On characterisation of finitary algebraic categories

Francis Borceux and B.J. Day

Abstract

The aim of this article is to characterise categories which are V-algebraic (equals V-theoretical) over V where V is a symmetric monoidal closed category satisfying suitable limitcolimit commutativity conditions (basicly axiom π).

Introduction

In the theory of finitary V-algebraic categories over a category V satisfying axiom π (Borceux and Day [3]) there are two basic characterisation theorems. The first of these is discussed in Borceux and Day [4], Section 2.5, and is based on the concept of rank of a functor.

The aim of this paper is to describe the second characterisation theorem which is closer to the original characterisation theorem of Lawvere for $V=$ Ens (see Diers [7], Corollary 5.5.6). This second theorem is based on the notion of a suitable strong projective generator in the category; namely the free algebra on $I \in V$ when the category is known to be algebraic.

In Section 3 we develop the theory of near-cartesian closed categories. The principal example of such a category is the category of pointed k-spaces; the tensor product in this category is the "smash product" X \# Y of pointed spaces X and Y and while this is not the cartesian product there are canonical diagonals $X \rightarrow X \# X \# X \# \ldots \# X$. This allows us to deduce, from the characterisation theorem, that all operadic categories on pointed k-spaces are algebraic (that is,

Received 11 November 1977.
theoretical). The main interest here derives from the well-known fact that in the theory of infinite loop spaces it is possible to use theories (Boardman and Vogt [2] and Beck [1]) or operads (May [11] and Kelly [9]). We also point out other instances where this phenomenon occurs.

Throughout the article we assume that $U=(U, \otimes, I,[-,-], \ldots)$ is a complete and cocomplete symmetric monoidal closed category satisfying axiom π, and we assume that all categorical algebra is relative to V unless otherwise stated. We assume some familiarity with Borceux and Day [3] and [4]. The basic algebra appears in [6] and [7].

1. Preliminaries

We recall that a (finitary) V-theory is a finite-product-preserving functor $t: V_{f}^{\circ p}+T$ which is one-one on objects, where V_{f} denotes the full subcategory of V comprising the finite copowers of $I \in V$. Each V-theory (T, t) generates a monad $T=T(T)$ on V which has the property

$$
\int^{V_{f}}[n, X] \otimes[m, T n] \cong[m, T X]
$$

for all $m \in V_{f}$, and is thus the "restriction to V " of the monadic adjunction $t^{*} \rightarrow\left[t^{\circ p}, 1\right]:[T, v] \rightarrow\left[v_{f}^{o p}, v\right]:$

where $J: V_{f} \rightarrow V$ is the canonical inclusion. We say that $T(T)$ has algebraic rank J. By Day [5], Theorem 2.1, and the density of J, it follows that V^{\top} is category equivalent to the full subcategory T^{b} comprising the finite-product-preserving functors from T to V.

PROPOSITION 1.1. Let $t: V_{f} \rightarrow T$ be a V-theory and let A be a small category with finite products. Let $G: A \rightarrow V$ be a finite-product-
preserving functor and let $H: A^{\mathrm{Op}} \rightarrow T^{b}$ be any functor. Then the mean tensor product $G A * H A$ exists in T^{b} and is isomorphic to $\int^{A} C A \otimes E A$ in $[T, V]$.

Proof. Iterated use of axiom π gives us

$$
\begin{aligned}
{\left[m, \int^{A} G A \otimes H A(t 1)\right] } & \cong \int^{A} G A \otimes H A(t 1)^{m} \\
& \cong \int^{A} G A \otimes H A(t m)
\end{aligned}
$$

as required for $\int^{A} C A \otimes H A$ in $[T, V]$ to in fact be a T-algebra. //
We also recall from Borceux and Day [4] that if (T, t) is a
commutative V-theory then T has a canonical symmetric monoidal structure $\otimes: T \otimes T \rightarrow T$ such that $t: v_{f}^{o p} \rightarrow T$ preserves tensor products.

PROPOSITION 1.2. If (T, t) is a commutative V-theory then T^{b} is a symmetric monoidal closed category enriched over V.

