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Abstract

Uncertainty quantification (UQ) plays a crucial role in data assimilation (DA) since it impacts both the quality of the
reconstruction and near-future forecast. However, traditional UQ approaches are often limited in their ability to handle
complex datasets andmay have a large computational cost. In this paper, we present a new ensemble-based approach to
extend the 4DVarNet framework, an end-to-end deep learning scheme backboned on variationalDAused to estimate the
mean of the state along a given DAwindow. We use conditional 4DVarNet simulations compliant with the available
observations to estimate the4DVarNet probability density function.Our approachenables tocombineboth the efficiency
of 4DVarNet in terms of computational cost and validation performance with a fast and memory-saving Monte-Carlo
based post-processing of the reconstruction, leading to the so-called En4DVarNet estimation of the state pdf. We
demonstrate our approach in a case study involving the sea surface height: 4DVarNet is pretrained on an idealized
Observation System Simulation Experiment (OSSE), then used on real-world dataset (OSE). The sampling of
independent realizations of the state ismade among the catalogue ofmodel-based data used during training. To illustrate
our approach, we use a nadir altimeter constellation in January 2017 and show how the uncertainties retrieved by
combining4DVarNetwith the statistical properties of the training dataset lead toa relevant informationproviding inmost
cases a confidence interval compliant with the Cryosat-2 nadir alongtrack dataset kept for validation.

Impact Statement

This research paper discusses the extension of the 4DVarNet framework to ensemble-based approaches. It paves
the way to uncertainty quantification and enables to initiate the discussion of how to retrieve posterior pdf from
such deep learning framework. This paper also involves pieces of previous work initiated inside the 4DVarNet
team of developers in the framework of AI Chair Oceanix. It is meant to help the readers in understanding this
framework from a broader point of view while diving into some new and ongoing developments.

1. Introduction

In state-of-the-art data assimilation (DA) systems, quantifying the estimation uncertainty is a key aspect
that must be addressed all together with the mean of the state space. One major issue is that uncertainty
quantification (UQ) is computationally costly when it comes with variational or ensemble-based
approaches and their combination (Evensen et al., 2022). Recently, we proposed an end-to-end deep
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learning (DL) scheme called 4DVarNet drawing from variational DA to learn jointly priors and solvers.
This approach was successfully applied on the reconstruction of sea surface state based on altimetric
datasets (Beauchamp et al., 2022a) in the context of both traditional nadir altimeters and the upcoming
SWOT mission. Though, 4DVarNet currently only provides a reconstruction of the state space without
quantifying the related uncertainties.

In this work, we draw from geostatistical tools to easily generate ensemble of 4DVarNet reconstruc-
tions. The main advantage of our solution is that the ensemble generation is provided as a post-processing
of 4DVarNet, which enables to simulate the pdf of the state space based on a lot of members (typically a
hundred). It does not require any additional training that might come with a high and potentially
untractable computational cost if the optimization scheme involves a large number of ensemble members.

2. Materials

2.1. 4DVarNet: Basic concepts

Recently, new neural-network-based architectures have emerged to solve inverse problems based on
variational formulation.More precisely, restarting from the variational DA scheme (Asch et al., 2016), the
state analysis x⋆ is obtained by solving the minimization problem:

x⋆¼ argmin
x

J xð Þ,

where the variational cost function J xð Þ¼J Φ x,y,Ωð Þ is the sum of an observation term and a
regularization term involving a dynamical prior operator Φ:

J Φ x,y,Ωð Þ¼J o x,y,Ωð ÞþJ b
Φ xð Þ

¼ λ1 y�H xð Þk k2Ωþ λ2 x�Φ xð Þk k2
(1)

and y denotes the observations available on subdomain Ω⊂D.
Here, the parameterization of operatorΦ is based on convolutional neural networks (CNN) embedding

Markovian priors, see, for example, Fablet et al. (2020). DL automatic differentiation tools are involved
for the computation of the gradient operator ∇xJ Φ given the architecture of operator Φ and is also a
composition of operators such as tensors, convolutions, and activation functions. The proposed end-to-
end architecture consists in embedding an iterative gradient-based solver Γ based on a specific variational
representation. Following meta-learning schemes (Andrychowicz et al., 2016), a residual LSTM-based
representation (Fablet et al., 2020) of Γ is considered.

