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0. Introduction

Let £ be a Banach sequence space with the property that if (a,) e E and |^,|^|a,| for
all i then (Pi)eE and ||(jS,-)||£ |̂|(ai)||£- For example E could be c0, V or some Orlicz
sequence space. If {Xn) is a sequence of real or complex Banach spaces, then E can be
used to construct a vector sequence space which we will call the E sum of the Xn's and
symbolize by ©£*„. Specifically, ®EXn = {(xn)\(xn)eXn and (||xn||)e£}. The E sum is a
Banach space with norm defined by: ||(xn)|| = j|(||xn||)||£. This type of space has long been
the source of examples and counter-examples in the geometric theory of Banach spaces.
For instance, Day [7] used E = l* and Xk=lqk, with appropriate choice of qk, to give an
example of a reflexive Banach space not isomorphic to any uniformly convex Banach
space. Recently VanDulst and Devalk [33] have considered Orlicz sums of Banach
spaces in their studies of Kadec-Klee property.

In [8] we showed that a Banach space with a one-unconditional Schauder basis could
be written as an E sum of Hilbert spaces. In [9] and [14] we used the decomposition to
obtain characterizations of the surjective isometries as well as the 1-parameter groups of
such isometries. Simpler proofs of some of these results have been recently obtained by
Arazy, see [1].

Recently Rosenthal [26], has obtained several results concerning the geometric
structure of real Banach spaces which are 1-unconditional sums of Hilbert spaces of
dimension at least two. To state Rosenthal's main result on isometries we need some
terminology. An operator A is said to be skew hermitian if Re{/(/ix)} = 0 for all linear
functionals / and all vectors x such that /(x) = ||/|| ||x||. A real Banach space U with a
normalized one unconditional basis (uj is said to be pure if there are no rank-two
skew-Hermitian operators on U. We can state the main isometry result of Rosenthal:

Theorem. Let (//Jaer be Hilbert spaces all of dimension at least two, u=(ua)aer a
one-unconditional basis for a pure space U, and B = ( £ r © HJU. Let S(B) denote the set of
all bijections a: T-*T so that

(a) ("<7(J))
 is isometrically equivalent to (ua)xer

 and
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(b) HaM is isometric to Hx.

Let a in S(B). For each aeF , let Ta:Hx->HHx) be a surjective isometry. There is a unique
T in I(B) so that for all x = ( x j i e r in B, (Tx)aM = T^xjbr all aeF. Conversely, every T in
I(B) is of this form.

This theorem obviously applies to Banach spaces over the complex field and should
be compared with our Theorem 3.7. In our case, the factor spaces can be more general
because we don't require them to be Hilbert spaces. For instance, the factor spaces can
be sequences of Banach spaces which admit only trivial hermitian operators.

We have also been influenced by the recent paper of Jakimovski and Russell [17]. In
this paper the authors' primary objective was the representation of the linear functionals
on certain spaces. To accomplish this, they show how many of the spaces in ergodic
theory, harmonic analysis, and summability theory are isometric to £-sums of appropri-
ate sequences of Banach spaces.

For instance one of the sequence spaces which arises in summability theory is the
following.

Example 0.1. w°p is defined to be the set of all complex sequences (xn) for which
v-oo 1/JVV^i |xfc|p = 0. For l ^p<oo , w° is a Banach space with norm: |
( 2 " * ^ i r "M^l")1'"- T h i s s P a c e i s isometric to @C0Bk where Bk = {x ([

i^2k + 1 — 1}, with coordinate wise addition and scalar multiplication. The norm on Bk

is: ||x||fc = 2~t/p||(xj)||p, where || ||p is the usual /„ norm.
There is a "continuous" version of this space which was studied by Borwein in [6]

and we will consider it in later section.
The Banach spaces considered in [17] may not be generally thought of as "classical"

Banach spaces, but they are still interesting objects of study from the geometrical point
of view. As a result of Jakimovski and Russell's work we can determine the form of the
surjective linear isometries of many of the spaces considered in [17]. Our results are not
limited to these spaces and the representations of the isometries for the spaces in [17]
are obtained as corollaries of more general results. For example we will determine the
isometries of the space w° by obtaining a result for c0 sums of Banach spaces with
trivial L^-structure and then show that w° belongs to this class.

Our primary goal in this paper is to obtain representations of the isometries of
certain £-sums of Banach spaces. Because of our techniques, there are other types of
operators we consider because of their close ties with isometries. In particular, we obtain
characterizations of hermitian operators for the various spaces in question. Once the
structure of the hermitians is determined we describe precisely the action of the
isometries on ®EXn provided the "factor spaces" Xn belong to certain classes.

In the last part of the paper we will give some results concerning hyponormal
operators (see [23]) as well as adjoint abelian operators (see [32]).

1. Definitions and terminology

All Banach spaces considered in this paper will be linear spaces over the complex
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numbers. Given a Banach space X, B(X) and H{X) will denote the bounded and
hermitian operators respectively. Recall that T e H(X) iff one of the following conditions
hold:

(h.l) ||eiar|| = l for all a605,
(h.2) T is the generator of a uniformly continuous group of isometries,

(h.3) ||eil ir| |^l for aeIR,
(h.4) ||/ + iaT|| = l+0(a) as a - 0 or,
(h.5) W(T) = {[Tx,x]}|[x,x] = l}£(R, where [ , ] is a semi inner product (s.i.p.)

compatible with the norm on X.

For the most part we will use (h.5) and so we give a few properties of semi inner
products. See Lumer [21] and [22] for general properties of semi inner products.