Proof. Clearly T^{b} is closed under exponentiation in $[T, V]$, because the internal-hom is given by $[A, B]=\int_{T}[A(t n), B(t n \otimes-)]$ which preserves finite products whenever B is a T-algebra. The unit object is the free T-algebra on $I \in V$, namely $T(t 1,-)$. The tensor product of two algebras A and B is given by

$$
\begin{aligned}
A \bar{\otimes} B & =\int^{T \otimes T} A(t m) \otimes B(t n) \otimes T(t m \otimes t n,-) \\
& \cong \int^{T} A(t m) \otimes \int^{T} B(t n) \otimes T(t m \otimes t n,-)
\end{aligned}
$$

But, for each fixed $m, \int^{T} B(t n) \otimes T(t m \otimes t n,-)$ is a T-algebra; so let it be $B(t m)$ in Proposition 1.1. This then shows that $A \bar{\otimes} B$ is again a T-algebra. Thus the convolution structure on $[T, V]$ restricts to T^{b}.//

This result was established in Borceux and Day [4] but is recalled here for convenience in Section 3.

2. Structure-semantics and characterisation

We denote by $A d g=\operatorname{Adg}(J)$ the category whose objects are functors $U: B \rightarrow V$ having a left J-adjoint and whose morphisms are functors $M: B \rightarrow B^{\prime}$ such that $U^{\prime} M=U$ (see Diers [6], Section 4). The functor $(J-)$ semantics

$$
\text { Sem }: T h^{\mathrm{Op}} \rightarrow \mathrm{Adg}
$$

is given by $\operatorname{sem}(T)=\left(v^{\top}, U_{T}\right)$.
THEOREM 2.1. Semantics Sem : $T h^{\circ p} \rightarrow$ Adg is fully faithful and has a Zeft adjoint.

Proof. This is just the V-analogue of Diers [6], Theorem 4.2. //
The left adjoint is the structure functor

$$
\text { Str : Adg } \rightarrow T h^{\circ p}
$$

which maps $F \vec{J} U: B \rightarrow V$ to the obvious algebraic theory generated by $F \underset{J}{J} U$. We have

$$
\begin{aligned}
& \varepsilon: \text { Str } \operatorname{Sem} \cong 1: T h^{\mathrm{op}} \rightarrow T h^{\mathrm{op}}, \\
& \eta: 1 \Rightarrow \text { Sem Str }: \operatorname{Adg} \rightarrow \operatorname{Adg} .
\end{aligned}
$$

THEOREM 2.2. Given $F \rightarrow U: B \rightarrow V$, then B is algebraic with respect to U if B is cocomplete, U reflects isomorphisms, and U preserves GA * HA whenever A is a small category with finite products, $G: A \rightarrow V$ is a finite-product-preserving functor, and $H: A^{\circ p} \rightarrow B$ is a functor.

Proof. Note first that, using the fact that Str (Sem Str) \cong Str , we obtain a functor $H: T^{\mathrm{OP}} \rightarrow B$ such that
(*)

commutes, and such that $\operatorname{Lan}_{Y} H$ is left adjoint to $n_{B}: B \rightarrow T^{b}$. Thus, since B is cocomplete, η_{B} has a left adjoint σ which is the restriction to algebras of a left adjoint $\bar{\sigma}$ to $B \rightarrow[T, V]$; namely $\bar{\sigma}(G)=\int^{T} G(t n) \cdot H(t n)$. We require
(i) on $\cong 1: B \rightarrow B$, and
(ii) $1 \cong n \sigma: T^{b} \rightarrow T^{b}$.

