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RELATIONS BETWEEN THE GENERA AND BETWEEN THE 
HASSE-WITT INVARIANTS OF GALOIS COVERINGS OF 

CURVES 

BY 

ERNST KANI 

To the memory of R. A. Smith 

ABSTRACT. Let G C Aut (C) be a (finite) group of automorphisms of 
a curve C defined over a field K and, for each subgroup H ^ G, let gH 

denote the genus of the quotient curve CH — C/H (briefly: quotient genus 
of//) . 

In this paper we show that certain idempotent relations in the rational 
group ring Q[G] imply relations between the quotient genera {gH}H^c', this 
generalizes two theorems of Accola. Moreover, we show that in the case 
of char (K) = p ± 0, a similar statement holds for the Hasse-Witt invariants 
uH of the curves CH-

1. Introduction. Let C be a curve defined over an arbitrary field K, and let G C Aut 
(C) be a finite group of automorphisms acting on C. For any subgroup H C G, let gH 

denote the quotient genus of//, i.e, the genus of the quotient curve CH = C/H. In his 
article, R. D. Accola [1] established (for K = C) two theorems which, under certain 
conditions on the group G, give relations between the quotient genera {gw}//^G of the 
various subgroups of G. 

The purpose of this note is two-fold. First, we observe that both of Accola's theorems 
are, in fact, special cases of a much more general theorem which shows that (certain) 
idempotent relations in the rational group ring Q[G] imply relations between the 
quotient genera. To be exact, if for a subgroup f / i G w e let 

(1) e w = - ^ S / i e Q[G] 
\H\ hEH 

denote the "norm idempotent" associated to //, then we have: 

THEOREM 1. Any relation 

(2) 2 rHeH = 0 (rHE Q) 
H 

between the norm idempotents yields a relation 
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(3) 1 rHgH = 0 
H 

between the quotient genera. 

From Theorem 1 it is quite easy to deduce the aforementioned theorems of Accola: 

COROLLARY 1. (Accola). Suppose H\,. . . ,H, ^ G are subgroups of G such that 
G = Hx U • • • U //,. Then: 

t 

(4) \G\g0 = 2 (- l) r + l 2 \H,, n • • • D Hlr\gHlin-nHlr. 
r=l \^il<-<ir^t 

COROLLARY 2. (Accola). Suppose H\,...,//, ^ G are subgroups of G satisfying the 
following conditions: 

(l)HrHj = Hj-Hi9 ViJ 
(2) For any (complex) irreducible character x of G there exists a subgroup Hi C 

KerX . 
Then: 

t 

(5) g, = 2 (-Dr +' S gH,--Hlr. 

REMARK. Corollary 2 is slightly better than Accola's theorem since we need not 
assume that the //,'s are normal subgroups of G. 

As we shall see below, not only are these corollaries easily deduced from 
Theorem 1, but this theorem itself is easily established from known properties of the 
(global) Artin representation. As a result, this gives a simpler and more transparent 
proof of Accola's results, and also shows that these theorems are valid in arbitrary 
characteristic. 

The second aim of this paper concerns the case that the ground field has a non-zero 
characteristic p =É 0. In that case each quotient curve CH has besides its genus another 
invariant attached to it, namely its Hasse-Witt invariant vH, which may be defined by 

(6) (JH)P =p°», 

where JH denotes the Jacobian variety of CH and ( JH)P the group of/?-torsion points on 
JH. We then have the following result analogous to Theorem 1: 

THEOREM 2. Any relation (2) between the norm idempotents yields a relation 

0') 2 rHvH = 0 
H 

between the Hasse-Witt invariants of the quotient curves. 