Definition 1.1. Let X be a normed linear space. A s.i.p. is a function [ , ]:
XxX-*Csuch that

(1.1.1) [otx + y,z]=a[x,z] + [y,z] forx,y,z in X and a in C,
(1.1.2) [x, x] 2:0 and equality holds only if x = d.
(1.1.3) |[x,y]|£[x,x]1'2|>,jfl1'2

The s.i.p. is said to be compatible with the norm on X if
(1.1.4) ||x||2 = [x,x] for every X E I .

Remarks. It is well known that every normed linear space has at least one s.i.p.
compatible with the norm. Furthermore, a space has unique s.i.p. iff the unit sphere is
smooth. A s.i.p. is symmetric iff the induced norm is Euclidean. A s.i.p. need not be
conjugate homogenous in the second argument but there always exists such a s.i.p.
compatible with the norm. We will assume that our s.i.p.'s have this property. Finally,
we will use the fact ([21]) that any compatible s.i.p. can be used to test (h.5).

Now we suppose that £ is a Banach sequence space satisfying the conditions outlined
in the introduction and furthermore we will assume that the natural basis is a
normalized 1-unconditional (or hyperorthogonal) Schauder basis for E. Thus if X =
®EXn, the sequence (Xn) is an unconditional Schauder decomposition of X and so each
xeX can be written uniquely as x = £x; , where XjSXj. For each k we let Pk;X-*Xk be
the projection PkC£,xj) = xk a nd Qk%k-*X be the injection Qkxk = Y_iyi where yf = 0 for
i//c, and yk = xk. With each AeB(X) we associate an operator matrix (Ajk) where
Ajk = PjAQk. Since we are dealing with an unconditional decomposition, the usual
matrix operations apply.

2. A special case—®c XB

We begin by considering c0 sums of Banach spaces. This situation is the most
transparent and should serve as an introduction to our methods. In what follows we use

https://doi.org/10.1017/S0013091500028583 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028583


172 R. J. FLEMING AND J. E. JAMISON

to denote the norm on each Xn and the norm on X = ®coXn will be given by
= max||xt | | . Occasionally, we use || ||n to denote the norm on Xn if it is important

to make a distinction.
Since for each x=(xn)eX there exists at least one positive integer k = k(x) for which

||x||00 = ||xfcj|, it is easy to give a compatible s.i.p. for X.

Lemma 2.1. For each xeX let k(x) be the least positive integer for which ||xt|| = 11x11,,.
Let [ , ] t denote any compatible s.i.p. on Xk. For each x and y let

[x, y]: = [xMj0, ym\(y) • (2.1.1)

Then [ , ] is a s.i.p. on X compatible with the norm.

The proof is routine and we omit it.

Proposition 2.2. T is a hermitian operator on (BC0Xn iff there exists a bounded
sequence (Tk) of operators such that TkeH(Xk)for each k and T(xn)=(Tnxn).

Proof. These conditions are clearly sufficient. To see that they are necessary let
Tij^PiTQj. Let k^j and choose xkeXk,XjeXj such that | | x t | | ^ ||x;||. x =
(0,...,xk,0,...,Xj,0..)e(BcoXn and using notation of Lemma (2.1), k{x) = k. Tx =

+ TijXj). From (2.1.1) we have

[75c, x] = [Tkkxk,xk]k + \;TkjXj,xk]k. (2.2.1)

This has to be real for all choices of xk and Xj for which JĴ ck|| ^ H ĵll- F ' r s t choose xj =
to get that [Tkkxk,xk\sU for all xk. Now replace x} by ixj to get

for all admissible xk,Xj. (2.2.2)

It is clear that

[TkjXj,xJk = 0 for all admissible xk,Xj. (2.2.3)

Now let zk,Zj be non zero vectors in Xk,Xs respectively. Since z*/||z*|| and ZJ/\\ZJ\\ are
admissible it follows that

From this last equality it follows that

|fe|P = 0 (2.2.5)
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for all Zj and so Tkj=0. The fact that the diagonal sequence must be bounded follows
from the boundedness of T.

This proposition will allow us to prove a theorem on the isometries of (&eoXn. Before
stating the theorem there are several notions which will arise as hypotheses about the
factor spaces Xn which we must consider.

Let v be a normalized absolute norm on U2. That is, v is a norm with v(x,,x2) =
v(|*i|>|*2|) a n d v(l,0) = v(0,1) = 1. Paya Albert [25] introduced the notion of a
"v-projection" which generalized the earlier idea of an //-projection due to Behrends
[3]. A bounded projection Q on a Banach space X is a v projection if for every x
||JC|| = V(||QJC||,||JC-QX||). In the L" case, v(x1)x2) = (|x1|

p + |x2|p)1/(' for l < p < o o , while
v(xi,x2) = Max(|x|,|x2|)/of p=oo. X has trivial V structure if 0 and / are the only V
projections. For the purposes of this section, L°° projections will suffice but we will state
all of the lemmas for the general case.

Lemma 2.3. Let X and Y be Banach spaces. Let U be a surjective isometry from X to
Y. Let T be hermitian on X and Q be a v projection on X. Then,

Q is hermitian on X, (2.3a)

UQU'1 is a v projection on Y, and (2.3b)

UTU'1 is hermitian on Y. (2.3c)

Proof. First we prove (2.3.a). Since Q2 = Q it follows that for any aeU,e''Q =
(I-Q) + eilxQ. Hence, QeixQ = eixQ and (/ - Q)eixQ = (I - Q). Now for any xeX,

=v(||etae4H(/-eHI)

= 11*11- (2-3.1)

This last equality follows from the fact that Q is a v-projection. From (h.l) it is clear
that Q is hermitian.

To prove (2.3.b) let ye Y. Then
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||tfGtf~IJ'IHlGI/-1J'|| and likewise \\y- UQlJ-ly\\ = \\U-ly-QU~ly\[

Thus,

= \\uy-l\\=\\y\\. (2.3.2)

The proof of (2.3.c) follows from the equality

exp(iaUTU~1) = UeiaTU-1 (2.3.3)

and the fact that U is a surjective isometry.

