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This paper proposes a subsampling inference method for extreme conditional quan-
tiles based on a self-normalized version of a local estimator for conditional quantiles,
such as the local linear quantile regression estimator. The proposed method circum-
vents difficulty of estimating nuisance parameters in the limiting distribution of the
local estimator. A simulation study and empirical example illustrate usefulness of
our subsampling inference to investigate extremal phenomena.

1. INTRODUCTION

Since the seminal work of Koenker and Bassett (1978), quantile regression
has been widely applied in empirical analysis. In contrast to (mean) regression
analysis for conditional means of response variables given covariates, the quantile
regression technique allows us to investigate conditional quantile functions for
different quantiles including tail areas to study various extremal phenomena.

For linear quantile regression models, Chernozhukov (2005) developed the
asymptotic theory for Koenker and Bassett’s (1978) quantile regression estimator
under the extremal order quantile asymptotics, where the quantile level converges
to zero or one at the same rate as the sample size, n, by extending the extreme
value theory (see, e.g., Resnick, 1987, for a review). Furthermore, Chernozhukov
and Fernández-Val (2011) proposed feasible inference methods for the extremal
quantile regression parameters by using self-normalized statistics combined with
analytical or subsampling critical values. Their inference methods are practical
and much more accurate in extreme tails than the conventional inference methods
based on the fixed quantile asymptotics. One major limitation of these studies on
the extremal quantile regression model is that the quantile regression function must
be parametrically specified.1 Chaudhuri (1991) proposed the local polynomial
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1In an insightful paper, Phillips (2015) characterized probabilities of quantile crossings that imply misspecification
of linear quantile regression models in the context of predictive regressions. In particular, when the slope coefficient
varies with the quantile levels and the regressor obeys a unit-root process, the linear quantile predictive regression is
inevitably misspecified with high probability. It should be noted that this misspecification problem in the population
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quantile regression approach to estimate nonparametrically the conditional
quantile function, and investigated its asymptotic properties under the conventional
fixed quantile asymptotics, which is, however, inaccurate for conducting inference
for the tails. The purpose of this paper is to fill this gap by developing a practical
inference method for nonparametric conditional quantiles in extreme tails.

In particular, we extend the extremal order quantile asymptotics by Cher-
nozhukov (2005) and Chernozhukov and Fernández-Val (2011) to a nonparametric
setup, and consider the situation where the quantile converges to zero or one at the
same rate as nδd

n with the sample size n, number of covariates d, and localization
or bandwidth parameter δn for a local estimator, such as the local linear quantile
regression estimator. Then we propose a subsampling inference method based on
a self-normalized counterpart of the local estimator for nonparametric extremal
quantiles. Our subsampling inference avoids estimation of nuisance parameters
in the limiting distribution of the local estimator under the extremal quantile
asymptotics. In contrast to the conventional fixed quantile asymptotics based on
central limit theorems, our extremal order quantile asymptotic analysis is built
upon point process theory (see, e.g., Resnick, 1987; Embrechts, Klüppelberg, and
Mikosch, 1997). See also Zhang (2018) for inference on quantile treatment effects
under the extremal order quantile asymptotics. The main theorem of this paper,
validity of our subsampling method, covers general local estimators for conditional
quantiles. In the Supplementary Material, we verify high-level conditions of this
theorem by a specific example, the local linear quantile regression estimator.

We emphasize that the main focus of this paper is on inference (i.e., confidence
intervals and hypothesis testing) for extreme conditional quantiles. For point
estimation, we consider the extrapolation approach as in Daouia, Gardes, and
Girard (2013) is particularly suitable since it allows to use more observations from
less extreme quantiles (see also Wang, Li, and He, 2012; He, Cheng, and Tong,
2016). Intuitively, our point estimator uses less observations than the extrapolation
approach, and in this paper, the point estimator is treated merely as a centering
object to conduct subsampling inference. We regard our point process approach
as a complementary inference method to the extrapolation approach as in Daouia,
Gardes, and Girard (2013).

This paper is organized as follows. In Section 2, we present our main result,
validity of subsampling inference based on the self-normalized counterpart of
the local estimator for extremal conditional quantiles. In Section 3, we conduct
a simulation study, and Section 4 presents an empirical illustration of our method.
The proof of the main theorem is contained in the Appendix. In Section 5,
we describe additional results presented in the Supplementary Material, where
we verify the high-level conditions of the main theorem by a specific example,
the local linear quantile regression estimator, and discuss two extensions of
our subsampling inference for varying extreme value index models and varying
coefficient models. Finally, Section 6 concludes.

cannot be resolved by finite-sample modifications of the quantile regression estimator, such as the rearrangement
method in Chernozhukov, Fernández-Val, and Galichon (2010).
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2. SUBSAMPLING INFERENCE

Let {Yi,Xi}n
i=1 be a sample of size n from (Y,X) ∈ R×R

d, and let FY(·|·) be the
conditional distribution function of Y|X = ·. The focus of this paper is to conduct
inference on the extremal (lower) quantiles θαn(c) = inf{q : FY(q|c) ≥ αn} with
αn → 0 as n → ∞ for given c ∈ R

d. The case of upper quantiles with αn → 1 is
investigated in the same manner.