Formally, we define Θ¼ ΘΦ,ΘΓf g the set of parameters to train and we state this training of the
considered neural scheme as a bilevel optimization problem:

bΘ¼ argmin
Θ

L x,y,Ω,x⋆ð Þ s:t:x⋆¼ argmin
x

J Φ x,y,Ωð Þ, (2)

where L x,y,x⋆ð Þ defines a training loss, typically the mean squared error (MSE) w.r.t the Ground Truth
with additional regularization terms.

Overall, let denote by ΨΦ,Γ x 0ð Þ,y,Ω
� �

the output of the so-called 4DVarNet end-to-end learning
scheme, see Figure 1 and Algorithm 1, given architectures for both NN-based operators Φ and Γ, the
initialization x 0ð Þ of state x and the observations y on domainΩ, subdomain ofDwhere observations are
available.

Algorithm 1. 4DVarNet algorithm Fablet et al. (2020)

Data:
– x∈ℝT ×m¼ xkf g,k¼ 1,⋯,T
– yΩ¼ yk,Ωk

� �
,k¼ 1,⋯,T : observations on domains Ωk ⊂D

– NI : number of iterations
– η: gradient step
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List of procedures:
– Train_ΨΦ,Γ: end-to-end learning procedure with:
* Φ: NN-based representation of the dynamical system
* GradLSTM: residual NN-based representation of ∇xJ xð Þ
* Γ: iterative gradient-based update operator
x¼Φ yð Þ
while i<NI do

x iþ1ð Þ  x ið Þ �η×GradLSTM x ið Þ� �
NI↗;η↘; i iþ1

�����
end
Train ΨΦ,Γ

Result: x⋆ ΨΦ,Γ x 0ð Þ,y,Ω
� �

Whereas classic gradient-based iterative methods may suffer from a relatively low convergence rate,
which dramatically worsens when dealing with high-dimensional states, the proposed trainable solver Γ
considerably speed up the convergence and reach good interpolation performance with only 10–100
gradient steps, depending on the complexity of underlying dynamical process. Regarding the convolutional

Figure 1. Sketch of the gradient-based algorithm: the upper-left stack of images corresponds to an
example of SSH observations temporal sequence with missing data used as inputs. The upper-right stack
of images is an example of intermediate reconstruction of the SSH gradient at iteration iwhile the bottom-
left stack of images identifies the updated reconstruction fields used as new inputs after each iteration of
the algorithm.
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architecture of both trainable prior and solver, it also guarantees their scalability and linear complexity
w.r.t. the size of the spatial domain as well as the number of observations. Such a framework also allows to
explore different configurations for the inner variational cost J Φ and the outer training loss L.

2.2. Toward a stochastic formulation

Because 4DVarNet draws from a DA state space formalism, it is easy to consider this DL model under a
stochastic formulation. Indeed, most operational DA methods are based on Gaussian assumptions and
simply estimate the two first moments of the posterior distribution, mean x⋆ and covariance P⋆. We
suppose that for a given time t and related DA window t�L : tþL of length 2Lþ1, we know how to
simulate N nonconditional simulations xs,it�L↦tþL, i¼ 1,⋯,N whose compatibility of their statistical
properties, typically the mean and covariance for a Gaussian process (GP), with the true state xt�L↦tþL
is verified. By denoting u∈D a spatiotemporal point in the state vector x¼ x uð Þ½ �∈Rm, we have the
following set of (nonstationary) point-wise properties:

1:E xs,it�L↦tþL uð Þ� �¼m uð Þ, (3a)

2:var xs,it�L↦tþL uð Þ� �¼ σ2x uð Þ, (3b)

3:C xs,it�L↦tþL uð Þ,xs,it�L↦tþL u0ð Þ� �¼C xt�L↦tþL uð Þ,xt�L↦tþL u0ð Þ½ �: (3c)

In what follows, we simplify the notations and xt�L↦tþL writes x and C x uð Þ,x u0ð Þ½ � ¼C u,u0ð Þ.
Then, the previous set of properties translates into matrix notation with state-space DA formalism as
x�N m,Pð Þwith P¼ C u,u0ð Þ½ �which is nothing else than the prior distribution involved in the Bayesian
estimation making the link between all DA approaches.

