A DECOMPOSITION FOR SETS HAVING A SEGMENT CONVEXITY PROPERTY

MARILYN BREEN

1. Introduction. Let S be a subset of Euclidean space. The set S is said to be m-convex, $m \geqq 2$, if and only if for every m distinct points of S, at least one of the line segments determined by these points lies in S. Clearly any union of $m-1$ convex sets will be m-convex, yet the converse is false. However, several decomposition theorems have been proved which allow us to write any closed planar m-convex set as a finite union of convex sets, and actual bounds for the decomposition in terms of m have been obtained ([6], [4], [3]). Moreover, with the restriction that (int $\mathrm{cl} S$) $\sim S$ contain no isolated points, an arbitrary planar m-convex set S may be decomposed into a finite union of convex sets ([1]).

Here we strengthen the m-convexity condition to define an analogous combinatorial property for segments. A set S in Euclidean space is said to have the segment convexity property $P(m), m \geqq 2$, if and only if for every m segments $s_{i}, 1 \leqq i \leqq m$, (possibly degenerate) in S, at least one of the corresponding convex hulls conv $\left(s_{i} \cup s_{j}\right), 1 \leqq i<j \leqq m$, lies in S. It is proved that if S is any planar set having property $P(m)$, then S is a union of $m-1$ convex sets. The result is best possible for every m.

The following familiar terminology will be used. A point x in S is said to be a point of local convexity of S if and only if there is some neighborhood N of x such that $S \cap N$ is convex. If S fails to be locally convex at some point q in S, then q is called a point of local nonconvexity (lnc point) of S. For points x and y in S, we say x sees y via S if and only if the corresponding segment $[x, y]$ lies in S. Points x_{1}, \ldots, x_{n} in S are visually independent via S if and only if for $1 \leqq i<j \leqq n, x_{i}$ does not see x_{j} via S. Throughout the paper, conv $S, \operatorname{cl} S$, bdry S, int S and ker S will be used to denote the convex hull, closure, boundary, interior, and kernel, respectively, of the set S.
2. The case for closed sets. We begin by restricting our attention to closed sets, and we have the following characterization theorem.

Theorem 1. Let $S=\mathrm{cl}$ (int S) be a set in R^{d}. Then S is expressible as a union of $m-1$ maximal convex sets C_{i} with $C_{i} \cap C_{j}$ at most a singleton set for $1 \leqq i<j \leqq m-1$ if and only if for every m segments in int S, at least one of the corresponding pairs has its convex hull in S.

Proof. To prove necessity, assume that S is expressible as the required union of convex sets $C_{i}, 1 \leqq i \leqq m-1$, and let s_{1}, \ldots, s_{m} denote m segments in int S. We suppose that no corresponding pair has its convex hull in S to reach a contradiction. Then some segment, say s_{i}, has nonempty intersection with more than one of the convex sets C_{i}, and for an appropriate labeling, s_{1} contains some point p in bdry $C_{1} \cap$ bdry C_{2}.

It is easy to see that $p \in \operatorname{bdry} S$: Otherwise, if C_{1}, \ldots, C_{k} are those C_{i} sets which contain p, we may select a convex neighborhood N of p with $\mathrm{cl} N \subseteq$ $C_{1} \cup \ldots \cup C_{k}$. However, then $\mathrm{cl} N$ is a union of the k convex sets $\mathrm{cl} N \cap C_{i}$, $1 \leqq i \leqq k$, clearly impossible since $C_{i} \cap C_{j}=\{p\}$ for $1 \leqq i<j \leqq k$. Thus $p \in$ bdry S.

Since $s_{1} \subseteq$ int S and $p \in s_{1} \cap$ bdry S, we have a contradiction. Our supposition must be false, and one of the corresponding convex hulls conv $\left\{s_{i} \cup s_{j}\right\}, i \neq j$, lies in S, the desired result.