For the linear regression quantiles (say, θαn(x) = x′γαn ), Chernozhukov and
Fernández-Val (2011) considered the case of nαn → k̃ > 0 and proposed analytical
and subsampling inference methods based on the self-normalized object

Tn =
√

nαn(γ̂αn −γαn)

X̄′(γ̂mαn − γ̂αn)
,

for some m > 1, where γ̂αn is the linear quantile regression estimator and X̄ =
1
n

∑n
i=1 Xi. As they argue, although the scaling constant of (γ̂αn −γαn) in the numer-

ator is generally impossible to estimate without strong parametric assumptions,
the above normalized object converges to a limiting distribution that only depends
on the extreme value index of the error distribution, which allows to consistently
estimate the quantiles of c′Tn by analytical or subsampling methods to conduct
inference on the conditional quantile θαn(c) = c′γαn .

This paper extends the above inference approach by Chernozhukov and
Fernández-Val (2011) to the situation where the researcher does not know the
functional form of θαn(x). In particular, based on some local estimator θ̂αn(c)
for θαn(c) with a localization or bandwidth parameter δn to select or weight the
observations around x = c, we consider its self-normalized counterpart:

�n = θ̂αn(c)− θαn(c)

θ̂mαn(c)− θ̂αn(c)
, (2.1)

for some m > 1.
Examples of the estimator θ̂αn(c) include the local constant, linear, or poly-

nomial quantile regression estimators, and the inverse of the kernel or local
polynomial estimator for the conditional distribution function of Y|X = c using
the bandwidth δn. In the Supplementary Material, we focus on the local linear
quantile regression estimator as a specific example of θ̂αn(c) and verify high level
conditions for our main theorem on validity of subsampling inference.

Chaudhuri (1991) studied asymptotic properties of the local quantile regression
estimator when the quantile is fixed. Chernozhukov (1998) investigated asymp-
totic properties of the local quantile regression estimator under the extreme-
order quantile asymptotics, nδd

nαn → 0 as n → ∞. Alternatively, motivated by
Chernozhukov and Fernández-Val (2011), this paper considers the extremal order
quantile asymptotics in the sense that

αn → 0, nδd
nαn → k ∈ (0,∞) as n → ∞. (2.2)
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In order to establish validity of subsampling inference based on the self-normalized
object �n, a major requirement is to guarantee that

�n
d→ �∞ with a continuous limit law. (2.3)

Our main theorem below imposes this requirement as a high-level condition
(Assumption (i)). However, the limiting distributions of �n or even the local
quantile estimator θ̂αn(c) are open questions in the literature (even though the
focus of this paper is not on point estimation). In Section 1 of the Supplementary
Material, we derive the limiting distribution of �n for a specific example, where
θ̂αn(c) is the local linear quantile regression estimator. In this section, we directly
assume (2.3) and propose a subsampling method to estimate consistently quantiles
of �∞, which can be used to conduct inference on θαn(c).

2

Let qt denote the tth quantile of �∞. The subsampling approximation for the
distribution of �n is obtained as follows.

(Step 1) Consider all subsets of the data {Wi = (Yi,Xi)} of size b. If {Wi} is
a time series, consider Bn = n − b + 1 subsets of size b of the form
{Wi,Wi+1, . . . ,Wi+b−1}.

(Step 2) For the jth subsample, compute a subsample analog of �n, that is,

�̂
(j)
b = θ̂

(j)
αb (c)− θ̂αb(c)

θ̂
(j)
mαb(c)− θ̂

(j)
αb (c)

, (2.4)

for j = 1, . . . ,Bn, where θ̂αb(c) is the αbth conditional quantile estima-
tor computed using the full sample, and θ̂

(j)
αb (c) is the αbth conditional

quantile estimator computed using the jth subsample and bandwidth δb =
(k/bαb)

1/d with k = nδd
nαn. We take αb such that αb/αn → ∞ as n → ∞

(i.e., αb satisfies the intermediate-order quantile asymptotics (Ichimura,
Otsu, and Altonji, 2019)).

(Step2) Obtain q̂t as the sample tth quantile of {�̂(j)
b }Bn

j=1.