By “nonconditional,” we mean that these simulations do not comply with observations yt�L↦tþL. To
make these simulations compliant with the observations, we draw from traditional geostatistics and
kriging-based conditioning (Wackernagel, 2003) and replace the prior model and kriging solver, also
known as Optimal Interpolation (OI) or BLUE (Best Linear Unbiased Estimator) in the DA community,
see, for example, Asch et al. (2016), by our 4DVarNet estimation. A conditional simulation x⋆,i writes:

x⋆,i¼ x⋆þ xs,i�x⋆,s,i
� �

, (4)

where x⋆ is the 4DVarNet reconstruction, xs,i is a nonconditional simulation of the underlying process
with similar statistical properties than x and x⋆,s,i is the 4DVarNet reconstruction of xs,i using as sparse
observations a subsampling of the simulation with same mask Ω than true observations.

In absence of observations errors, and because it is backboned on variational DA, we proved, see
Beauchamp et al. (2022b), that 4DVarNet applied to the GP Optimal Interpolation with:

• inner variational cost being the OI variational cost, and
• outer 4DVarNet training loss function being the MSE loss w.r.t the true state when the latter is
available in a supervised setting, or the same OI variational cost for unsupervised configurations,

complies in the asymptotic limit with optimal kriging state x⋆! xOI and its related properties: nonbias and
optimal variance.

In this GP formalism, it implies that conditioning a simulation by the observations based on equation
(4) have the following set of point-wise properties, drawn from conditional Gaussian distributions theory,
see, for example, Chilès and Delfiner (2012):

1:E x⋆,i uð Þ� �!E x⋆ uð Þ½ �, (5a)

2:var x⋆,i uð Þ� �! var x⋆ uð Þ½ �, (5b)
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3:C x⋆,i uð Þ,x⋆,i u0ð Þ� �!C u,u0ð Þ�
Xn
α¼1

Xn
β¼1

λα uð Þλβ u0ð ÞC uα,uβ
� �

, (5c)

where α, β¼ 1,⋯,n denotes the observation index and λα are the optimal krigingweights in the estimation
xOI uð Þ. Making the link with state-space DA formalism, equation (5a) becomes:

P⋆¼Σ xijy� �¼ I�KHð ÞP, (6)

where we recognize the posterior covariance formulation withK¼ λα uð Þ½ �α¼ 1,⋯,n

u∈D

∈Rn×m andH the

observation operator mapping the state to the observations.
Then, the covariance between two conditionally simulated locations u and u0 is less than the prior

covariance which makes sense because conditioning a process with observations shall constrain the
uncertainty.

The latter set of properties is verified when a GP approximation of state x is valid. When the underlying
covariance model is not known and/or a GP approximation with linear dynamics does not apply, it was
shown that 4DVarNet estimation (Fablet et al., 2021; Beauchamp et al., 2022a) enables to improve the OI
interpolation, that is, it is still unbiased but with lower MSE w.r.t the ground truth, that is, lower variance of
its error var x⋆ uð Þ½ �<var xOI uð Þ� �

. Consequently, running an ensemble of N simulations conditioned by
4DVarNet will provide an approximation of the probability distribution function px∣y of state x∣y with both
improvements on the two first moments x⋆ and P⋆ compared to simulations conditioned by kriging. The
ensemble mean x⋆,i will be the 4DVarNet reconstruction in the limits of N!þ∞:

x⋆,i¼ 1
N

X
i

x⋆,i !
N!þ∞

x⋆:

We stress that such a formulation is consistent with traditional DA: indeed when looking at the spatial
sequential scheme of the Ensemble Kalman Filter (Evensen, 2009), the forecast step can be seen as
nonconditional simulations at time t�1 generating N realizations for time t. The average forecast and
the covariance matrix are then computed on this set of realizations. and the analysis step corresponds
to the conditioning of these realizations. Here, our approach follows the same idea but we do not
address the problem sequentially and produce spatio-temporal nonconditional simulations over the
assimilation window, before conditioning them with the observations. Such a formulation is more
suitable to produce ensemble of 4DVarNet realizations. In the following, we refer to our approach as
En4DVarNet. We believe this formulation is the more appropriate amongst the set of hybrid methods
which aims to incorporate the statistical flow-dependent strength of EnKF into 4DVar. Indeed, when
comparing this approach with En4DVar (Zhang et al., 2009), our method share some ideas for both
prior and solvers:

• the minimization procedure for both En4DVar and En4DVarNet are still backboned on their original
4DVar and 4DVarNet optimization scheme, respectively based on the adjoint model and the neural
prior encoder Φ. It is not always the case for other hybrid methods, see, for example, the class of
4DEnVar methods (Qiu et al., 2007) which avoid the adjoint model by approximating the linearized
tangent operator with the simulated observation perturbations;

• En4DVar retrieves the statistical ensemble background covariance from a parallel EnKF imple-
mentation, which allows for flow-dependency of the latter. In En4DVarNet, because we sampled
spatiotemporal simulation with similar properties than the true state along the DA window, their
associated prior mean and covariance matrix may differ from time to time. We precise that our
approach, though combining ensemble-based formulationwithOI-based conditioning should not be
confused with the so-called EnOI approach in DA, see, for example, Counillon and Bertino (2009)
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and Asch et al. (2016), which is just a EnKF in which the flow-dependent error covariance matrix is
replaced by a stationary matrix calculated from an historical ensemble.

Also, asmentioned above, the generic presentation ofEn4DVarNet supposes to be able to sample in the prior
distribution. In practice, this is not an easy task when no model is available, see Section 2.3 for a practical
solution. When not possible, future works may consider the DL problem of joint learning for both the
reconstruction and prior emulation based on neural or differentiable formulations of the latter, see, for
example, differentiable physical quasi-geostrophic model (Frezat et al., 2022) or SPDE-based linear
approximations (Beauchamp et al., 2022b). Such additional developments would enable to incorporate
the ensemble statistics into the 4DVarNet outer training loss, in order to comply with maximum likelihood
criteria w.r.t to the Ground Truth (supervised setting) or the observations (unsupervised setting).

In the end, such a name for the proposed approach leaves space for additional flavors of ensemble-based
4DVarNets in the future, as it is done with a combination of ensemble and variational approaches in DA.

2.3. Practical aspects

The key aspect of our approach lies in the capability of providing a prior model from which we are able to
sample realizations of the underlying process. In the current 4DVarNet formulation, the operatorΦ plays
the role of autoencoding the state and is learnt jointly with the solver to satisfy at most the loss function
used in the 4DVarNet training process. Such an operator should not be seen as an emulator able to generate
simulations of a geophysical variable, like sea surface height (SSH), as used in Section 3. For now,
because themain 4DVarNet applicationswere developed in a supervised setting, we propose to sample the
realizations in the catalogue of themodel-based experiments used during training to estimate the pdf of the
4DVarNet reconstructions applied on real-world datasets. Such a sampling will require to retrieve the
analogs (Lguensat et al., 2017) of the state for a given DAwindow, which is done by comparing the low-
resolution properties of the available observations to the model-based catalogue. This is why the En4D-
VarNet explored in this paper shall be seen as a post-processing as the traditional 4DVarNet method.

Algorithm 2. Ensemble-based 4DVarNet (En4DVarNet) algorithm

Data:
y Ωð Þt�L↦tþL
Ω, subdomain of space D with observations
xT , model-based 4DVarNet training dataset, also use as catalogue for post-processing

List of procedures:
ΨΦ,Γ y Ωð Þð Þ: 4DVarNet reconstruction
Φ: CNN-based representation of the dynamical system
Γ: iterative gradient-based update operator with LSTM-based representation of ∇xJ xð Þ

knn y Ωð Þ,xT ,kð Þ: Get the kth nearest neighbor (analog) of y in the training dataset
Init:
x⋆, 0ð Þ ¼ y over Ω