One then has the following corollaries of "Accola type": 

COROLLARY 1. In the situation of Corollary 1 to Theorem 1, we have 
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t 

(4') |G|OC = 2 (-i) r+ l S K n • • • n //,>„ n - n V 

COROLLARY 2. /n f/*e situation of Corollary 2 to Theorem 1, we have 
t 

(5') a, = X ( - l ) r + l X <T*„.•••.*, 

Not only are the statements of Theorems 1 and 2 analogous; it is, in fact, possible 
to give a unified proof or both theorems using /-adic representations (cf. section 4). This 
proof also has the advantage that it generalizes to yield a theorem (Theorem 3 below) 
which establishes (under a hypothesis analogous to (2)) a relation between the genera 
(and the Hasse-Witt invariants, if applicable) of arbitrary (i.e. not necessarily galois) 
subcovers of C. 

2. Proof of Theorem 1 (via the Artin representation). As before, let C be a 
(smooth, irreducible, complete) curve defined over a field K of arbitrary characteristic 
p. (Since there is no loss of generality in assuming that K is algebraically closed, we 
shall do so henceforth). Recall (cf. Serre [3], p. 105) that to any finite subgroup G C 
Aut (C) we can attach a complex character aG, called the (global) Artin character such 
that the following property holds: 

(*) If H ^ G is any subgroup, and sG/H = Ind,, \H denotes the character of the 
representation of G on the cos et space G/H, then 

(7) (%///, aG)G = deg disc (CH/CG). 

Here, as usual, 

(8) (<M)G = T ^ S 4>(8Mg-1) 
\G\ gee 

denotes the inner product of two class functions $ and i|/ on G, and disc (CH/CG) E 
Div(CG) denotes the discriminant divisor of the finite covering 

ix : CH - » CG 

induced by the inclusion H ^ G. Note that by using the Riemann-Hurwitz formula, 

\G\ 
(9) 2gH ~ 2 = — (2gG - 2) + deg disc (CH/CG) 

\H\ 
we can re-write (7) as 

|G| 
(7') (sG/H,aG) = 2(gH - 1) - 2 — (gc - 1) 

\H\ 

From (*) the proof of Theorem 1 follows almost immediately. To see this, we simply 
observe that for any class function x o n G, we have (by definition and Frobenius 
reciprocity): 
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XU//) = (U,X\H)H = (SG/H,X)G 

and so 

|G| 
(10) ac(ew) = 2(gH - 1) - 2 — (gG - 1) 

I " I 
Thus, if a relation (2) holds, then on the one hand we obviously have 

(11) S rHac(eH) = 0 
H 

and on the other hand we have 

(12) ZrH= lG(lrHeH) = 0, 

and 

(13) W l # l = regG(2r„e„) = 0, 

so the genus relation (3) follows immediately from equations (10)—(13). 

3. Proof of Corollaries 1 and 2. Suppose first that G = //, U • • • U Ht. Then by 
the usual counting procedure we have 

z g = i ( - i r + i i i g 
geG i = i i ^ / | < - < / r ^ / geH{ n---r\Hj 

or 

\G\eG = S (-i) r+1 S Iff,, n • • • n jfjci, n • • • n ///r 

which gives Corollary 1. 

REMARK. Corollary 1 is particularly useful when one deals with groups G which have 
a partition, i.e. for which there exist subgroups Hu ...,//, ^i G with //, C\ Hj = 1 for 
i i= j such that //, U • • • U Ht = G. In that case (4) simplifies to: 

(4') \G\g0 = 2 M**, - (* - D«i 
/=1 

For example, elementary abelian /7-groups, Frobenius groups etc. are groups with 
partition. 

Suppose next that G satisfies conditions (1) and (2) of Corollary 2. We first observe 
that condition (2) implies 

(14) e = (1 - €„,) • • • (1 - €„,) = 0 

To see this, note that if p is a representation with Ker p D //, then p(eWl) = p(l) and 
hence p(e) = 0. Thus the hypothesis (2) implies p(e) = 0 for all irreducible represent­
ations of G, and so we have e = 0 as claimed. 
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Next, from condition (1) we infer that any two eHj and eH. commute and also that 

£ / / , , • • Hir
 = €//,., • • • eHjr. 

(Observe that by condition (1), ///, • • • Hir is a group!) We can therefore re-write (14) 
in the form 

r 

(14') 1 - 2 (-l) r + l I e„,r.„v = 0 , 

from which (5) is immediate by Theorem 1. 