To prove sufficiency, assume that for every m segments in int S, one of the corresponding pairs has its convex hull in S. Let Q denote the set of Inc points of S. We will show that $S \sim Q$ has at most $m-1$ components, each with convex closure, and that these closures provide a suitable decomposition for S. To begin, let A be a component of $S \sim Q$ and let $K \equiv \mathrm{cl} A$. For $z \in A$, certainly $z \notin Q$ so for some neighborhood M of $z, S \cap M$ is convex (and hence disjoint from Q). Thus z sees each point of $S \cap M$ via $S \sim Q$, and $S \cap M=$ $A \cap M$. Since $S=\mathrm{cl}($ int $S), z \in \mathrm{cl}$ (int A), and it is easy to see that $\mathrm{cl} A \equiv$ $K=\mathrm{cl}$ (int K). Using this observation, it is not hard to show that $S \sim Q$ has at most $m-1$ components: Otherwise, we could select m segments in int S, each from a distinct component of $S \sim Q$, and with no two segments collinear. Then none of the corresponding pairs could have its convex hull in S, contradicting our hypothesis. We conclude that $S \sim Q$ has at most $m-1$ components.

It remains to show that each of these components has convex closure. Let K denote the closure of a component of $S \sim Q$, and assume that K is not convex to reach a contradiction. Standard arguments reveal that every lnc point of K is an lnc point of S. Then since $K \sim Q$ is connected, we may use $[\mathbf{2}$, Theorems ' 2 and 3] to conclude that K has at least one essential lnc point q. That is, for every neighborhood U of q there is at least one component W of $K \cap U \sim\{q\}$ such that q is an lnc point of $\mathrm{cl} W$. It is not hard to show that S is m-convex and hence locally starshaped [$\mathbf{5}$, Lemma 2], so we may select a convex neighborhood N of q such that $S \cap N$ is starshaped at q. Using the fact that $K=\operatorname{cl}$ (int K), we may prove that $K \cap N$ is starshaped at q. Moreover, since q is an essential lnc point of K, there is a component B^{\prime} of $K \cap N \sim\{q\}$ such that q is an Inc point for $B \equiv \mathrm{cl} B^{\prime}$. Again using the facts that S is locally starshaped and $K=\mathrm{cl}$ (int K), it is easy to see that B^{\prime} is locally starshaped. Then since B^{\prime} is connected and locally starshaped, standard arguments may be applied to show that B^{\prime} is polygonally connected. Furthermore, it is clear that B is locally starshaped, $q \in \operatorname{ker} B$, and $B=\mathrm{cl}$ (int B).

Since q is an lnc point for B, select points x and y in $B \cap N$ such that $[x, y] \nsubseteq B$, and without loss of generality, assume $x, y \in$ int B. Hence there exist neighborhoods V and W of x and y, respectively, with $V \cup W \subseteq B$, and q sees every point of $V \cup W$ via B.

To finish the argument, we consider two cases:
Case 1. If some point of $[x, q)$ sees any point of $[y, q)$ via B, then by an easy geometric argument involving conv $(V \cup\{q\}), x$ sees some point y^{\prime} of (y, q) via B. Then $\left[x, y^{\prime}\right] \cup\left[y^{\prime}, y\right] \subseteq B,[x, y] \nsubseteq B$, so by a lemma of [7, Corollary 2], conv $\left\{x, y^{\prime}, y\right\}$ contains an lnc point q_{2} of B, and $q_{2} \in N$. Then using our earlier argument, we may select points x_{2} and y_{2} near q_{2} in B and neighborhoods V_{2} and W_{2} of x_{2} and y_{2}, respectively, so that $\left[x_{2}, y_{2}\right] \nsubseteq B, V_{2} \cup W_{2} \subseteq B$, and q_{2} sees every point of $V_{2} \cup W_{2}$ via B. Hence

$$
\operatorname{conv}\left(V_{2} \cup\left\{q, q_{2}\right\}\right) \cup \operatorname{conv}\left(W_{2} \cup\left\{q, q_{2}\right\}\right) \subseteq B
$$

Clearly for any two segments s_{1} and s_{2} containing q_{2} and having maximal length in B, conv $\left\{s_{1} \cup s_{2}\right\} \nsubseteq S$. (Otherwise, q_{2} could not be an Inc point of B.) Hence for an appropriate choice of m segments in int B chosen sufficiently close to q_{2}, no pair of segments has its corresponding convex hull in S. We have a contradiction, our assumption is false, and Case 1 cannot occur.