Let B denote some fixed closed ball around c. For any positive sequences {c1n} and
{c2n}, c1n ∼ c2n means c1n/c2n → 1 as n → ∞. The main result of this paper, the
asymptotic validity of our subsampling inference, is obtained as follows.

Theorem 1. Assume that:

(i) (2.2) and (2.3) hold true.
(ii) As n → ∞, it holds b → ∞, b/n → 0, δn → 0, δb → 0, αb → 0, and αb/αn →

∞.

2It is known that the conventional bootstrap does not work due to the nonstandard behavior of extremal quantile
regression estimators (see, e.g., Bickel and Freedman, 1981, Sect. 6, for a proof in the classical non-regression case).
In particular, the empirical bootstrap fails in our framework, which can be deduced from a general theory on weak
convergence of point processes and inconsistency of the conventional bootstrap for heavy-tailed data (see Resnick,
2007, Sect. 6).
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(iii) There exist a distribution function FU∗ with Pareto-type tails of extreme value
index ξ 
= 0 and a measurable function ϕ such that FY−ϕ(X)(z|x) ∼ 	(x)FU∗(z),
as z ↓ F−1

U∗ (0), uniformly over x ∈ B for some positive continuous function

	(x). Furthermore, θ̂αb(c) based on θ̂αn(c) satisfies

F−1
U∗ (1/bδd

b){θ̂αb(c)− θαb(c)}
p→ 0.

Then as n → ∞,

q̂t
p→ qt for t ∈ (0,1).

Assumption (i) is a high-level condition on the normalized object �n. See
Section 1 of the Supplementary Material for primitive conditions and derivation
of the limiting distribution �∞ for the case of the local linear quantile regression
estimator. Assumption (ii) contains mild conditions for b (subsample size), (αn,αb)

(quantiles), and (δn,δb) (bandwidths). Assumption (iii) is typically satisfied for the
location-scale model Y = ϕ(X)+	(x)ξ U∗. The error term U∗ is in the minimum
domain of attraction of the extreme value distribution with shape parameter ξ

called the extreme value index. See Section 1.1 of the Supplementary Material
for a detail. The last condition is on the estimator θ̂αb(c) at the intermediate order
quantile αb, which is imposed to control the approximation error for �b by �̂

(j)
b .

To implement our subsampling inference, we need to choose: (a) size of
subsamples b, (b) constant m for normalization, (c) quantile αb, and (d) bandwidths
(δn,δb) to compute �̂

(j)
b . For (a), b may be chosen by applying the methods in

Politis, Romano, and Wolf (1999, Chap. 9) and Bertail et al. (2004). In practice, a
smaller number Bn of randomly chosen subsets can be used, provided that Bn → ∞
(see Section 2.5 of Politis, Romano, and Wolf, 1999). For (b)–(d), we suggest the
following procedure.

1. Choose αn based on researcher’s interest.
2. Choose δn by some cross-validation method adapted to local estimators for

conditional quantiles (e.g., Takeuchi et al., 2006).
3. Based on b, (1), and (2), set k = nδd

nαn, αb = nαn/b, δb = (k/bαb)
1/d = δn, and

m = (d +1)/k +1+p for a spacing parameter p > 0.

For αb, one may introduce a finite-sample adjustment αb = min{nαn/b,0.2} as in
Chernozhukov and Fernández-Val (2011). The spacing parameter is set as p = 0.1
in our simulation study. Our preliminary simulation suggests that the results are
similar for different values of p. Note that given the requirement k = nδd

nαn = bδd
bαb

in the construction of (2.4), once we choose b, αn, and δn (and n) as in the above
procedure, the bandwidth δb is determined as δb = δn. Although such a choice of δb

may be suboptimal for estimating θ̂
(j)
αb (c), it guarantees the validity of subsampling

inference.
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We note that our main theorem applies to general local quantile estimators for
θ̂αn(c). For the numerical illustrations below, we employ the local linear quantile
regression estimator

(θ̂αn(c),β̂αn(c)) = argmin
θ,β

n∑
i=1

K(δ−1
n (Xi − c))ραn(Yi − θ − δ−1

n (Xi − c)′β), (2.5)

where K is a kernel function, δn is the bandwidth, and ρα(v) = v(α − I{v ≤ 0}). In
Section 1 of the Supplementary Material, we verify that this estimator satisfies the
assumptions of the main theorem under the primitive conditions below. See Section
1 of the Supplementary Material for detailed discussions and verifications.

Proposition 1. For the local linear estimator in (2.5), suppose Assumptions
1–3 below and Assumption (ii) in the main theorem hold. Then Assumptions (i)
and (iii) in the main theorem are satisfied.

Let Duf (c) = ∂f (c)/∂cu for u = 1, . . . ,d and f :Rd →R, and let B⊂R
d be some

fixed closed ball around c.