4. Proof of Theorems 1 and 2 (via /-adic representations). Let J = Jc denote the 
Jacobian variety of C; in the sequel we shall identify the A'-rational points of J with the 
group Pic°(C) = Div°(C)/Div/(C) of divisor classes of degree 0: 

JC(K) = Pic°(C). 

Any automorphism a E Aut(C) of C induces an automorphism a* of Div(C) via 

a*(2niPi) = 2nMPi) 

and hence an automorphism on 7; we thus have a representation 

./*:Aut(C)-> End(7c) 

which extends to a representation 

U : fi[Aut(C)] -> End°( Jc) = Q ® z End ( J ). 

For any prime number /, we have the /-adic Tate-module 

Tl(J) = \imJl 
n 

which is known to be a free Zrmodule of rank dimF/ J( (cf. e.g. Mumford [2], p. 171); 
thus 

f2g, iflïp 
(15) mnkZlTl(J) = \ *' • 

^ CTj if / = p 

Each endomorphism a E End(7) acts on Tt(J) in a natural way, so we have a 
representation 

Tl:End(J)-»EndZl(T,(J)) 

which extends to a (^-representation 

7Î:En(P(J)-+EndQl(Vl(J)), 

where V{(J) = Q{ ®z,Ti(J). Combining this with j * , we obtain a (^-rational 
representation 

P/ = r?°7*:fi/[G]->End f i /(V /(y)), 
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whose character we denote by v, = trace 7° ° j * . Then Theorems 1 and 2 are both 
consequences of the following fact. 

PROPOSITION 1. For any subgroup H % G we have 

(2gH iflïp 
1 CT/y if / = p 

To prove this, we first observe that by (15) this is clear for H = 1; and hence true in 
general by the following more general fact. 

PROPOSITION 2. For any finite covering IT : C—» C of curves, there exists a Q-algebra 
homomorphism 

<Tr*:End0(7')-* End°(7), 

(where J and J ' denote the Jacobian varieties of C and C ', respectively) such that 

(1) If Tr is a galois covering with group G, then 

7*(eG) = ir*(id,') 

(2) For any a ' E End(7') we have 

trace(ir*(a')|V/(y)) = trace(a'|V/(y')) 

PROOF. Consider the homomorphisms 

IT*: J - > 7 ' 

which are induced by TT, and put, for a' E End°(./'), 

(16) TT*a' = - ( I T * O a O TT*) , 
n 

where n = deg IT. If A denotes the connected component of Ker TT* , then we have an 
exact sequence of Qrvector spaces 

0 - * V,(A) -+ V,(J) T'{^ VtiJ') -+ 0 

which is split by \/n 7° (IT*) and hence yields the decomposition 

Vl(J) = Vl(A)@<n*Vl(J') 

where we have written ir*V/(./') in place of fl(Tr*)(V,(J')) = l/n r?(ir*)(V,(y')). 
Then by construction we have 

ir*a'|V/M) = 0 

(upon identifying V{(J') -^ IT*V/ ( / ' ) ) » SO trace Tr*a' = trace a, as claimed. 
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5. Generalization to the non-galois case. Let C be a curve as before, and let 

i r , :C-> C„ \ ^ i^N 

be a finite system of subcovers of C. To any such subcover IT,- we can associate an 
idempotent e, E End°(Jc) by 

€,- = ir?(idyC|.) 

where irf : End° ( JCj) —> End°( Jc) is the homomorphism constructed in Proposition 2. 
The proof of Theorems 1 and 2 given in the previous section immediately also proves: 

THEOREM 3. Any relation 

N 

(17) 2 ne, = 0 
1=1 

between the idempotents e, yields a relation 
N 

(18) X ng, = 0 
/ = 1 

between the genera gt of the subcovers C,(l ^ / ̂  N) twd also, ifchar K i= 0,a relation 
N 

(19) S r,<r,. = 0 
/ = 1 

between the Hasse-Witt invariants a, o/ C/, 1 ̂  / = N. 
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