Case 2. Suppose that no point of $[x, q)$ sees any point of $[y, q)$ via B. Recall that B^{\prime} is polygonally connected. Clearly $x, y \in B^{\prime}$, so there is a polygonal path λ in B^{\prime} from x to y, and $q \notin \lambda$. Then since $q \in \operatorname{ker} B$, there is a simply connected subset D of B such that

$$
\begin{aligned}
& D \cap \operatorname{int} \operatorname{conv}\{x, q, y\}=\emptyset \text { and } \\
& \{q\} \subseteq \operatorname{bdry} D \subseteq \lambda \cup[x, q] \cup[y, q] .
\end{aligned}
$$

Using the fact that $q \notin \lambda$ and repeating an argument in Case 1 , we see that an appropriate selection of m segments in int B and sufficiently close to q gives the required contradiction. Therefore Case 2 cannot occur.

Our assumption that K is not convex must be false, and we conclude that every component of $S \sim Q$ has convex closure. Since there are at most $m-1$ such components, this yields a decomposition of S into $m-1$ closed convex sets C_{1}, \ldots, C_{m-1}. Furthermore, since $C_{i}=\mathrm{cl}$ (int C_{i}), $1 \leqq i \leqq m-1$, it is easy to show that each C_{i} set is maximal and that $C_{i} \cap C_{j}$ is at most a singleton set for $i \neq j$. This completes the proof of Theorem 1 .

Remark. If we replace the requirement $S=\mathrm{cl}$ int S with the weaker condition $\mathrm{cl} S=\mathrm{cl}$ int S, then the sufficiency in Theorem 1 fails and, in fact, S is not necessarily a finite union of convex sets. (Delete rational points from an edge of the unit square U to obtain an easy counterexample.)

Similarly, the necessity in Theorem 1 fails if the segments are required to lie in S instead of in int S. (Consider the union of the unit square U with $-U$.)

Corollary. Let S be a close planar set having property $P(m)$. Then S is a union of $m-1$ or fewer convex sets.

Proof. If $S=\mathrm{cl}($ int S), the result is an immediate consequence of Theorem 1. Otherwise, techniques used in [3] may be used to write S as a union of k segments and a closed set S^{\prime} having property $P(m-k)$ for some $1 \leqq k \leqq$ $m-2$. An obvious induction applied to S^{\prime} completes the proof.

3. The general case.

Theorem 2. If S is a subset of \mathbf{R}^{2} having property $P(m)$, then S is a union of $m-1$ or fewer convex sets. The number $m-1$ is best possible for every $m \geqq 2$.

Proof. Without loss of generality, we may assume that $\mathrm{cl} S=\mathrm{cl}$ (int S), for otherwise S will be a union of k segments and a set S^{\prime} having property $P(m-k)$ for some $1 \leqq k \leqq m-2$, and an easy induction finishes the argument. Thus the set $\mathrm{cl} S$, while not necessarily having property $P(m)$, will satisfy the segment condition in the hypothesis of Theorem 1. Hence $\mathrm{cl} S$ will be a union of $m-1$ or fewer maximal convex sets C_{i}, with $C_{i} \cap C_{j}$ at most a singleton set for $1 \leqq i<j \leqq m-1$. Also, by the proof of Theorem $1, C_{i}=\mathrm{cl}\left(\operatorname{int} C_{i}\right)$ for each i, and it is easy to see that $A_{i}=C_{i} \cap S$ has property $P\left(k_{i}\right)$ for some $k_{i} \leqq m$. Since $\mathrm{cl} S=\mathrm{cl}$ (int S), clearly $C_{i}=$ $\mathrm{cl}\left(\operatorname{int} A_{i}\right)=\mathrm{cl} A_{i}$.