Because U reflects isomorphisms, we require for (i) that Uon $\cong U$. But $U_{T^{\eta}} \cong U$, so we need $U \sigma \cong U_{T}: T^{b} \rightarrow V$; this also guarantees (ii). Finally, to establish the result, consider

Then $\bar{\sigma}(G)=\int^{T} G(t n) \cdot H(t n)$ for all $G \in[T, V]$. If $G \in T^{b}$, then

$$
\begin{aligned}
U\left(\int^{T} G(t n) \cdot H(t n)\right) & \cong B\left(F 1, \int^{T} G(t n) \cdot H(t n)\right) \text { since } F \underset{J}{ } \quad \\
& \cong \int^{T} G(t n) \otimes B(F 1, H(t n)) \text { by hypothesis } \\
& \cong \int^{T} G(t n) \otimes U H(t n) \\
& \cong \int^{T} G(t n) \otimes T(T n, T 1) \text { by }(*) \\
& \cong G(t 1) \text { by the representation theorem } \\
& =U_{T}(G) \text { as required. } \quad / /
\end{aligned}
$$

An object $P \in B$ is called an abstractly finite projective generator of B if $B(P,-): B \rightarrow V$ reflects isomorphisms and preserves $G A * H A$ whenever A is a small category with finite products, $G: A \rightarrow V$ is a finite-product-preserving functor, and $H: A^{\circ p} \rightarrow B$ is any functor.

COROLLARY 2.3. Let B be cocomplete with an abstractly finite
projective generator P. Then $U=B(P,-): B \rightarrow V$ is algebraic.
Proof. The adjoint $F-J$ is given by $F(n)={ }^{n_{P}}$, so the result follows from the theorem.

COROLLARY 2.4. Let V be a π-category (see Borceux and Day [4], Definition 2.1.1). Then B is algebraic over V if and only if B is cocomplete and has an abstractly finite projective generator.

Proof. Over a π-category any algebraic category is cocomplete, since it has coequalisers of reflective pairs. Moreover, FI is an abstractly finite projective generator of T^{b} by Proposition 1.1. //

In conclusion we note that if $F \underset{J}{J} U: B+U$ and $U F: V_{f} \rightarrow V$ has the structure of a monoidal functor then the theory of the structure of U is commutative.

THEOREM 2.5, If V is a π-category, then B is commutatively V-algebraic over V if and only if B is cocomplete and has a symmetric monoidal closed structure ($B, I, \otimes,[-,-], \ldots)$ whose identity object I is an abstractly finite projective generator of B. //

3. Example: near-cartesian closed categories

The category of pointed compactly generated spaces (k-spaces) is more than just algebraic over compactly generated spaces. It is equipped with a canonical identification map $A \times B \rightarrow A \otimes B$ and this permits us to consider diagonals $A \rightarrow A \otimes \ldots \otimes A$. The key theoretical observation at this point is that if T is a commutative V-theory over a closed category U which satisfies axiom π then, in the presence of a suitable diagonal functor $T \rightarrow T \otimes T$, the functor $\int^{T} A(t n) \otimes T(\operatorname{tn} \otimes \ldots \otimes t n,-)$ is again a T-algebra and is, in fact, the m th tensor power of A.

In order to formalise what we have in mind here, we introduce the following definition.

DEFINITION 3.1. The closed category V is called near-cartesion if there exists an ordinary natural transformation $e_{A B}: A \times B \rightarrow A \otimes B$ such that the following diagrems commute:
(1)

(2)

and

$$
\begin{equation*}
\int^{n}[n, A] \otimes\left(\otimes^{m} n\right) \cong \otimes^{m} A \text { for all } m>0 \text { and } A \in U \tag{3}
\end{equation*}
$$

Note that it is possible to write (3) because (1) and (2) imply the existence of a canonical functor $K=K(e): A \times B \rightarrow A \otimes B$ for any V-categories A and B. The following consequence is easily established.

PROPOSITION 3.2. Let V be near-cartesian and let (T, t) be a commutative U-theory. Then the m-fold tensor power ($m>0$) of a T-algebra A is given by the formula

$$
A \otimes \ldots \otimes A=\int^{T} A(t n) \otimes T(t n \otimes \ldots \otimes t n,-)
$$

THEOREM 3.3. Let (T, t) be a commutative theory over the nearcartesian closed category V and suppose V is a π-category. Let R be a monad on T^{b} generated by an operad on T^{b}. Then $\left(T^{b}\right)^{R}$ is algebraic over V.