Remarks. (2.3.c) can be used to give a short proof of the classical Banach Stone
Theorem for isometries between C(fli) and C(C12)> where Qt and Q2

 a r ^ compact
Hausdorf spaces. See Section 6.

Before stating our first result on isometries we need an additional fact concerning
v-projections.

Lemma 2.4. Let Q:®EXn^®EXn be the "diagonal map" Q(xn) = (Qnnxn). If Q is a
v-projection, then each Qnn is also a v-projection on Xn.

Proof. Suppose Q is a v-projection. For each positive integer k, Qkk is clearly a
projection and furthermore,

| |(0,0,..., xk, 0 . . .)||£ = v(||(0,..., Qkkxk, 0. . . ) ||£) | |(0,..., xk - Qkkxk, 0)\\E

i-e- ||x*||* = v(||Qwxt|| t, | | x t - e t t x t | | t ) . Thus, Qk is a v projection on Xk.

Theorem 2.5. Let (Xn) be a sequence of complex Banach spaces such that any one of
the following holds for every Xn.

(2.5a) Xn has trivial L00-structure.

(2.5b) Xn has only trivial hermitian projections.

(2.5c) Xn has only trivial hermitian operators.

(2.5d) H(Xa)' contains no nontrivial hermitian projections.

(2.5e) AH(Xn)B = {0} implies that A = 0 or B =0 .

T is a surjective isometry of ®C0Xn iff there exists a permutation n of the positive
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integers Z + and a sequence of isometric operators t/nit(n) such that T(xn) = Unn(n)xa{n) for
each {xn)e@C0Xn. Moreover, the space XMn)^Xn.

Proof. Let T be a surjective isometry of ©coxn and suppose that the matrix
representations of T and T~l are denoted by (7jj) and (S;j) respectively. For each
positive integer k let Qk be defined by

e*(x)=(0,0,. . . ,x,,0>0...). (2.5.1)

From Lemma (2.3), T~1QkT and TQkT~l are both hermitian and Lm projections. By
Proposition (2.2) T~iQkT is diagonal and by Lemma 2.4 each diagonal entry is both
hermitian and an L°° projection on the corresponding factor space. Hence, if (2.5a),
(2.5b) (2.5c) holds, these diagonal operators must be either the zero operator or the
identity.

If (2.5d) holds we obtain a similar conclusion as follows: since the hermitians on
(&C0Xn are diagonal, Qk commutes with every hermitian. As a consequence, T~lQkT is a
diagonal operator with hermitian projections on the diagonal. It follows that each
diagonal entry of T~lQkT must commute with every hermitian operator on the
corresponding factor space. By (2.5d), the only such projections are 0 or /.

Therefore for any of the first four hypotheses we get that for each positive integer k

SikTkj = Oij for i # ; (where 0,j is the zero operator)

Ij or Oj if i = j . (2.5.2)

Since T~lQkT is not the zero operator, there must exist at least one positive integer
which we denote by n(k) for which

5n(*)k^in(*) = ît(k|- (2.5.3)

Since,

IX, *.] = [ (T- ' T)nnxn, x J = £ LSnkTknxn, x j , (2.5.4)

it follows that given k there is at most one n(k) for which (2.5.3) holds.
Therefore, the mapping k-*n{k) is a one to one function on Z + . Moreover, the map

k-*n(k) is surjective, for if A#TC(Z+), TZ = 0 when z = (0, . . . ,x x ,0 . . . ) and this is
impossible. We say that n is induced by the conjugation Q-*T~lQT.

Since T(T~lQkT)T~i = Qk for each k, it follows that the "conjugation" TQkT~l

induces the permutation a which is inverse to n. Thus as before

0y if i±j

0, if i = ;#cr(fc) (2.5.5)
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A**) if i=j = o{k)

From (2.5.3) we have

S«k)k TkJ=0n(k)j for ; # n(k)
and consequently

7in(*)Sjt<i[)* Tkj = 7i l ( 4 )0n ( ) [y = 0tJ-. (2.5.6)

From (2.5.5) we have that Tkn(k)Sn(k)k = Ik and so,

Tkj = 0kJ for j*n(k). (2.5.7)

Therefore, we have shown that (7y has exactly one non zero operator entry per row
and column and so for each x = (xn) in ®coXn we have the formula

(Tx)n=TnMn)xMn). (2.5.8)

By taking vectors with "single entries" it follows that | |^(n)xn(n) | |n = ||xn(n)|| for each n.
Since T is surjective it follows that Tnn(n) maps XMn) onto Xn and so Xn(n) and Xn are
congruent. This essentially completes the proof of the theorem for the first four
hypotheses. The proof in the case of the last hypothesis is almost exactly the same as
the case that the Xk are all Hilbert spaces and this argument is given in [9] and we will
not repeat the arguments here.

Remark. See the remarks following Theorem 3.1 concerning hypotheses (2.5e).

As an illustration of this theorem we will consider several spaces from the paper of
Jakimovski and Russell. The first space is w° which has already been defined. The
second space is due to Borwein [6] and is defined as follows:

W°p = \f\f is measurable on [l,oo], lim ^ f|/|' = o l ,

with the usual vector addition and scalar multiplication. As noted by Jakimovski and
Russell, if one defines

/ 2 k + 1 \l/p

for kel+, then W° = @C0Bk. (L"[2*-2*+1) denotes the usual L" space defined by
Lebesque measure on [2*-2fc + 1)).