Assumption 1.

(i) {Yi,Xi}n
i=1 is a sample from (Y,X) ∈ R×R

d. The random variable X has the
density function fX that is positive and continuous on B.

(ii) There exist a random variable U∗ with distribution function FU∗ and a mea-
surable function ϕ : B → R such that the conditional distribution function
FU(z|x) of U = Y − ϕ(X) given X = x satisfies that FU(z|x)/FU∗(z) ∼ 	(x),
as z ↓ F−1

U∗ (0), uniformly over x ∈ B for some positive continuous function
	(x) on B. The quantile function F−1

U∗ of U∗ has end points F−1
U∗ (0) = 0 or

F−1
U∗ (0) = −∞. The distribution function FU∗(z) exhibits Pareto-type tails with

extreme value index ξ ∈ R, i.e.,
(1) as z ↓ F−1

U∗ (0) = 0 or −∞, FU∗(z + va(z)) ∼ evFU∗(z) for all v ∈ R when
ξ = 0,

(2) as z ↓ F−1
U∗ (0) = −∞, FU∗(vz) ∼ v−1/ξ FU∗(z) for all v > 0 when ξ > 0,

(3) as z ↓ F−1
U∗ (0) = 0, FU∗(vz) ∼ v−1/ξ FU∗(z) for all v > 0 when ξ < 0,

where a(z) = ∫ z
F−1

U∗ (0)
FU∗(v)dv/FU∗(z) for z > F−1

U∗ (0).

(iii)Let δn be a sequence of positive constants with δn → 0 as n → ∞. Assume
that nδd

nαn → k ∈ (0,∞) and anδ
1+γ
n → 0 as n → ∞, where γ is defined in

Assumption 1(iv) below, and
(1) an = 1/a(F−1

U∗ (1/nδd
n)) when ξ = 0,

(2) an = −1/F−1
U∗ (1/nδd

n) when ξ > 0,
(3) an = 1/F−1

U∗ (1/nδd
n) when ξ < 0.

Furthermore, we define bn =
{

F−1
U∗ (1/nδd

n), for ξ = 0,
0, for ξ 
= 0.
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(iv) For each u = 1, . . . ,d, Duϕ(x) exists at each x ∈ B, and there exist constants
C ∈ (0,∞) and γ ∈ (0,1] such that Duϕ(x) is γ -Hölder continuous on B, i.e.,
at each x ∈ B, |Duϕ(x)−Duϕ(c)| ≤ C‖x− c‖γ .

(v) For all n large enough, Duθαn(x) exists and is continuous at each x ∈B and u =
1, . . . ,d, and supx∈Bn

an|θαn(x)− θαn(c)− (x− c)′∂θαn(c)/∂x| → 0 as n → ∞.

Assumption 2. The sequence {Ui,Xi}n
i=1 with Ui = Yi − ϕ(Xi) defined in

Assumption 1(ii) forms a stationary and strongly mixing process with a geometric
mixing rate, that is, for some C1 > 0,

sup
i

sup
A∈Ai,B∈Bi+m

|P(A∩B)−P(A)P(B)|exp(C1m) → 0 as m → ∞,

where Ai = σ(Ui,Xi,Ui−1,Xi−1, . . .) and Bi = σ(Ui,Xi,Ui+1,Xi+1, . . .). Moreover,
the sequence satisfies a condition that curbs clustering of extreme events in the
following sense: P(Ui ≤ M,Ui+m ≤ M|Ai) ≤ C2P(Ui ≤ M|Ai)

2 for all M ∈ [s,M̄],
uniformly for all m ≥ 1 with some constants C2 > 0 and M̄ > s.

Assumption 3.

(i) Let w = (w1, . . . ,wd)
′ ∈ R

d. The kernel function K is a bounded positive
Lipschitz function with support [−1,1]d and second order, that is,∫
Rd

K(w)dw = 1,
∫
Rd

K(w)wudw = 0 for u = 1, . . . ,d.

(ii)
∫
Rd K(w)w̃w̃′dw is positive definite, where w̃ = (1,w1, . . . ,wd)

′ ∈ R
d+1.

3. SIMULATION

In this section, we present simulation results to evaluate the finite-sample perfor-
mance of the proposed subsampling method. We consider the following location-
scale model:

Yi = 0.5sin(Xi)+
√

2.5+0.5X2
i U∗,i, (3.1)

for i = 1, . . . ,n, where {Xi} are i.i.d. uniform random variables on [−1,0], and {U∗,i}
are i.i.d. random variables following either (i) t distribution with 3 or 30 degree of
freedom, or (ii) Weibull distribution with the shape parameter 3 or 30. Note that
these two cases correspond to (i) ξ = 1/3 or 1/30 and (ii) ξ = −1/3 or −1/30,
respectively. When ξ = 1/30 or −1/30, U∗ has a light-tailed distribution.

