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Abstract. Most stars form in clumpy and sub-structured clusters. These properties also emerge
in hydro-dynamical simulations of star-forming clouds, which provide a way to generate realistic
initial conditions for N−body runs of young stellar clusters. However, producing large sets of
initial conditions by hydro-dynamical simulations is prohibitively expensive in terms of compu-
tational time. We introduce a novel technique for generating new initial conditions from a given
sample of hydro-dynamical simulations, at a tiny computational cost. In particular, we apply
a hierarchical clustering algorithm to learn a tree representation of the spatial and kinematic
relations between stars, where the leaves represent the single stars and the nodes describe the
structure of the cluster at larger and larger scales. This procedure can be used as a basis for the
random generation of new sets of stars, by simply modifying the global structure of the stellar
cluster, while leaving the small-scale properties unaltered.
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1. Introduction

A large fraction of star formation happens in clusters or associations Lada & Lada
(2003). These star-forming systems are characterized by complex phase-space distribu-
tions, where sub-structures Larson (1995), fractality (Cartwright 2009; Kuhn et al. 2019),
relative sub-clump motions Cantat-Gaudin et al. (2019), expansion (due to gas expul-
sion, Hills 1980), and possibly rotation Hénault-Brunet et al. (2012) are observed. The
early evolution of these stellar systems is of fundamental importance for the compre-
hension of the present-day structure of older open and globular clusters, and can be
modeled in a realistic way by means of direct N−body simulations. However, adequate
initial conditions, able to take into account the observed phase-space complexity, are
necessary for a correct comprehension of this evolutionary phase. In this sense, spherical
equilibrium models like Plummer spheres Plummer (1911) or King models King (1966)
cannot represent the initial spatial and kinematic distributions of young star clusters. A
natural way to reproduce the observed properties of these stellar systems is by means of
hydro-dynamical simulations of collapsing molecular clouds, where they naturally emerge
(Ballone et al. 2020, 2021; Bate et al. 2009; Klessen & Burkert 2000; Wall et al. 2019).
However, running hydro-dynamical simulations including all the relevant physics is com-
putationally very expensive, and producing large sets of initial conditions would turn to
be prohibitive in terms of computational time.
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Table 1. Properties of the stellar clusters and their parent molecular cloud.

m1e4 m2e4 m3e4 m4e4 m5e4 m6e4 m7e4 m8e4 m9e4 m1e5

Ns 2523 2571 2825 2868 2231 3054 4214 2945 3161 3944

Ms

[
103 M�

]
4.2 6.7 10.3 14.4 14.1 20.4 31.5 28.3 30.5 38.0

Mmc

[
103 M�

]
10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

εsf 0.42 0.33 0.34 0.36 0.28 0.34 0.45 0.35 0.34 0.38

Columns: [1] number and [2] total mass of the sink particles, [3] mass of the parent molecular cloud, and [4]
the resulting star formation efficiency

Here, we introduce a novel method for producing new initial conditions for N−body
runs without running additional independent hydro-dynamical simulations. Our approach
relies on applying a clustering algorithm to an existing set of initial conditions. In partic-
ular, we adopt a hierarchical clustering algorithm, which learns a tree-like representation
of the stellar cluster, describing its structure at different scales. In our generative model,
new stellar clusters are then obtained by modifying selected nodes of the hierarchical
tree.

2. Sink particle distributions

We consider the sink particle distributions (also named as stars in the following) from
10 smoothed-particle hydro-dynamical simulations of molecular clouds, performed by
Ballone et al. (2020). These simulations are initialized as spherical molecular clouds
with total gaseous mass ranging between 104 M� and 105 M�, uniform temperature T =
10 K and uniform density ρ= 2.5 × 102 cm−3. Star formation is implemented during the
simulation by means of a sink particle algorithm Bate et al. (1995). The star clusters
are the result of the instantaneous gas removal at 3 Myr, mimicking the impact of the
first supernova explosions (no stellar feedback was included in the simulations). We refer
to Ballone et al. (2020,2021) (Ballone et al. 2020, 2021) for more details about the
hydro-dynamical simulations. Table 1 resumes the main properties of the sink particle
distributions under consideration.

3. Hierarchical clustering

Clustering algorithms are a class of unsupervised machine learning methods. In gen-
eral, clustering identifies similar instances in a given sample and assigns them to groups
(or clusters). In the specific case of hierarchical clustering, the algorithm proceeds in
a hierarchical way, by connecting the most similar pair of clusters, starting from the
individual instances (in this case the single stars), until a certain number of groups is
reached† Kaufman et al. (1990). To identify similar elements in the sample, hierarchi-
cal clustering is provided with a similarity prescription, called linkage. For this case, we
make use of Ward’s linkage, which merges two clusters such that the variance within all
clusters increases the least. This often leads to clusters that are relatively equally sized.
For more details on such choice, we refer the reader to Torniamenti et al. (2022). Also,
we use the implementation offered by the scikit-learn library Pedregosa (2011).