Corollary 2.6. / / U is a surjective isometry of w°p or W°p then there exists a sequence
([/„„<„)) of operators such that
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(a) for w°p n(k) = k for each k, and there is a surjection ak of {2*,2*+ 1,. . . ,2*+ 1- 1}
and a sequence of real numbers 0k such that Uk(Xj) = (ei9*xakU)) for 2k^j<2k + 1.

(b) for W°p, there exists for each n a measurable point mapping Tn of Jn onto Jn(n) such
that if fn = fIJn then

^nit(n)/it(n) = "n/n(n) ° ^n-

(We have used IA to denote the indicator function of the set A and hn to denote the
"(l/p)th" root of the Radon-Nikodym derivative of the measure mT~l with respect to
m).

Proof. All that needs to be verified is that the "factor spaces" in each case have
trivial L^-structure. This fact follows from the work of Behrends [3]. He showed that
L"(fi) spaces have only U projections and so with l ^p<oo , Lp[2n,2n+1) and /" have
only trivial L00 projections. The description of the isometries on the factor spaces is
known and follows from the work of Banach and Lamperti [2,20].

Remark. There are other spaces described in [17] satisfying the hypotheses of
Theorem 2.5. Rather than give explicit descriptions of their isometries we choose to
point out which of the hypotheses is satisfied in each case. For example, the space 0[/C]p

is isometric to a c0 sum weighted lp spaces (see page 283 of [17]). Since these I" spaces
have trivial L" structure it follows that condition (2.5a) holds. Likewise, the space Cp x ,
p> 1, (see page 283 of [17]) is isometric to a c0 sum of LP spaces and these spaces also
have trivial L" structure.

So far, only one hypothesis of Theorem 2.5 has been used in our illustration of the
theorem. To see an application of some of the other hypotheses, we turn to a class of
Banach spaces that comes from abstract harmonic analysis.

In [19], J. LaDuke introduced a class of Banach spaces which he called 8P spaces.
One of these spaces can be described as a c0 sum. To be specific, let / be a countable
index set and suppose that for each i e /, Ht is a finite dimensional Hilbert space. S0(I) is
the * sub algebra of T\.i6lB{H) with coordinate wise operations and satisfying the
condition that (Ej)eS0(I) if and only if {«e/: ||£tH^e} is finite for all e>0. The norm for
S0(l) is sup norm, i.e. ||(£,)||00 = sup||£I-||, where ||£,|| is the operator norm on B{Ht).

In order to apply Theorem 2.5 to the space S0(I) we need to show which of the
hypotheses is satisfied. The lemma which follows will provide the answer. We state it in
its most general form.

Lemma 2.7. Let Z # C2(H) be B(H), or any minimal normed ideal in B(H) in which the
finite rank operators are dense. If Q is a hermitian projection on Z which commutes with
every hermitian operator on Z then Q is 0 or I.

Proof. Let Q be an hermitian projection. It follows from work of Sinclair [29], and
Sourour [31] that there exists operators AUA2 such that each At is hermitian on the
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Hilbert space H and for each TeZ, Q(T) = A1T + TA2. Since Q is a projection, it
follows from Sourour [31] that Q{T) = AJ for all T or else Q(T) = TA2 for all T. It is
obvious that in either case At must be a projection on H. If we now envoke the
hypothesis that Q commutes with every hermitian on Z it follows that At (or
respectively A2) must commute with every hermitian on H and consequently with every
operator on H. Clearly then A: =0H or IH and so Q is 0z or lz.

From the preceding lemma, it is clear that the spaces of LaDuke satisfy (2.5d).
Theorem 2.5 and Sinclair's characterization of the surjective isometries of B* algebras
yield the following result.

Corollary 2.8. Let W be a surjective isornetry of S0(l). Then there exists a permutation
(j) of the positive integers and unitary operators Ui<Hi), Vi4>U) such that for £ = (£,),

W(E) = or

where for each i, Ht = H^ and "t" denotes the transpose with respect to some orthonormal
basis for H^,U).

3. Hermitians and isometries on ©EXn

In this section we will investigate the structure of the hermitian operators and the
surjective isometries of more general sums. Much of what is done in this section is
generalization of results from [8] and [9]. We begin all of this by recalling essential
notions from [8].

Definition 3.1. A s.i.p. on X = @EXn is said to be sufficiently /Mike if there exists a
sequence of nonnegative functions a, defined on X such that

(3.1.1) ak(x) = ak(y) for each k if | | x , | H M I » for ' ^ L

(3.1.2) a,{Xx) = al{x) for every nonzero scalar k.

(3.1.3) For every (i, i/)3x1-e.X'j,x,-e.X'; such that if x = xi + xi, then it follows that
ai{x)=aJ{x).

(3.1.4) For every pair /c#7 there exists xeX with xk^9k and Xj^tOj such that
ak(x)^=a}{x). Let [ , ] , denote a compatible s.i.p. on Xt. For x = (x,) and
y = (yj) in X,

(3.1.5) IX)'] = Xai(x)D'c;>.y>!]> defines a s.i.p. on X compatible with the norm.

In [8] we showed that every Banach space with a normalized one unconditional basis
(c,) can be written as an £-sum for an appropriate E and possesses a sufficiently /p-like
s.i.p. In that situation, each Xt is an I2 space of appropriate dimension and [ , ] , is in
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fact an inner product for each i. We also defined two "coordinates" i and j to be
equivalent if whenever x = YJxkek and y = Y^ykek belong to X with |x;|2 + |xy|2 =
b 'P + bjl2 anc* Ixn| = bn| f°r «#'>./' then ||x|| = p | | . In what follows we will require that
the sequence space £ have no equivalent coordinates. In this situation the x, are just
complex numbers and so [x,, >>,],• = x,j>1-, where yt denote the complex conjugate of y,.