We compute θ̂αn(c) at c = −0.5 by using the local linear quantile regression esti-
mator in (2.5) with the biweight kernel K(w) = 15

16 (1−w2)2
I{|w| ≤ 1}. To estimate

the quantile qt of �∞ in (2.3) based on the subsampling method, we consider Bn =
n − b + 1 subsets of size b of the form {(Yi,Xi),(Yi+1,Xi+1), . . . ,(Yi+b−1,Xi+b−1)}.
To illustrate the proposed subsample-based inference on θαn(c), we see the finite-
sample properties of the following 100(1− t)% confidence intervals (t ∈ (0,1/2))
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Table 1. Empirical coverage probabilities of C1−t(αn) for θαn(c) = F−1
Y (αn|c) at

c = −0.5. We set b = 200 for n = 2,000 and b = 500 for n = 5,000. The numbers
in the parentheses are means of bandwidths selected by using LOOCV.

Model t(3) t(30) Weibull(3,1) Weibull(30,1)

n αn nominal 0.90 0.95 0.90 0.95 0.90 0.95 0.90 0.95

2,000 0.01 0.848 0.920 0.860 0.928 0.856 0.928 0.876 0.936

(0.198) (0.197) (0.197) (0.196)

0.005 0.856 0.928 0.852 0.924 0.872 0.932 0.864 0.932

(0.223) (0.221) (0.223) (0.222)

5,000 0.01 0.876 0.948 0.860 0.920 0.860 0.924 0.872 0.940

(0.191) (0.195) (0.197) (0.164)

0.005 0.864 0.940 0.868 0.932 0.884 0.948 0.852 0.936

(0.218) (0.215) (0.219) (0.182)

for the model (3.1) with Student’s t and Weibull noises:

C1−t(αn) = [θ̂αn(c)− q̂1−t/2{θ̂mαn(c)− θ̂αn(c)},θ̂αn(c)− q̂t/2{θ̂mαn(c)− θ̂αn(c)}].

Table 1 presents empirical coverage probabilities of 90% (t = 0.1) and 95%
(t = 0.05) confidence intervals C1−t(αn). We consider two cases for the sample size
n ∈ {2,000,5,000} and set b = 200 (for n = 2,000) and b = 500 (for n = 5,000).
For each Monte Carlo replication, we select the bandwidth δn by using leave-one-
out cross-validation (LOOCV) as explained in Remark 6 of the Supplementary
Material. We set k = nδnαn, Bn = n − b + 1, αb = nαn/b, and m = 2/k + 1.1.
The number of Monte Carlo repetitions is 250. The numbers in the parentheses
are means of bandwidths selected by using LOOCV. We find that the simulated
coverage probabilities of confidence intervals C1−t(αn) have similar performance
in every case and they are reasonably close to the nominal coverage probabilities.

Table 2 presents empirical coverage probabilities of 90% (t = 0.1) and 95% (t =
0.05) confidence intervals C1−t(αn) with n = 2,000 and b ∈ {80,120,160,200,300,
400,500}. We also use the biweight kernel and set k = nδnαn, Bn = n − b + 1,
αb = nαn/b, and m = 2/k+1.1. To compute confidence intervals, we use LOOCV
to select δn. The number of Monte Carlo repetitions is 250. We find that the
empirical coverage probabilities are reasonably close to the nominal ones when
1/25 ≤ b/n ≤ 1/10. This motivates us to use b = [n/10] as a practical choice
of subsample size, which is employed in real data analysis in the next section.
Note that our choices of b ∈ {80,120,160,200,300,400,500} correspond to αb ∈
{1/4,1/6,1/8,1/10,1/15,1/20,1/25} when αn = 0.01, respectively. The empirical
coverage probabilities are less sensitive even for somewhat larger values of αb.
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Table 2. Empirical coverage probabilities of C1−t(αn) for θαn(c) = F−1
Y (αn|c) at

c = −0.5 with n = 2,000 and b ∈ {80,120,160,200,300,400,500}.
Model t(3) t(30) Weibull(3,1) Weibull(30,1)