Proof. For the concept of an operad we refer to May [11]. The important aspect here is that the endofunctor R is given by an expression of the form $R A=\int^{n} S n \bar{\otimes}\left(\nabla^{n} A\right)$ where n runs over either the free V-category on the integers or the free V-category on the permutation category (the integers are greater than or equal to 0 , with no morphisms $n \rightarrow m$ if $n \neq m$, and the morphisms $n \rightarrow n$ being the permutations on n). Let us denote the V-adjunctions involved by

$$
V \underset{U}{\stackrel{F}{\leftrightarrows}} T^{b} \underset{U^{\prime}}{\stackrel{F^{\prime}}{\rightleftarrows}}\left(T^{b}\right)^{R}
$$

Both adjunctions $F \dashv U$ and $F^{\prime} \dashv U^{\prime}$ are monadic and both U and U^{\prime} create coequalisers of reflective pairs; hence $U U^{\prime}$ reflects isomorphisms and $\left(T^{b}\right)^{R}$ is cocomplete. Thus, by Theorem 2.2, it remains to check that $U U^{\prime}$ preserves $G A * H A$ whenever A is a small category with finite products, $G: A \rightarrow V$ preserves finite products, and $H: A^{\circ p} \rightarrow\left(T^{b}\right)^{R}$ is any functor. But already U preserves $G A * U^{\prime} H A$ so it remains to check that R on T^{b} preserves $G A * U^{\prime} H A$. For any $H^{\prime}: A^{\circ p} \rightarrow T^{b}$ we have

$$
R\left(G A * H^{\prime} A\right)=\int^{n} S n \bar{\otimes}\left(\bar{\otimes}^{n}\left(G A * H^{\prime} A\right)\right)
$$

where

$$
\nabla_{B}=\int^{T} B(t m) \otimes T(t m \otimes \ldots \otimes t m,-): T \rightarrow V .
$$

Thus

$$
\begin{aligned}
\ddot{\otimes}^{n}\left(G A * H^{\prime} A\right) & \cong \int^{T}\left\{\int^{A} G A \cdot H^{\prime} A\right)(t m) \otimes T(t m \otimes \ldots \otimes t m,-) \\
& \cong \int^{T}\left\{\int^{A} G A \cdot H^{\prime} A(t m)\right) \otimes T(t m \otimes \ldots \otimes t m,-)
\end{aligned}
$$

so

$$
\begin{aligned}
R\left(G A * H^{\prime} A\right) & \cong \int^{n} S n \otimes\left(\int^{A} G A \cdot\left[\int^{T} H^{\prime} A(t m) \otimes T(\operatorname{tm} \otimes \ldots \otimes t m,-)\right)\right\} \\
& \cong \int^{A} G A \cdot\left[\int^{n} S n \otimes \int^{T} H^{\prime} A(t m) \otimes T(t m \otimes \ldots \otimes t m,-)\right) \\
& \cong G A * R H^{\prime} A .
\end{aligned}
$$

Thus, by induction, we have $R^{p}\left(G A * H^{\prime} A\right) \cong G A * R^{p} H^{\prime} A$ for $p \geq 0$. Thus U^{\prime} creates $G A * H A$, as required. //

In order to generate examples of near-cartesian closed categories we consider the following

DEFINITION 3.4. A symmetric monoidal monad $T=(T, \mu, \eta)$ on a cartesian closed category is called near-cartesian if the transformation
$\tilde{T}: T X \times T Y \rightarrow T(X \times Y) \quad$ is left inverse to the canonical transformation $\kappa: T(X \times Y) \rightarrow T X \times T Y$.

LEMMA 3.5. Let V be cartesian closed and let $T=(T, \mu, n)$ be a near-cartesian monad on V. Suppose T preserves coequalisers of reflective pairs and let $F+U$ denote the associated monoidal adjunction over V. Then $\tilde{U}_{A B}: U A \times U B \rightarrow U(A \otimes B)$ is a (regular epimorphic)
natural tronsformation in V.
We leave the proof to the reader as an exercise.
THEOREM 3.6. Let v be cartesian closed and let $T=(T, \mu, \eta)$ be a finitary near-cartesian monad on V. Then V^{\top} is a near-cartesian closed category.