3.1. Application to stellar clusters

We applied hierarchical clustering to the stellar clusters introduced in Section 2. Before
applying the algorithm, we scaled the positions and the velocities by their standard
deviations. Figure 1 shows different levels of the cluster hierarchy for the m1e4 cluster.
The clumps are organized into a hierarchical tree-like structure T , where the trunk

† When the hierarchy is built from the bottom up, the algorithm is also referred to as
agglomerative clustering algorithm.
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Figure 1. Different levels in the hierarchical tree of the m1e4 simulation. The panels show
different levels of the the tree: [1] the trunk, [2] the first two branches, [3] the first five branches,
and [4] the leaves.

contains the whole set of stars and each subsequent node is a two-way split (with each
branch being a sub-clump), down to the leaves, representing individual stars.

The hierarchical construction allows to identify groups of similar instances in the dis-
tribution of stars as well as drawing information about the structure of the star system
at different scales. To describe the relevant physical properties of the cluster by means
of the tree formalism, at each node we evaluate the distance vector between the centres
of mass of the clumps li, their relative velocity vector ui, and the mass ratio between the
two clumps qi, defined as the ratio between the lightest of the two resulting groups and
the total mass of the node.

4. Generative method

Each node of the tree, Ti, describes the relations between two sub-clumps departing
from a parent branch. As a consequence, the relevant quantities li, ui, and qi can be used
as instructions to progressively split clumps of stars in the phase space, starting from
one reference mass. During this procedure, we can modify some selected nodes of the
tree to obtain a new and different realization of the stellar cluster. The way in which
the nodes are modified depends on what scales of the systems we want to preserve or
alter. In our case, we aim to obtain new macroscopic configurations by preserving the
small scale properties (such as their complex fractal structure), which make our clusters
so realistic. For this reason, to obtain a new realization, we replace the first nodes of a
reference tree, which describe the large scale distribution of sub-clumps, with the same
quantities drawn from other trees. The method consists in the following steps:

• We consider a reference tree T , and we replace the quantities li, ui and qi, associated
to the first i < k nodes, with the same-level quantities from the tree T ′, learned from
another set of sink particles. Here, we consider k = 3. For more details on such choice,
we refer the reader to Torniamenti et al. (2022) Torniamenti et al. (2022).

• We consider one particle containing the total mass of the cluster we want to generate,
placed at rest in the origin of the coordinate system. This particle is split into two
particles, such that the resulting mass ratio is q1 (the mass ratio relative to the first node
of the new tree). The positions and velocities of the new particles are assigned such that
their centre of mass is at rest in the origin of the system, and their distance and relative
velocity vectors are l1 and u1, respectively.

• At each step i, we split a chosen particle into two new particles with mass ratio
qi and place them at a distance li from each other, moving with relative velocity ui.
The particle-to-split is chosen by considering the same order of splitting as the original
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Figure 2. Distributions of inter-particle distances f(d) (left), velocities f(v) (center), and
masses f(m) (right) for the sink particles taken from the m1e4 simulation (thick yellow line) and
the distributions of new generations obtained by replacing the first 2 nodes (corresponding to
k= 3, purple). The shaded area encloses the distribution of the new generations, and the solid
line is the median of the distribution.

reference tree. This splitting procedure is then repeated until a cluster with the same
number of particles as the reference one is obtained.

• Finally, we remove the very low-mass stars (which may result in planet-sized objects)
by setting a cutoff mass to the minimum mass of the original stars on which T was learned.

In Fig. 2 we compare the distance, velocity and mass distributions of m1e4 to those of
a set of new generations. All the distributions of the new realizations are consistent with
those of the original simulation. In particular, the new distance distributions are altered
at large scales but, moving toward small distances, they recover the same trend as the
original simulation, as meant for this method. Figure 3 and 4 show the spatial distribu-
tions of the original cluster and of three new generations per each, for all the sink particle
distributions of our sample. The new generations are qualitatively indistinguishable from
the original clusters.

5. Summary

We introduced a new method for generating a number of new realizations from a given
set of initial conditions from hydro-dynamical simulations. This method is based on a
hierarchical clustering algorithm, which learns a tree-like representation of the stellar
system. This tree encodes the structural properties of the sink particle distributions
and can be turned into new macroscopic realizations by modifying its first branches.
This procedure results in different large scale realizations (e.g., the number of main
clumps and their distances), while approximately preserving the characteristics of the
small scale structure responsible for most of dynamical evolution. The new realizations are
qualitatively similar to the original simulations when visualized in the three-dimensional
space, and present consistent velocity, mass and pairwise distance distributions.

This generative method leads to a speedup in computation of several orders of mag-
nitude: generating initial conditions from hydro-dynamical simulations, in fact, requires
hundreds of thousands core hours per simulation, while our procedure takes about some
core seconds to generate a new realization. Also, our scheme is very flexible, allowing to
set how deep we alter the tree structure by choosing the number of initial branches we
modify.
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Figure 3. Projections in y− z of the 5 least massive star clusters (left), and of three different
generated clusters per each. The colour map marks the mass of the individual stars.
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Figure 4. Projections in y− z of the 5 most massive star clusters (left), and of three different
generated clusters per each. The colour map marks the mass of the individual stars. The colour
map marks the mass of the individual stars.
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