We will examine the points of $C_{i} \sim A_{i}=\mathrm{cl} A_{i} \sim A_{i}$, and first we consider points in int $\left(\mathrm{cl} A_{i}\right) \sim A_{i}$. Let x be such a point. Since S is m-convex, by [1, Lemma 4] either x is an isolated point or x lies in a segment in int $\left(\mathrm{cl} A_{i}\right) \sim$ A_{i}. However, x cannot be isolated: Otherwise, for an appropriate collection of m segments in A_{i} having midpoints sufficiently close to x, none of the corresponding pairs would have its convex hull in S, contradicting our hypothesis. Hence x must lie in a segment in int $\left(\mathrm{cl} A_{i}\right) \sim A_{i}$. Moreover, by $[\mathbf{1}$, Corollary to Lemma 2], int $\left(\mathrm{cl} A_{i}\right) \sim A_{i}$ contains at most $2^{m-2}-1$ noncollinear segments, so clearly int ($\mathrm{cl} A_{i}$) $\sim A_{i}$ is a finite union of segments.

Therefore, if x is a point in int $\left(\mathrm{cl} A_{i}\right) \sim A_{i}$, then x lies in some polygonal path $\lambda \subseteq \operatorname{int}\left(\mathrm{cl} A_{i}\right) \sim A_{i}$, where λ is maximal. Now if z is an endpoint of λ, $z \notin$ int (cl A_{i}): Otherwise, since z lies in the closure of at most finitely many segments in int $\left(\mathrm{cl} A_{i}\right) \sim A_{i}$, an earlier argument would yield m segments in S with no pair having its convex hull in S, which is impossible. Thus the points of int $\left(\mathrm{cl} A_{i}\right) \sim A_{i}$ induce a partition of int $\left(\mathrm{cl} A_{i}\right) \cap A_{i}$ into components T such that $T=\operatorname{int} \mathrm{cl} T$.

We assert that each set T is convex, and clearly it suffices to show that $\mathrm{cl} T$ is convex: Otherwise, $\mathrm{cl} T$ would have as an lnc point some vertex of a polygonal path in int $\left(\mathrm{cl} A_{i}\right) \sim A_{i}$, and an appropriate choice of m segments in T would contradict the fact that S has property $P(m)$. Thus each component T of int $\left(\mathrm{cl} A_{i}\right) \cap A_{i}$ is convex. Clearly if A_{i} has the property $P\left(k_{i}\right)$, there are at most $k_{i}-1$ corresponding components T, and we let $T_{i j}, 1 \leqq j \leqq k_{i}-1$
denote these sets. Finally, define $B_{i j}=\mathrm{cl} T_{i j} \cap A_{i}$, so that $A_{i}=$ $\bigcup\left\{B_{i j}: 1 \leqq j \leqq k_{i}-1\right\}, 1 \leqq i \leqq m-1$.

For future reference, we make several observations concerning the structure of the $B_{i j}$ sets. First, if there exist points z, w in some $B_{i j}$ such that $[z, w] \nsubseteq B_{i j}$, then z and w lie in a segment in bdry $B_{i j}$. Second, using the fact that S has property $P(\mathrm{~m})$, it is easy to show that for any two distinct $B_{i j}$ sets, say B_{1} and B_{2}, and for any pair of nondegenerate segments s_{1} and s_{2} in B_{1} and B_{2}, respectively, conv $\left(s_{1} \cup s_{2}\right) \subseteq S$ only in case s_{1} and s_{2} are collinear, with $s_{1} \subseteq$ bdry B_{1} and $s_{2} \subseteq$ bdry B_{2}. Finally, if $V_{i j}$ is a maximal visually independent subset of $B_{i j}$, then since $\mathrm{cl} B_{i j}=\mathrm{cl}$ int $B_{i j}$ and $\mathrm{cl} B_{i j}$ is convex, to each point p of $V_{i j}$ we may associate a segment s_{p} having endpoint p such that $s_{p} \subseteq B_{i j}$ and $s_{p} \nsubseteq$ bdry $B_{i j}$. Then if $B_{i j}$ is $n_{i j}$-convex, $1 \leqq j \leqq k_{i}-1$, $1 \leqq i \leqq m-1$, repeating this procedure for each $B_{i j}$ set yields $\sum_{i} \sum_{j}\left(n_{i j}\right.$ -1) distinct (but not necessarily disjoint) segments, and by our comments above, no pair of these segments has its convex hull in S. Hence $\sum_{i} \sum_{j}\left(n_{i j}\right.$ $-1) \leqq m-1$.

