
THE ITERATION OF CERTAIN ARITHMETIC FUNCTIONS 

IVAN NIVEN 

1. Introduction. For n ^ 3 define C(n) to be the integer j such that 
$(j)(w) = 2, where ^j)(n) denotes the j th iterate of the Euler ^-function. 
Define C(l) = C(2) = 0. This function has been studied by S. S. Pillai [1], 
with the notation R(n) for 1 + C(n) if n ^ 2, and R(l) = 0. H. Shapiro [2] 
has also investigated this function, proving the basic relations 

(1) C(ab) = C{a) + C(b) or C{ab) = C(a) + C{b) + 1, 

the second equation holding when a and b are both even, otherwise the first. 
It was suggested to the writer by Morgan Ward that a function analogous 

to C{n) can be obtained by iteration of X(w), the least positive exponent so 
that 

(2) ax(n) = 1 (mod n) 

for every a which is prime to n. Thus for n ^ 1 we define g(n) as the least 
positive integer j such that \{j)(n) — 1, where \^j)(n) is the j th iterate of the 
X-function. We now prove the following results. 

THEOREM 1. If (a, b) = 1, then g{ab) = max {g(a), g(b)). 

THEOREM 2. For n ^ 1, g(22n) = g(22w+1) = n + 1, g(pn) = n - 1 + g(£) 
where p is any odd prime. 

The method of deriving functions C(n) and g{n) from <£(?z) and \(n) can be 
generalized to obtaining F(n) from any/(w) which has the property/(w) < n 
for n > k, where fe is a constant. It might be expected that F(n) would have 
a property similar to (1) whenever f(n) was multiplicative, that is, whenever 
f(ab) = fia) f{b) for relatively prime a and b. That this is not so can be seen 
readily by taking f{n) to be the number of divisors of n. Similarly, Theorem 
1 is not implied merely by the functional relation of X(n), namely 

(3) \(ab) = l.c.m. {\(a), X(&)} whenever (a, b) = 1. 

In §2 we shall prove Theorems 1 and 2, and the next two theorems in §3 
and §4. 

THEOREM 3. lim sup {C(n + 1) — C{n)) = lim sup {g{n + 1) — g{n)} 

— lim sup {C(n) — g(n)} = oo, 

THEOREM 4. lim inf \C{n + 1) — C{n)\ = lim inf {g(n+l)—g(n)\ = — <», 
lim inf {C(n) — g{n)) = — 1. 
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2. The fundamental results for g(n). It is known that for any odd prime p, 

(4) X(£») = 4>(Pn) = Pn~KP - 1), 

(5) X(2n) = |0(2 n) = 2n~2 for n ^ 3; X(4) = 2; X(2) = 1. 

Together with (3), these imply 

(6) \{m)\k(n) whenever m\n. 

Now Theorem 1 clearly holds if a = 1, and we use mathematical induction, 
assuming the result for g(n) with n < ab. Ignore the trivial cases where 
g{°) — g(fi) = 1, or where a = 1 or b = 1. We have 

(7) g{n) = 1 + g(X(»)) for n > 2, 

and so 

(8) g(ab) = 1 + g(X(ab)) = 1 + d l . c m . (X(a), X(6))}. 

Also X(a) < a, X(6) < b, so that a& > l.c.m. (X(a), X(6)) = £iai£2
a2. . . £ A , 

these primes being arranged so that g(piai) ^ g(piai) (i = 2, 3, . . . , r). Thus 
by (6) and the induction hypothesis, (8) becomes g(ab) = 1 + g(piai). With
out loss of generality we may assume that piai is a divisor of X(a), so that 
g(piai) = g(Ma)) ^ gfr(b)), whence g(a) ^ g(b) by (7). Hence we have 
g(ab) = 1 + g(X(a)) = g(a) = max {g(a), g(b)}. 

To prove Theorem 2, we note that the first part is established by (5). And 
the second part can be obtained by use of mathematical induction, (4), (7) 
and Theorem 1. Thus for n ^ 2, 

g{pn) = i + g(HPn)) = i + g{pn~KP - l)} = l + g(pn~l). 

3. Proof of Theorem 3. We shall in this and the following section make 
use of two results of Pillai [1, Theorems 1 and 3] which can be summarized 
thus: 

(9) [log2 n] > C(n) Ï log3 n/2. 

Since 43fc — 1 or (1 + 3)3fc — 1 is divisible by 3fc we can write, using (9) 
and (1) and the fact that C(3*) = ft, 

C(43* - 1) = C(3fc) + C{(43fc - l)/3*} 
<fe + log 2 {(4 3 *- l ) /3*} 
< k + 2-3fc - k log2 3. 

Also C(2j) = j — 1 and so we have 

C(43*) - C(43* - 1) > 2 3 * - 1 - k - 2 3 * + k log2 3 = k log2 (3/2) - 1. 

This establishes the first part of Theorem 3, 
By (4) and (5) we have g{n) ^ C(ri) + 1, and so (9) implies 

(10) g(n) ^ 1 + [log, »]. 

Now (3* + 1, 3fc — 1) = 2 and we apply Theorem 1 to get 
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g(32* - 1) ^ 1 + max k(3 fc + 1), g(3k - 1)} 
< 2 + log2 (3* + 1) < 3 + ft log2 3. 

From this it follows that 

(11) g(32*) - g(32fc — l)>2Jfe + l — 3 — Jfe log2 3, 

which proves the second part of Theorem 3. 
The last part of Theorem 3 can be obtained by taking n to be the product of 

the first ft primes, and using (1), Theorem 1, (9) and (10). 

4. Proof of Theorem 4. By (9) we see that 

(12) C{V + 1) £ j . 

Next we prove that 

(13) C(32* - 1) £ 2h + ft - 1 

by mathematical induction. Using (1) and (12) we have 

C(32* - 1) = C(32fc_1 + 1) + C(32fc_1 - 1) + 1 
J> 2h~l + 2k~l + ft - 2 + 1. 

Having proved (13), we see that it implies 

C(32fc) - C(32fc - 1) ^ 2* - 2fc - ft + 1 = - ft + 1, 

which establishes the first part of Theorem 4. 
We now discuss g(n + 1) — g(n) with n = (32fc — l)2 , ft odd. Thus 32fc = 9 

(mod 16) and 32k = - 1 (mod 5), so that 3 + w, 5 + w, 261 w, 27 + w. So for large 
ft we have g(n) = g(£2j) where £ is some odd prime > 5 and p°< 3fc + 1 so 
that j < 1 + ft logp 3. Using (10) we have 

(14) g(n) = g(p2j) =2j-l+ g(p) < 2j + log2 p < 2 + 2ft logp 3 + log2 p. 

Considering the last expression as a function of a continuous variable p on the 
range (7, 3*0, with ft constant, we see that it is a maximum for p = 3fc, so that 
(14) implies g(n) < 4 + ft log2 3. Hence we have 

g(n + 1) - g(n) > g{32fc(32fc - 2)} - 4 - ft log2 3 
£ g(32fc) - 4 - ft log2 3 
= 2ft + 1 - 4 + ft log2 3. 

This proves the second part of Theorem 4, and the final part is a consequence 
of the two results g(n) ^ C(n) + 1 and g(3fc) = ft + 1 = 1 + C(3fc). 
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