We now record a lemma the proof of which is essentially contained in Lemma 4.6 of
[8].

Lemma 3.2. Let X = @EXn and suppose E has a l-unconditional basis and no
equivalent coordinates. Then X has a sufficiently I" like s.i.p.

Proof. Let [a, /?] = £ 0Lkpkak(P) denote a s.i.p. which is sufficiently I" like. For x=(xn)
and y = {yn) e X define

where >l/t(x): = ak(||xt||t), and [ , ]„ is any compatible s.i.p. on Xn.
It follows that this is the required s.i.p. on X which has the required properties and in

particular (3.1.4) follows from the fact that E has no equivalent coordinates.

Once the lemma is known the next theorem follows exactly as in [8]. A careful
reading of the proof of Theorem 2.6 of [8] shows that only s.i.p. properties were used
and consequently the argument there transfers to this situation with only minor
changes.

Theorem 3.3. Let X = @EXn where E has a l-unconditional basis and no equivalent
coordinates. If T is hermitian on X then, there exists a sequence (Tn) of operators such
that Tn is hermitian on Xn and T(xk) = (Tkxk) for each (xk)eX. Furthermore the sequence
{||Tn||} is bounded. These conditions are also sufficient.

Remark. The hypothesis concerning no equivalent coordinates in E rules out I2

sums. It appears that I2 sums are much more complicated to deal with. For instance, it
is not clear that hermitians on I 1 © 2 X 2 need be diagonal when Xt,X2 are non Hilbert
spaces. See the papers of Berkson and Sourour [5] and Partington [24] for some results
on this question. In [5] Berkson and Sourour showed that the hermitian operators on
lp sums of Banach spaces are "diagonal" for l ^ p < o o , p # 2 . The following corollary
generalizes their results to the case of Orlicz sums of Banach spaces.

Let (p be an Orlicz function satisfying the strong A2 property and further suppose
that <t> is differentiable and that t~l<j>'(t) is one to one. If (XJ is a sequence of complex
Banach spaces let l^,(Xn) = @EXa, where E is usual Orlicz sequence space 1$. It is well
known that the usual basis vector (5y)j°=1 are an unconditional basis for 1$ when d>
satisfies the strong A2 condition and furthermore this basis is l-unconditional when 1$ is
normed by the Luxemburg norm
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(3.4)

The hypothesis concerning t~l(j>'(t) insures (see [9] that /0 has no equivalent
coordinates. Thus, by Theorem 3.3 we have

Corollary 3.5. Let E = 1$ where <p is differentiate, satisfies the strong A2 property and
t~l<p'(t) is one to one. If(Xn) is a sequence of complex Banach spaces and W = @EXa,
then T is hermitian on W iff there is a sequence {Tn) of uniformly bounded operators such
that

r(xn) = (7>n) for (xn)eW and TneH(Xn) (3.5.1)

for every n.

Remark. If <p(t) = tplp, then E = l" and we get the result of Berkson and Sourour.
Also note that the hypotheses rule out p = 2.

As noted earlier, spaces such as £ = /^ have at least one semi inner product which is
compatible with the norm and sufficiently lp like. The following proposition gives such a
s.i.p.

Proposition 3.6. Let (f> and (Xn) be as above. Then,

[(«.), 00] = I O*. yAtM, (3.6.1)
k=l

where

[iw^)r^f)
is a s.i.p. compatible with the norm on (BEXn, E = l^.

Proof. The fact that (3.6.1) is a compatible s.i.p. is given in [18]. It is routine to
verify that it is sufficiently V like.

As we noted earlier, our main quest is the characterization of isometries of E sums of
Banach spaces. We now have the necessary preliminaries and we proceed to the main
result. Before stating the theorem we list some terminology. For the most part we are
just restating conditions we have imposed on the sequence spaces E. Let us say that the
sequence space E is "admissible" if:

(a) (a,) e E and |/?,| g |a,| for all i implies (ft) e E and ^ ||(a,-)||E.
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(b) the vectors (l,0,0,...),(0,1,0,...), etc., form a 1-unconditional (hyperorthogonal)
Schauder basis for E.

(c) E has no equivalent coordinates.

Definition 3.7. Let E be an admissible sequence space. A permutation n is said to be
a symmetry of the norm if ||(aIt(n))||£ = ||(an)||£ for all (aB)e£.

Theorem 3.7. Let E be an admissible sequence space and let (XJ be a sequence of
complex Banach spaces such that any one of the following holds for every Xn.

(3.7a) Xn has only trivial hermitian projections.

(3.7b) Xn has only trivial hermitian operators.

(3.7c) H(Xn)' contains no nontrivial hermitian projections.

(3.7d) AH(Xn)B = {0} implies that A or B = 0.

If T is a surjective isometry of X = @EXn then there exists a symmetry n of the
sequence norm and a sequence (UnMn)) ofsurjective isometries such that

nxn) = (UnMn)xMn)) (3.7.1)

for each (xn)eX. Furthermore, XnM and Xn are isometric for each n.
These conditions are also sufficient.

Proof. If 7i is a symmetry of the sequence space norm and (UnMn)) is a sequence of
onto isometries then,

(3-7.2)

l l^lhlKII^II^II^IKIkllJll^Hxll. (3.7.3)

Thus the conditions are sufficient.

The necessity of the conditions given the hypothesis follows as in the proof of
Theorem 2.5. The reason for this is that the hypotheses on E imply by Theorem 3.3 that
the hermitians are diagonal and the only other time that structure of E enters in an
essential way is that the norm on E may not allow every possible permutation. This is
where the symmetries of E enter the picture.

Remark. If E = lp then an additional sufficient condition can be added, namely that
each Xn has trivial W structure. The result is known and due to P. Greim [15].