Proof. V^{\top} satisfies axiom π by Borceux and Day [3]. To satisfy Definition 3.1 we choose $e_{A B}=\tilde{U}_{A B}$, using Lemma 3.5. Then, by Definition 3.1, (1) and (2) are simple consequences of applying U and using the naturality of \tilde{U}. It remains to prove that

$$
\int^{F n}[F n, A] \otimes\left(\otimes^{m} F n\right) \cong \otimes^{m} A
$$

for all $m>0$ and $A \in V^{\top}$. By virtue of the diagram

$$
F^{2} A \times F^{2} A \xrightarrow{e} F^{2} A \times F^{2} A \rightarrow F A \otimes F A \cong F(A \times A) \xrightarrow{\zeta} A \times A
$$

we have that e is the coequaliser in U^{\top} of a pair of morphisms $F^{2} A \times F^{2} A \rightarrow A \times A$. We then have

where the isomorphism follows from axiom π on V^{\top}. For similar reasons the top morphism is an epimorphism, so $\int^{F n}[F n, A] \otimes(F n \otimes F n) \cong A \otimes A$. The proof is analogous for $m>2$. //

EXAMPLE 3.7 (V cartesian closed). Let A be a commutative semigroup in V such that

commutes (sometimes such an object is called a semilattice (without a unit)). Then $T X=X+A$ is a near-cartesian unary monad on V. Thus the category A / V is near-cartesian closed.

EXAMPLE 3.8 (V cartesian closed). Let $G: V \rightarrow V$ be a symmetric monoidal finitary near-cartesian endofunctor on V and let $\varepsilon: G=1$ be a monoidal natural transformation. Then $T X=X+G X$ is near-cartesian and finitary. Thus the category " G / V " is near-cartesian closed.

References

[1] Jon Beck, "On H-spaces and infinite loop spaces", Category theory, homology theory and their applications III, 139-153 (Proc. Conf. Seattle Research Center, Battelle Memorial Institute, 1968, Volume Three. Lecture Notes in Mathematics, 99. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
[2] J.M. Boardman and R.M. Vog†, "Homotopy-everything H-spaces", Bull. Amer. Math. Soc. 74 (1968), 1117-1122.
[3] Francis Borceux and B.J. Day, "On product-preserving Kan extensions", BulZ. AustraZ. Math. Soc. 17 (1977), 247-255.
[4] Francis Borceux and Brian Day, "Universal algebra in a closed category", J. Pure App2. Algebra (to appear).
[5] B.J. Day, "Linear monads", BuZZ. Austral. Math. Soc. 17 (1977), 177-192.
[6] Y. Diers, "Foncteur pleinement fidèle dense classant les algèbres" (Publications Internes de l'U.E.R. de Mathématiques Pures et Appliquées, 58. Université des Science et Techniques de Lille I, 1975) .
[7] Yves Diers, "Type de densité d'une sous-catégorie pleine", Arn. Soc. Sci. BruxeZles Sér. I 90 (1976), 25-47.
[8] Samuel Eilenberg and G. Max Kelly, "Closed categories", Proc. Conf. Categorical Algebra, La Jolla, California, 1965, 421-562 (Springer-Verlag, Berlin, Heidelberg, New York, 1966).
[9] G.M. Kelly, "On the operads of J.P. May", unpublished manuscript.
[10] S. Mac Lane, Categories for the working mathematicion (Graduate Texts in Mathematics, 5. Springer-Verlag, Berlin, Heidelberg, New York, 1971).
[11] J.P. May, The geometry of iterated loop spaces (Lecture Notes in Mathematics, 271. Springer-Verlag, Berlin, Heidelberg, New York, 1972).

Institut de Mathématique pure et appliquée,
Université Catholique de Louvain,
Belgium;
Department of Pure Mathematics,
University of Sydney,
Sy dney,
New South Wales.