b αn nominal 0.90 0.95 0.90 0.95 0.90 0.95 0.90 0.95

80 0.01 0.868 0.932 0.872 0.936 0.868 0.936 0.864 0.936

0.005 0.864 0.928 0.876 0.940 0.876 0.932 0.852 0.936

120 0.01 0.848 0.920 0.852 0.920 0.844 0.924 0.864 0.928

0.005 0.868 0.924 0.876 0.940 0.872 0.940 0.872 0.936

160 0.01 0.852 0.924 0.864 0.924 0.868 0.932 0.864 0.924

0.005 0.844 0.920 0.860 0.928 0.864 0.924 0.868 0.940

200 0.01 0.848 0.920 0.860 0.928 0.856 0.928 0.876 0.936

0.005 0.856 0.928 0.852 0.924 0.872 0.932 0.864 0.932

300 0.01 0.852 0.916 0.852 0.920 0.848 0.916 0.856 0.912

0.005 0.844 0.908 0.848 0.908 0.852 0.912 0.848 0.908

400 0.01 0.836 0.896 0.812 0.848 0.844 0.904 0.812 0.872

0.005 0.816 0.872 0.804 0.856 0.812 0.856 0.820 0.876

500 0.01 0.796 0.860 0.752 0.808 0.792 0.868 0.800 0.852

0.005 0.780 0.852 0.728 0.784 0.780 0.822 0.792 0.840

3.1. Comparison with Other Methods

We compare finite-sample properties of confidence intervals based on (i) our sub-
sampling method, (ii) normal approximation, and (iii) the extrapolation approach
developed in Daouia, Gardes, and Girard (2013). When the quantile level αn is
considered as fixed (i.e., αn = α ∈ (0,1)), we can also apply normal approximation
of θ̂α(c) to construct confidence intervals. From Fan, Hu, and Truong (1994,
Th m. 3), we can construct 100(1 − t)% confidence intervals based on normal
approximation of θ̂α(c) for fixed α ∈ (0,1) as follows:

CN
1−t(α) =

⎡
⎣θ̂α(c)− z1−t/2

√
τ̂ 2(c)

nδn
,θ̂α(c)− zt/2

√
τ̂ 2(c)

nδn

⎤
⎦,

where zt is the tth quantile of the standard normal distribution and τ̂ 2(c) is an
estimator of the asymptotic variance of θ̂α(c) given by

τ 2(c) = α(1−α)
∫

K2(w)dw

fX(c)g2
Y(θα(c)|c) .

Here, fX is the density of X and gY(·|c) is the conditional density of Y given
X = c. To estimate fX , we use kernel smoothing with the Epanechnikov kernel
and bandwidth selected by using LOOCV. For the estimation of gY(·|c), we use
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Table 3. Empirical coverage probabilities of C1−t(αn), CN
1−t(αn), and CE

1−t(αn)

for θαn(c) = F−1
Y (αn|c) at c = −0.5.

Model t(3) t(30) Weibull(3,1) Weibull(30,1)

n αn nominal 0.90 0.95 0.90 0.95 0.90 0.95 0.90 0.95

2,000 0.01 C1−t(αn) 0.848 0.920 0.860 0.928 0.856 0.928 0.876 0.936

CN
1−t(αn) 0.044 0.052 0.204 0.240 0.716 0.776 0.656 0.748

CE
1−t(αn) 0.436 0.528 0.512 0.608 0.784 0.860 0.808 0.864

0.005 C1−t(αn) 0.856 0.928 0.852 0.924 0.872 0.932 0.864 0.932

CN
1−t(αn) 0.032 0.040 0.128 0.152 0.628 0.684 0.668 0.708

CE
1−t(αn) 0.256 0.304 0.408 0.496 0.768 0.816 0.740 0.812

the method proposed in Bashtannyu and Hyndman (2001). We also compute θ̂α(c)
in the same way as our method and the bandwidth is selected by using LOOCV.

Furthermore, in our simulation study, we consider an infeasible version of
Daouia, Gardes and Girard’s (2013) extrapolation-based estimator in equation
(1.13) of the Supplementary Material, where we set ξ̂ (c) = ξ and â(c) = (θαn(c)−
θα̃n(c))/Kξ (α̃n/αn). In other words, the second term in equation (1.13) of the
Supplementary Material does not involve any preliminary estimation as in Daouia,
Gardes, and Girard (2013). In this case, as in Daouia, Gardes, and Girard (2013,
Th m. 1), one can construct 100(1− t)% confidence intervals of θαn(c) as follows:

CE
1−t(αn) =

⎡
⎣θ̂α̃n(c)+Bn(c)− z1−t/2

√
v̂2(c)

nδn
,θ̂α̃n(c)+Bn(c)− zt/2

√
v̂2(c)

nδn

⎤
⎦,

where Bn(c) = θαn(c)−θα̃n(c) and v̂2(c) is an estimator of the asymptotic variance
of θ̂α̃n(c) given by

v2(c) = α̃n
∫

K2(w)dw

fX(c)g2
Y(θα̃n(c)|c)

.