Corollary 3.8. Let (j> be an Orlicz function which is differentiate, satisfies the strong
A2 property, and t~l(j>'(i) is one to one. Let (&„) be a sequence of complex Hilbert spaces
and E = l$, the Orlicz sequence space associated with <p. If W=®EKn and T is a
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surjective isometry then there exist a symmetry n of the E-norm and a sequence (UknW) of
unitary operators such that

T(xn) = (Unn(n>xn(n)) for every x = (xn) in W. (3.8.1)

The converse is also true.

Remark. The hypothesis of Theorem 3.8 which is satisfied by the Kn's is (3.7d). This
was observed by the authors in [9]. We know of no Banach space that satisfies (3.7d)
which is not a Hilbert space. We suspect that this property may in fact characterize
Hilbert space. The next proposition provides more evidence that our suspicions are
correct.

Proposition 3.9. Let X be a Banach space with a normalized l-unconditional Schauder
basis. If AH(X)B={0} implies that A = 0 or B = 0 then X is a Hilbert space.

Proof. Let (e,) be a basis satisfying the hypothesis. Recall that two "coordinates" i
and j are said to be equivalent if |xi|2 + |x/|2 = |.Vi|2 + |.fy|2 and |xt| = |yt| for k=£i or j
implies ||Zxne»ll = IIZ>;nen||- To show that X is Hilbert space it is sufficient to show that
every pair of coordinates are equivalent.

In [8] we showed an operator T is hermitian on X if and only if its matrix (tmn) with
respect to the basis (en) satisfies the condition

rmn = 0 if m is not equivalent to n
(3.9.1)

tmn = tnm if m is equivalent to n.

Now suppose that for some pair of positive integers i and j that i is not equivalent to j .
Define A e B(X) by A = (amn) where

amn = 0 if ( m , ) ( , j )
(3.9.2)

1 if (m,n)=(i,j)

Since i is not equivalent to ;, every hermitian operator T has a matrix representation
(tmn) in which tiJ=tji = O. It follows then that A 7/4 = 0 for every TeH(X) and this
contradicts the hypothesis. Thus every pair of coordinates is equivalent and X is a
Hilbert space.

Remark. At this point we could give another application of the isometry theorem to
some of the other spaces considered by LaDuke. Some of the spaces he considers are
essentially I" sums of B(//J's where each Hn is a finite dimensional Hilbert space. In this
case each "factor space" satisfies (3.7d).
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We should also point out that our theorem applies to the space L m of Schoenberg
given in [17]. The space is an I1 sum of spaces with trivial L1 structure.

4. Adjoint abelian operators on special sums

The idea of an adjoint abelian operator was introduced in the paper of Stampfli [32].

Definition 4.1. TeB(X) is adjoint abelian (a.a.) if for some s.i.p. compatible with the
norm on X it is true that

[Tx,y] = [_x,Ty] for every x,yeX. (4.1.1)

In general it seems that this class is quite small but Stampfli asked one question
which still seems to be open. The question is whether or not a.a. operators must be
scalar type spectral operators. We have answered this question (see [10,11]) for the
special spaces, C(fl), Q compact metric, Lp(fi,H) l<p<oo, p#2, and ®£Ht, when Hk is
a Hilbert space for each k and E = lp.

In this section we want to record some extensions of our earlier results.
The first is in keeping with the other sections of the paper but the second is in a

slightly different setting than considered so far.

Proposition 4.2. Let (Xn) be a sequence of Banach spaces and E = l", l<p<oo , p#2 .
lfS = (&EXn then AeB(S) is adjoint abelian with respect to s.i.p.

Lx,yl=llxt,yAk[f4) (4.2.1)

if and only if

A = W where U is an isometry such that U2 = /.

Proof (outline). The converse is proven in [9]. Since A2 = T is hermitian and adjoint
abelian with respect to he same s.i.p. it follows that T=(Tkk) and each Tkk is a.a. on Xk.
It follows from the definition and special choices of x and y in (4.2.1) that if Tkkyk = 0 for
some k then yk = 0k. By an appropriate choice of x and y we can show that if yk^0 and

then

If we let ). to be the common value then it follows that X~XT is an isometry. From
Theorem 6 of [10] it follows that there exists an isometry W such that W2 = I and
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T = kW. Now use the fact [33] that | | /12 | | = ||/4||2 to get that A is a multiple of an
isometry U and again by Theorem 6 of [10], U2 =/ .

Remark. As we noted in [10], every a.a. operator satisfying the conclusion of the
theorem is scalar type.

Given the previous result, it is natural to attempt to extend the proposition to the
Bochner Lp(fi, X) spaces. At this time we can characterize a.a. operators on the Bochner
W spaces only for special X's and for finite measures. Thus we have:

Theorem 4.3. Let Lp{n,X) be a Bochner space, l<p<oo, p#2, fi a probability
measure and X a Banach space with trivial hermitian operators. If A is a.a. with respect to
a s.i.p. [ , ] on L"(n, X) for which

L \ \ ' ' - 2 d f l (4.3.1)

holds for simple functions g e Lp(fi, X), then A = XU where U is an isometry such that
U2 = I.

