

where the operators Ni are obtained from ni by replacing partial derivatives with total
derivatives. Alongside (3.23), it is useful to introduce the following analog of B-defining
equations [17]:

Ni
(
hi

j

) + Li j(h) +
∑

1≤l≤m
1≤k≤n

bk i
l j hl

k = 0, (3.24)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and bk i
l j are functions that may depend on t, x, and u.

We call equations of the form (3.23) quasilinear determining equations (QDEs).
We exhibit an example of QDEs in finding involutive distributions. Consider one of
the nonlinear dispersion models describing the propagation of long two-dimensional
waves [22]:

ηt t = gd�η + d2

3
�ηt t + 3

2
g�η2,

where η(t, x, y) is the deviation of a fluid from an equilibrium state, d is the depth of
the unperturbed fluid, and g is the free fall acceleration. By translations and dilations,
we can reduce this equation to the form

ut t − �(ut t) − uu − (∇u)2 = 0. (3.25)

In accordance with the above method, the QLEs for (3.25) have the form

D2
t h1 − D2

t D2
xh1 − D2

t D2
yh1 + a1u

(
D2

xh1 + D2
yh1

) + a2uxDxh1 + a3uyDyh1

+ a4uxDyh2 + (a5�u + a6ux x + a7uy y + r1)h1 + q1h2 = 0, (3.26)

D2
t h2 − D2

t D2
xh2 − D2

t D2
yh2 + b1u

(
D2

xh2 + D2
yh2

) + b2uyDyh2 + b3uxDxh2

+ b4uyDxh1 + (b5�u + b6ux x + b7uy y + r2)h2 + q2h1 = 0, (3.27)

where ai and bi are constants, and rj and qj are functions which may depend on t, x, y,

and u and which should be found together with h1 and h2. The scheme for solving
(3.26) and (3.27) is completely analogous to the standard scheme of group analysis of
differential equations [6, 18]. For this reason, we omit all intermediate computations
and set forth only the final results.

If h1 and h2 are sought in the form corresponding to the point symmetries

h1 = ξ 1
1 ut + ξ 1

2 ux + ξ 1
3 uy + η1,

h2 = ξ 2
1 ut + ξ 2

2 ux + ξ 2
3 uy + η2,
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where ξ i and η j are functions of t, x, y, and u, then under the condition (ξ 1
1 )2 +

(ξ 1
3 )2 + (ξ 2

1 )2 + (ξ 2
2 )2 �= 0 equations (3.26) and (3.27) can be shown to have solutions

leading only to admissible operators for (3.25). There appear new solutions only
when

h1 = ux + g1(t, x, y, u), h2 = uy + g2(t, x, y, u).

The final form of g1 and g2 is as follows:

g1 = s1x + s2y + s3, g2 = s2x + s4y + s5.

Moreover, the functions si (i = 1, . . . , 5) depend only on t and satisfy the following
system of five second-order differential equations:

s′′
1 + 3s2

1 + s1s4 + 2s2
2 = 0,

s′′
2 + 3s1s2 + 3s2s4 = 0,

s′′
3 + 3s1s3 + 2s2s5 + s3s4 = 0,

s′′
4 + s1s4 + 2s2

2 + 3s2
4 = 0,

s′′
5 + s1s5 + 2s2s3 + 3s4s5 = 0.

For completeness of exposition, we write down the constants ai and bi (i = 1, . . . , 7)
and the functions rj and qj (j = 1, 2) in (3.26) and (3.27) corresponding to g1 and g2:

a1 = b1 = a4 = b4 = −1, a2 = b2 = a3 = b3 = −3,

a5 = a6 = a7 = b5 = b6 = b7 = 0,

r1 = 3s1 + s4, r2 = s1 + 3s4, q1 = 2s1, q2 = 2s2.

The functions h1 and h2 generate the differential constraints

ux + s1x + s2y + s3 = 0,

uy + s2x + s4y + s5 = 0.

These constraints enable us to find the following representation for a solution to (3.25):

u = −s1x2

2
− s2x y − s4y2

2
− s3x − s5y + s6.

Inserting this in (3.25), we obtain the following equation for s6:

s′′
6 = 3s2

1 + 2s1s4 − s1s6 + 4s2
2 + s2

3 + 3s2
4 − s4s6 + s2

5.

The system of the six differential equations in the six functions si deserves further
study. For example, it would be interesting to find a solution expressible via elementary
functions.
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