We set α̃n = nαn/b (b is the subsample size used in the computation of C1−t(αn))
and the bandwidth δn is selected by using LOOCV. For the estimation of fX , we use
kernel smoothing with the Epanechnikov kernel and bandwidth selected by using
LOOCV. For the estimation of gY(·|c), we use the method proposed in Bashtannyu
and Hyndman (2001).

Table 3 presents empirical coverage probabilities of 90% (t = 0.1) and 95%
(t = 0.05) confidence intervals C1−t(αn), CN

1−t(αn), and CE
1−t(αn) with n = 2,000

and αn ∈ {0.01,0.005}. Although we do not report here, the results are similar
for the case of n = 5,000. To compute the confidence interval C1−t(αn), we use
LOOCV to select δn and set k = nδnαn, b = n/10, Bn = n − b + 1, αb = nαn/b,
and m = 2/k + 1.1. We also use the local linear quantile regression estimator in
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(2.5) with the biweight kernel to compute θ̂αn(c) and θ̂α̃n(c). The number of Monte
Carlo repetitions is 250. We find that the normal approximation confidence interval
CN

1−t(αn) exhibits severe size distortions particularly for the t(3) and t(30) distri-
butions. This result clearly endorses usefulness of the asymptotic approximation
based on the extreme value theory for tail areas as advocated in this paper. We
also find that the confidence interval CE

1−t(αn) based on the infeasible estimator

θ̂α̃n(c) + Kξ (α̃n/αn)â(c) (where the second term does not involve preliminary
estimation) also exhibits size distortions. This result indicates that the normal
approximation for θ̂α̃n(c) under the intermediate quantile asymptotics may not
work well for inference in tail areas even after the bias correction by the second
term Kξ (α̃n/αn)â(c).

4. REAL-DATA ILLUSTRATION

We apply our methodology to conduct inference on the extremal quantiles of
the GBP-AUD exchange rate {Ri}n+1

i=1 observed every 3 hours from March 22,

Table 4. Estimated values of θαn(c) at c = 0 and confidence intervals C1−t(αn).

αn θ̂αn(c) C0.90(αn) C0.95(αn)

0.01 −0.185 [−0.265, −0.139] [−0.274, −0.137]

0.005 −0.243 [−0.347, −0.146] [−0.363, −0.138]

Figure 1. Plots of the transformed GBP-AUD exchange rate {Yi}5,053
i=1 .

https://doi.org/10.1017/S0266466623000336 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000336


SUBSAMPLING FOR EXTREMAL QUANTILES 337

2006 to August 30, 2008 (n = 5,053) provided by the Dukascopy Bank. Before
we apply our method, we transform {Ri} as Yi = 100 × (log(Ri+1) − log(Ri))

for i = 1, . . . ,5053, and consider an AR(1)-type structure (Yi,Xi) = (Yi,Yi−1).
Figure 1 depicts the transformed GBP-AUD exchange rate {Yi}n

i=1. We also use
the local linear quantile regression estimator in (2.5) with the biweight kernel and
set αn ∈ {0.01,0.005}, δn = 0.103 (for αn = 0.01), 0.115 (for αn = 0.005) which
are selected by the rule-of-thumb proposed in Yu and Jones (1998), k = nδnαn,
b = [n/10] = 505, Bn = n − b + 1, αb = nαn/b, and m = 2/k + 1.1. Table 4
presents estimated values of the extremal conditional quantiles θ̂αn(c) at c = 0
and confidence intervals C1−t(αn). We can see that our confidence intervals for the
extreme quantiles θ0.01(c) and θ0.005(c) are reasonably informative based on the
plot in Figure 1.

5. ADDITIONAL RESULTS IN THE SUPPLEMENTARY MATERIAL

A major technical challenge is to establish the weak convergence of the normalized
object �n in (2.3) under the extremal order quantile asymptotics (2.2). This is a key
condition (Assumption (i)) to establish the validity of our subsampling inference in
the main theorem. Furthermore, although the focus of this paper is inference (i.e.,
hypothesis testing and interval estimation) on θαn(c), it is of independent interest
what is the convergence rate and limiting distribution of the local estimator θ̂αn(c)
under the extremal order quantile asymptotics. For point estimation of θαn(c), we
consider the extrapolation approach as in Daouia, Gardes, and Girard (2013) is
particularly suitable since it allows to use more observations from less extreme
quantiles.

In Section 1 of the Supplementary Material, we focus on the local linear quantile
regression estimator as a specific example of θ̂αn(c), provide primitive conditions
to satisfy the assumptions in our main theorem, and derive the limiting distributions
of the point estimator θ̂αn(c) and its self-normalized counterpart �n. In particular,
we extend the extremal order quantile asymptotics by Chernozhukov (2005) and
Chernozhukov and Fernández-Val (2011) to a nonparametric setup, and consider
the situation where the quantile converges to zero or one at the same rate as nδd

n as
in (2.2). In contrast to the conventional fixed quantile asymptotics based on central
limit theorems, our extremal order quantile asymptotic analysis is built upon point
process theory.