0 elsewhere

	
for i∈1,…,N do

x⋆¼ΨΦ,Γ y Ωð Þð Þ
xs,i¼ knn y Ωð Þ,xT , ið Þ
x⋆,s,i¼ΨΦ,Γ xs,i Ωð Þð Þ

�������
end
Result: x⋆,i¼ x⋆þ xs,i�x⋆,s,ið Þ

Algorithm 2 details the entire procedure to derive the ensemble of 4DVarNet reconstructions based on
the analog sampling of independent realizations in the training dataset.
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3. Real-World SSH Application

To evaluate our approach, we use a real-world nadir altimetric dataset in January 2017. The SSH
observations include a constellation of seven nadir altimeters: SARAL/Altika, Jason 2, Jason 3, Sen-
tinel 3A, Haiyang-2A, and Cryosat-2. Note that the Cryosat-2 altimeter dataset is not included in the
mapping reconstruction, it is kept to perform an independent validation of both reconstruction
and UQ.

In the previous 4DVarNet SSH-related publications, we use the NATL60 OSSE (Observation System
Simulation experiment) experiment ran with the state-of-the-art NEMO model (Nucleus for European
Modeling of the Ocean) at high resolution (1/60°) over the whole North Atlantic (NATL) basin to train
4DVarNet (Beauchamp et al., 2022a). We used a supervised configuration where the target variable is
defined as the anomaly between the Ground Truth and DUACS (Data Unification and Altimeter
Combination System) OI (Taburet et al., 2019). Recent applications of 4DVarNet on the raw SSH,
without providing the DUACS OI baseline as a coarse version of the reconstruction, showed that this
flavor improves again the performance when using as length for the DA window � 15 days. For our
experiment, we use this 4DVarNet pretrained model to reconstruct SSH over the same 10° × 10° Gulf-
Stream domain used during the OSSE-based training.

3.1. Results

In the following experiment, we apply our ensemble-based 4DVarNet approachwith 60members on the
6 nadir constellation on January 2017. Figure 2 displays an example of the 4DVarNet reconstruction on
January 10, 2017 as a mean state and we extract the time series of three spatial positions P1, P2, and P3,

Figure 2.Example of 4DVarNet daily reconstruction on theGulfStreamdomain (January 10, 2017) based
on the six nadirs agregation dataset. Black circles indicate spatial positions P1, P2, and P3 where
ensemble-based 4DVarNet mean and spreads are extracted.
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marked by black circles. P1 is located in a region less energetic than the rest of the GulfStream domain,
P2 lies along the main meander and P3 is away from the latter, but it stays close to energetic eddies that
may appear from time to time. The corresponding time series of ensemble mean and ensemble spread
are provided on the right-hand side of Figure 2: we can see how depending on the position, the
variability among the members may differ. Interestingly, a periodic pattern seems to reproduce for all
the positions selected which indicates the strong weight of the observation nadir sampling on the
4DVarNet uncertainty.

As an illustration of the En4DVarNet variability, Figure 3 displays the SSH gradient field of the
4DVarNet reconstruction (January 4, 2021): we focus on a small bottom-left 50 × 50 pixels subdomain to
show how members may be able to reproduce different realistic patterns and small eddy structures while
maintaining the members compliant with the observations along the DAwindow.

In the same vein, Figure 4a,b respectively displays the SSH gradient and corresponding spreads from
December 31, 2016 to January 25, 2017 (every 5 days). We can see how the main GulfStream meander
and smaller eddies evolve over time. It is clear in Figure 4b how the observations help in decaying the
reconstruction uncertainty. Then, when moving away from the observations at the center of the assimi-
lation window, the uncertainty grows quickly, not only based on the distance from the nadir altimeters but
also influenced by the SSH spatiotemporal dynamics.