Proof. Let T = A2. Then T is both hermitian and a.a. with respect to the given s.i.p.
By Sourour's Theorem, [30], there exists a strongly measurable H{X) valued function
K(.) such that

(Tf)(s) = K(s)f(s) for every feL"(n,X). (4.3.2)

Since H(X) = {rl\reR}, there exists a bounded nonnegative scalar valued function k(s)
such that

(Tf)(s) = k(s)f(s) for every / in L'faX). (4.3.3)

Furthermore, since k(s) is nonnegative,

[k{s)f{s),g{s)-] = [/(s), k(s)g(S)-] = k(s)lf{s),g(s)l (4.3.4)

for every / and g in Lp(n, X).
Since T is a.a. we have

lTf,g] = \J,Tg] for every f,g in Lp(n,X) (4.3.5)

and so for every simple g we get

l l \ P - 2 /IIW,A,WO'VII\P-2

d/i (4.3.6)
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Let S(fc) = {s|/c(s)#0} and cr£S(/e) with /*(<x)>0. With f = xag we get from (4.3.6) that

i = 0 (4.3.7)

for every simple g. If we let veX and set g = v (the constant function) then
||7g||p=f, |/c(s)u|p<//i = ||fc||p||i>||;> and so from (4.3.7) we obtain

= 0. (4.3.8)

From (4.3.8) we get that there exists ffoss((t) with /x(cru)=O and /c(s) = ||/c|| for all
seS(*)W

We claim that n(il\S{k)) = 0. For suppose that n(Q\S(k))>0. Let ^ S f l ^ f c ) and
52sS(k) be sets of positive measure. Let vltv2 be in X and set y = Xi,vi+Xs2

v2- If
| = |MI = 1 then \\g\\p = KSi) + KS2), and

(Tg)(s) = /c(s)^,(s)t), + k(s)xi2(s)v2 = k(s)Xi2(s)v2.

Thus, ||rg||" = ||/c||^(52), and

If we use (4.3.9) in (4.3.7) with <r = <52 and the fact that fc(s) = ||fe|| we obtain:

^ Q . (4.3.10)

This gives us

J l [ g L l a (4.3.U)

This last equation is not possible if fi{51)>0. Therefore, for every measurable subset
c52£Q\S(fc), M<52) = 0. We conclude that fc(s) = ||/c|| a.e.

We have just shown that /I2 = ||fe||/ and we can conclude that ^ = ||/c||W for some
isometry W for which W2 = I.

Remarks. First of all if X is smooth then Lp(fi,X) has a unique s.i.p. (1 <p<oo), and
formula (4.3.1) holds for every / a n d g in Lp(fi,X). Furthermore smooth spaces with
trivial hermitians exist, e.g. see [12].

This theorem raises several questions
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(4.Q.1) Does the result of Theorem 4.3 hold for X's with nontrivial hermitians?

(4.Q.2) Which Banach spaces X can be equivalently renormed so that H(X) is trivial?
In particular what happens if X is smooth?

(4.Q.3) Does the result of Theorem 4.3 hold for C(Cl,X) when fi is compact metric?

(4.Q.4) Is every a.a. operator on CP(H), the Schatten p-class, 1 <p<oo, p¥=2, a scalar
operator?

5. Hyponormal operators—some special cases

K. Mattila [23] introduced the notion of a hyponormal operator on a Banach space
X.

Definition 5.1. TeB{X) is hyponormal iff there exist hermitian operators H and K
such that T = H + iK and i(HK-KH)^0, i.e. the numerical range of i(HK-KH) is
contained in U + .

The idea of a normal operator was defined earlier by Lumer. He defined an operator
T e B(X) to be normal if T = H + iK where H and K are hermitian operators such that
HK-KH = 0.

Remarks. Given the characterizations of the hermitians on the spaces in question, it
is obvious that on the spaces L"(/i,), reflexive Orlicz spaces L^,(fi) and C(Q) for fi
compact, the hyponormal operators and the normal operators are the same class.

Proposition 5.2. Let Y = Lp(fi,X) 1 gp<oo,p^2, or C(Cl,X), Q. compact Hausdorff, or
Y = @EXa, where E is admissible. T is hyponormal on Y iff there exists an operator valued

function A(t) in B{X) (A(n) e B(X^ in the last case) such that A(t) is hyponormal on X {or
Xn in the last case) for which

(Tf)(s) = A(s)f(s) for every feY.

Proof. The proofs of all cases are essentially the same so we will give only the proof
for C(n,X). Let T=K1 + iK2 where KUK2 are hermitian and i(KlK2-K2Kl)^0.
From [13] it is clear that there exists H(X) valued functions Kt(s) and K2(s) such that
TJ[s) = (K1(s) + iK2(s))f{s) for every seQ. Let S(s) = i(K1(s)K2(s)-K2(s)Kl(s)). We need
to show that <5(s) ^ 0 for each seQ. To do this let [ , ] be any compatible s.i.p. for X.
Let \j> be a choice function with domain C(Q, X) and range Q such that

| | | |H|||
(5-2.1)

is a s.i.p. which is compatible with the norm on C(Q, X).
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If x e X,. let x denote the constant function which takes the value x at every point.
Since T is hyponormal

ldx,x^ = V(KMx))K2Mx))-K2Mx))K1Mx)))x,xU0. (5.2.2)

Since ||x(s)|| = ||x|| for every seQ, and since each choice function leads to a compatible
s.i.p. on C(fi,X), it follows that the operator i(K1(s)K2(s)-K2(s)K1(s))^0 for each seQ.

In ([23, Theorem 2.4]) Mattila show that if T = H + iK is hyponormal on X and X is
complex strictly convex then Tx = 0 iff Hx = Kx = O. Using this result and Proposition
5.2 we have:

Corollary 5.3. Let X be complex strictly convex and Cl compact Hausdorjf. If T is a
hyponormal operator on C(QX) and Tf = Hf + iKf = 0 then Hf = Kf = 0.

Proof. Suppose T = H + iK is hyponormal and Tf — 0. By Proposition 5.2, there
exists an operator valued functions Kj(s) such that Kj(s) is hermitian for each seQ and
Kl(s) + iK2 is hyponormal on X for each s. So T/ = 0 implies that Tf(s) = Kl(s)f(s) +
iK2(s)f(s) = 0. It follows by Manila's theorem that K^f^^O and K2(s)f{s) = 0 for
each s. Thus H / = 0 and /C/ = 0.