Although theoretical developments are similar, there are at least two important
directions to extend our subsampling inference method. In Section 2 of the
Supplementary Material, we present extensions of our main result to (a) the case
where the extreme value index ξ of the error term distribution may vary with
covariates (Section 2.1) and (b) varying coefficient extremal quantile regression
models Y = X′β(Z) + γ (X,Z)V∗ for an unknown function β(·) of covariates Z,
and error term V∗ in the domain of minimum attraction (Section 2.2).
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These additional results are also new in the literature, and we also provide
detailed comments on the assumptions and theorems in the Supplementary
Material.

6. CONCLUSION

This paper studies inference for nonparametric extreme conditional quantiles. We
propose a subsampling inference method based on a self-normalized counterpart of
a nonparametric conditional quantile estimator. An attractive feature of our method
is that it avoids estimation of nuisance parameters in the limiting distribution
of the quantile estimator under the extremal quantile asymptotics. We establish
asymptotic validity of the proposed method, and illustrate its finite-sample perfor-
mance by a simulation study and empirical example. It is interesting to extend the
proposed method to other econometric problems associated with quantiles, such as
the quantile treatment effect analysis and quantile instrumental variable regression.

APPENDIX

A. PROOF OF THEOREM 1

Let Ã(j)
b = 1

θ̂
(j)
mαb (c)−θ̂

(j)
αb (c)

, �
(j)
b = Ã(j)

b (θ̂
(j)
αb (c) − θαb (c)), and Ab = −sgn(ξ) · 1/F−1

U∗

(1/(bδd
b )). Define

Ĝn(x) = 1

Bn

Bn∑
j=1

I{�̂(j)
b ≤ x} = 1

Bn

Bn∑
j=1

I{�(j)
b + Ã(j)

b (θαb(c)− θ̂αb (c)) ≤ x},

G̃n(x;�) = 1

Bn

Bn∑
j=1

I{�(j)
b + (Ã(j)

b /Ab)� ≤ x}.

Then

I{�(j)
b ≤ x− Ã(j)

b wn/Ab} ≤ I{�̂(j)
b ≤ x} ≤ I{�(j)

b ≤ x+ Ã(j)
b wn/Ab},

for all j = 1, . . . ,Bn, where wn = |Ab(θαb(c)− θ̂αb (c))|.
Since wn = op(1) by Assumption (iii), there exists a sequence εn ↓ 0 as n → ∞ such that

the following event occurs with probability approaching one:

�n =
{
I{�(j)

b ≤ x− Ã(j)
b εn/Ab} ≤ I{�(j)

b ≤ x− Ã(j)
b wn/Ab} ≤ I{�̂(j)

b ≤ x}

≤ I{�(j)
b ≤ x+ Ã(j)

b wn/Ab} ≤ I{�(j)
b ≤ x+ Ã(j)

b εn/Ab} for all j = 1, . . . ,Bn

}
.

On �n, it holds

G̃n(x;εn) ≤ Ĝn(x) ≤ G̃n(x; − εn). (A.1)
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We next show that at the continuity points of G(x) = P(�∞ ≤ x), it holds G̃n(x; ± εn)
p→

G(x). Non-replacement sampling implies

E[G̃n(x;εn)] = P(�b − Ã(j)
b εn/Ab ≤ x),

and at the continuity points of G(x),

lim
n→∞E[G̃(j)

b (x;εn)] = lim
b→∞P(�b − Ã(j)

b εn/Ab ≤ x) = G(x),

since �b
d→ �∞ (by Assumption (i)) and Ã(j)

b εn/Ab = Op(1) · εn = op(1). Since G̃n(x;εn)

is a U-statistic of degree b, the law of large numbers for U-statistics in Politis, Romano, and

Wolf (1999) implies Var(G̃n(x;εn)) = o(1). This shows that G̃n(x;εn)
p→ G(x). Likewise,

we obtain G̃n(x; − εn)
p→ G(x).

Finally, since P(�n) → 1, (A.1) yields Ĝn(x)
p→ G(x) for each x ∈R. Since convergence

of distribution functions at continuity points implies convergence of quantile functions at

the continuity points, the continuous mapping theorem yields q̂t = Ĝ−1
n (t)

p→ G−1(t) = qt,
provided G−1(t) is a continuity point of G(x).

Supplementary Material

Kurisu, D. and Otsu, T. (2023): Supplement to “Subsampling inference for non-
parametric extremal conditional quantiles,” Econometric Theory Supplementary
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