Since cl $B_{i j}$ is convex and all points of $\mathrm{cl} B_{i j} \sim B_{i j}$ are in bdry $B_{i j}$, by [1, Lemma 1], $B_{i j}$ is a union of max $\left(\mathrm{n}_{i j}-1,3\right)$ or fewer convex sets. In fact, if $n_{i j}=2$ or $n_{i j}>3, B_{i j}$ will be a union of $n_{i j}-1$ or fewer convex sets. Assume that exactly r of the $B_{i j}$ sets are 3 -convex and are not a union of two convex sets. Then

$$
S=\bigcup\left\{B_{i j}: 1 \leqq j \leqq k_{i}, 1 \leqq i \leqq m-1\right\}
$$

will be a union of $\sum_{i} \sum_{j}\left(n_{i j}-1\right)+r$ or fewer convex sets, and we will show that

$$
\sum_{i} \sum_{j}\left(n_{i j}-1\right)+r \leqq m-1 .
$$

For convenience of notation, let \mathscr{B} denote the family of sets $B_{i j}$ which are 3 -convex and are not expressible as a union of two convex sets. Select B in \mathscr{B}. By the proof of [1, Lemma 1], without loss of generality we may assume that $\mathrm{cl} B$ is a convex polygon. Order the vertices of $\mathrm{cl} B$ in a clockwise direction along bdry B, letting p_{i} denote the i-th vertex in our ordering. Again by the proof of [1, Lemma 1], since any decomposition for B requires three convex sets, $\mathrm{cl} B$ has an odd number l of vertices, each vertex of $\mathrm{cl} B$ lies in B, and each edge of $\mathrm{cl} B$ contains some point not in B. Also, by the 3 -convexity of B, $l>3$. Hence the segments $\left[p_{1}, p_{3}\right],\left[p_{1}, p_{4}\right],\left[p_{2}, p_{4}\right]$ lie in B, no segment lies in bdry B, and no pair of these segments has its convex hull in B. Repeat the procedure for each B in \mathscr{B}, and let \mathscr{L}_{1} denote the corresponding collection of $3 r$ segments obtained. Clearly no pair of segments in \mathscr{L}_{1} has its convex hull in S, since no segment in \mathscr{L}_{1} lies in the boundary of any $B_{i j}$ set.

Next, for each set $B_{i j}$ not in \mathscr{B}, select $n_{i j}-1$ visually independent points, and use a previous argument to choose a corresponding collection \mathscr{L}_{2} of

$$
\begin{aligned}
\sum_{i} \sum_{j}\left(n_{i j}-1\right)-\sum_{i} \sum_{j}\left\{\left(n_{i j}-1\right): B_{i j}\right. & \in \mathscr{B}\} \\
& =\sum_{i} \sum_{j}\left(n_{i j}-1\right)-2 r
\end{aligned}
$$

segments in S, with no pair having its convex hull in S. Then $\mathscr{L}_{1} \cup \mathscr{L}_{2}$ contains exactly $\sum_{i} \sum_{j}\left(n_{i j}-1\right)+r$ segments, clearly no pair has its convex hull in S, and hence

$$
\sum_{i} \sum_{j}\left(n_{i j}-1\right)+r \leqq m-1
$$

We conclude that S is a union of $m-1$ or fewer convex sets, the desired result. Certainly the bound $m-1$ is best possible, and the proof of Theorem 2 is complete.

References

1. M. Breen, Decompositions for nonclosed planar m-convex sets, Pacific J. Math. 69 (1977), 317-324.
2. -Essential and inessential points of local nonconvexity, Israel J. Math. 12 (1972), 347-355.
3. M. Breen and D. C. Kay, General decomposition theorems for m-convex sets in the plane, Israel J. Math. 24 (1976), 217-233.
4. H. G. Eggleston, A condition for a compact plane set to be a union of finitely many convex sets, Proc. Cambridge Phil. Soc. 76 (1974), 61-66.
5. D. C. Kay and M. D. Guay, Convexity and a certain property P_{m}, Israel J. Math. 8 (1970), 39-52.
6. F. A. Valentine, A three point convexity property, Pacific J. Math. \mathcal{Y} (1957), 1227-1235.
7. -Local convexity and L_{n} sets, Proc. Amer. Math. Soc. 16 (1965), 1305-1310.

The University of Oklahoma, Norman, Oklahoma