Remark. This corollary shows that complex strict convexity of the range space in
Mattila's Theorem 2.4 is not a necessary condition because C(Q, X) is not complex
strictly convex if Q contains at least two points.

In Hilbert space it is known that of an operator is both compact and hyponormal
then it is normal. So it is a natural question to ask, is every compact hyponormal
operator on a Banach space normaP. This result is true for Banach spaces with 1-
unconditional bases. The reason for this is that the hermitians are diagonal and hence
hyponormal operators are diagonal. Hyponormality of the original operator implies that
the diagonal elements are hyponormal on their domains. Compactness of the operator
implies compactness of the diagonal operators and since the factor spaces are Hilbert
spaces the diagonal operators are normal and consequently the original operator is
normal. This type of argument can be extended to a different setting as follows:

Proposition 5.4. Let T be a hyponormal operator on C(Cl, X) where X is a Hilbert
space. If T is compact and hyponormal then T is normal.

Proof. We have already shown that there exists a function A(s) defined on ft with
values in B(X) such that A(s) is hyponormal for every s and (Tf)(s) = A(s)f(s). To prove
that T is normal it is sufficient to prove that A{s) is compact for each s.

Let (xn) be a bounded sequence in X. The sequence of constant functions (xn) is
bounded in C(fi, X). Since T is compact there exists a subsequence xn such that T\nk is
convergent to some g e C(Q, A'). So
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| | T x n k - s | h 0 as k^oo, (5.4.1)

Hence

| | ^ n k ( s ) - ^ ) | | - 0 uniformly in s. (5.4.2)

Thus,

||-4(s)xnk-g(s)||->0 uniformly in s. (5.4.3)

It follows that for each s, A(s) is compact. Siince A(s) is also a hyponormal and X is a
Hilbert space, A(s) is normal for each s.

6. Banach spaces with trivial hermitians and the Banach Stone Theorem

In this section we will use property (2.3c) of Lemma 2.3 plus a result from [13] to get
a Banach Stone type Theorem. Before proceeding with this we note that Behrends has a
stronger result [4], and we are just offering a different proof for the complex case.
Before stating the theorem we recall that a Banach space is said to have trivial
hermitians if the only hermitian operators are real multiples of the identity.

Proposition 6.1. Let Qt and Q2 be compact Hausdorff spaces and XltX2 Banach
spaces with trivial hermitians. An operator T:C(fi1,Z1)->C(fi2,AT2) is a surjective
isometry iff there exists a homeomorphism T:C12-*Q.1 and a surjective isometry U:Xl-*X2

such that

(7/)(W) = {/(W)/(T(W)) for every / e C ^ J , ) . (6.1.1)

Proof. Let heCR(Qi). Then (Mhf)(w) = h(w)f(w) clearly defines a hermitian operator
on C(Ql,Xl). By Lemma 2.3 TMhT~l is hermitian on C(fi2,AT2). From Theorem 4 of
[13] and the hypothesis that X2 has only trivial hermitians it follows that there exists a
unique g e CR(Q2) such that

TMhT-i = Mg. (6.1.2)

Define <f>(h)=g. It follows easily that <j) is an algebra isomorphism of C^fij) into
CR(il2). To see that <£ is onto, let geCR(Cl2). Then Mg is hermitian on C(n2,tf2) . By
Lemma 2.3 T ' ^ J is hermitian on C(nuX1). Hence there is a / c e C ^ n j with
T'lMgT = Mk. Clearly (f>(k)=g and so ^ is a algebra isomorphism of CR(Clt) onto
CR(Q2). Again from [13] we obtain a homeomorphism T : Q 2 - ^ I

 s u c n that

</>(/!) = hox. (6.1.3)

For each wef i j and xeXit define
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U(w)x = Tx(w), where x(w) = x for every weft,. (6.1.4)

U{w) is clearly a linear transformation from X, to X2. Furthermore, U(w) is uniformly
bounded since

||t/(w)x|| = ||Tx(w)||^||Tx|U = ||x||00 = ||x||. (6.1.5)

We claim that not only is U(w) uniformly bounded but in fact U(w) is an isometry for
each w. For suppose there is an x o eX, of norm 1 and w0 such that ||Txo(wo)|| < 1. Then
there is a neighbourhood 0! of w with ||xo(w)||<l for all weO^ Since fl2 is normal,
there is an 02 such that O^sOj. By Urysohn's Lemma there exists an feCR(il2)

 s u c n

that /(Q2)<=[0,l] and /(02) = l and /(0e
1) = 0. Let g: = {f0t-l)x0. Then g belongs to

C(Q,Xi and ||g|| = l. However,

T-1Txo(w) = f(w)Txo(w) and so (6.1.6)

= Max|/(w)|||Tx0(w)||<l

w (O.I./)

and this contradicts the fact T is an isometry. Therefore

||t/(w)x|| = ||x|| for every xeX. (6.1.8)

We have shown that for /eCR(Qj), xeXl

= TMfT-1\(w) = f(T(w))U(w)x or (6.1.9)

T(fx)(w) = t/(w)/(T(w))x. (6.1.10)
Since linear combinations of functions of the form f(w)x are dense in CiQ^Xj) we have
shown that (6.1.1) holds if T is a surjective isometry of QQ^-Yj) onto C(fi2,A

r
2). The

converse is obvious.

Remarks. We wish to point out that because of Lemma 2.3 most of the isometry
theorems in this paper could be stated in a slightly more general way. For example,
Theorem 3.7 could be stated for an isometry between an E sum of {Xj} and an E sum
of {X} provided the X{ satisfied the hypotheses of (3.7).
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