THE NITROGEN SPECTRA OF WN STARS: THE WN6 "STANDARD" STAR HD 192163 (WR136)

U. WESSOLOWSKI¹, W.-R. HAMANN¹, W. SCHMUTZ² ¹ Institut für Theoretische Physik und Sternwarte der Universität Olshausenstraße 40, D-2300 Kiel 1, FRG ² Joint Institute for Laboratory Astrophysics University of Colorado, Boulder, CO 80309-0440, USA

Hitherto our quantitative analyses of WR spectra [2][5] have been based on pure-helium models [1][6]. Now we further improved our non-LTE calculations by including a complex model atom of nitrogen (90 energy levels, 351 line transitions; with low-temperature dielectronic recombination) into our model atmospheres in order to synthesize adequately the spectra of WN subtypes (Wessolowski *et al.*, in preparation). Together with the nitrogen (the most important "metal" in WN atmospheres), we introduced an improved temperature structure into our model calculations [3], now accounting for non-grey radiative equilibrium instead of the grey approximation applied so far. Moreover we took into account the line overlap of the considered elements (*here:* helium, nitrogen) and also their blanketing effects on the continuous radiation field.

Theoretical line profiles of nitrogen are compared with the observed spectrum of HD 192163 (alias WR136), a well-known WN6 "standard" star (Table 1). Most of the equivalent widths of the observed nitrogen lines can be reproduced within a factor of 2 to 3, but only by two slightly different models (Model 1: $T_* = 50kK$ and $R_* = 6.0R_{\odot}$, Model 2: $T_* = 60kK$ and $R_* = 5.5R_{\odot}$; both models with $log[\dot{M}/(M_{\odot}yr^{-1})] = -3.85$, $v_{\infty} = 1700 \ km/s$ and a nitrogen abundance $\beta_N = 1.5\%$ by mass).

nitrogen	NIII	N IV				N V		
lines	$\lambda 4640$	$\lambda 1486$	$\lambda 1718$	$\lambda 3480$	$\lambda 4058$	$\lambda 1240$	$\lambda 4610$	$\lambda 4944$
Observed	79	29	34	60	38	10	10	3
Model 1	30	58	10	12	28	3	1	2
Model 2	13	81	15	41	43	11	1	3

TABLE 1. Equivalent widths [Å] of nitrogen lines for HD 192163 (WN6)

Altogether these results confirm the tendencies of Hillier's cool wind model for the WN5 star HD 50896 [4]. Remaining problems may be attributed to the very complex model atom and minor uncertainties in the stellar parameters and the temperature structure.

References:

[1] Hamann, W.-R., Schmutz, W.: 1987, Astron. Astrophys. 174, 173

[2] Hamann, W.-R., Schmutz, W., Wessolowski, U.: 1988, Astron. Astrophys. 194, 190

[3] Hamann, W.-R., Wessolowski, U.: 1990, Astron. Astrophys. 227, 171

[4] Hillier, D.J.: 1988, Astrophys. J. 327, 822

[5] Schmutz, W., Hamann, W.-R., Wessolowski, U.: 1989, Astron. Astrophys. 210, 236

[6] Wessolowski, U., Schmutz, W., Hamann, W.-R.: 1988, Astron. Astrophys. 194, 160 106

K. A. van der Hucht and B. Hidayat (eds.),

Wolf-Rayet Stars and Interrelations with Other Massive Stars in Galaxies, 106. © 1991 IAU. Printed in the Netherlands.