Figure 5 enables to understand the evolution of the 4DVarNet uncertainty over time. We provide the
full standard deviation maps for t¼ 0 (December 31, 2016) and only displays the highest uncertainties
levels along z-axis for the next 30 dates over the test period.While the observation sampling evolves every
day, it is clear that the ensemble approach identifies areas of the GulfStream domainwith persistently high

Figure 3. SSH gradient of the 4DVarNet daily reconstruction on the GulfStream domain (January
4, 2017) and the related focus on the bottom-left 50 × 50 pixels subdomain (red box) where the difference
amongst four members are shown.
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Figure 4. 4DVarNet SSH gradient and the corresponding ensemble-based standard deviations from
December 31, 2016 to January 25, 2017 (every 5 days).
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uncertainty levels. This is the case on some positions along themainmeandrumwhere no observations are
ever available. Let us note the specific case of the bottom-left region (see again Figure 3) where a small
area exhibits a high and recurrent ensemble spread. Such behaviors are typical for smoothers like
4DVarNet which cannot retrieve smaller energy areas without any additional observations. On this point,
the future SWOT mission will surely help to solve for such problems (Gaultier et al., 2015; Metref et al.,
2020; Beauchamp et al., 2022a; Febvre et al., 2022).

Because we are using an OSE experiment, we kept the Cryosat-2 alongtrack dataset for validation.
Our computations take into account the observational noise of the Cryosat-2 nadir altimeter above the
GulfStream domain (https://doi.org/10.48670/moi-00144) whose standard deviation varies between
0.01 and 0.02 m. Figure 6a,b displays the two alongtrack Cryosat-2 nadir crossings on January
10, 2021, with corresponding DUACS OI, 4DVarNet reconstruction and both En4DVarNet mean
and interval of confidence.We also built a 1° × 1°map over the GulfStream domain to accumulate all the
occurrences of Cryosat-2 appearing in a pixel. This allows for computing the empirical probability that
observations fall within the estimated 4DVarNet confidence interval (between the 5 and 95 percentile of
the ensemble members) during the test period. Figure 6c shows this probability map on January 2017,
with the number of Cryosat-2 occurrences given on the z-axis. The UQ provided by En4DVarNet seems
often consistent with Cryosat-2 observations and probability values are greater than 0.7. Still, smaller
areas display lower values (about 0.5) which may indicate the NATL60 simulation does not fully
retrieve the statistical properties of true SSH dynamics over the GulfStream domain and there is a need
for a larger catalogue or additional tools to emulate a stochastic version of such a variable in our
framework.

4. Conclusion

In this work, we propose an ensemble-based version of the end-to-end DL 4DVarNet framework to both
reconstruct and quantify uncertainty of SSH based on sparse altimetric nadir observations. Our solution

Figure 5. Ensemble-based 4DVarNet standard deviations over the test period (January 2017): the full
standard deviation map is given for t¼ 0 and only the highest uncertainties levels are given along z-axis
for the other dates.
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relies on the ability to select the analog situations (nearest neighbors) of the available observations from a
model-based dataset. Doing so, the underlying assumption is that the samples drawn would share similar
statistical properties than the true state. Then, a 4DVarNet realization compliant with the observations is
obtained by adding to the classic 4DVarNet reconstruction a residual which is simply the difference
between the analog and its 4DVarNet estimation using as observation a subsampling of the analog with
similar sparsity mask than the actual observations. This solution and its application to real-world nadir
SSH observations demonstrates that post-conditioning independent simulations is a promising way to
create a stochastic formulation of 4DVarNet. Along this line, future works would consist in generalize the
approach by getting free from the analog solution and being able to generate independent realizations.We
also plan to explore other ways involving ensemble approaches. For instance, an alternate post-processing
of 4DVarNet may be to add to the observations a random noise as it is done in stochastic EnKF
formulations. An other solution would be to embed through a Gaussian or ensemble formulation a
new uncertainty term to optimize during training based on likelihood loss functions.

Author contribution. Conceptualization: M.B.; Data curation: Q.F.; Methodology: M.B., R.F.; Resources: Q.F.; Supervision:
R.F.; Visualization: M.B.; Writing—original draft: M.B. All authors approved the final submitted draft.

(a) 1st along-track nadir crossing (b) 2nd along-track nadir crossing

(c) probabilities

Figure 6. (a,b) SSH confidence interval for the two Cryosat-2 nadir crossings available on the
GulfStream domain (January 10, 2017) and the corresponding DUACS, 4DVarNet and ensemble-based
4DVarNet reconstruction; (c) Left: number of Cryosat-2 occurrences inside the pixel during the test
period, Right: Probabilities for Cryosat-2 dataset to be included in the 90% interval.
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