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NUMERICAL CRITERIA FOR CERTAIN FIBER
SPACES TO BE BIRATIONALLY TRIVIAL

JIN-XING CAI

Abstract. Let f: X — B be a fiber space over a curve B whose general fiber F’
belongs to one of the following type: 1) F is of general type and satisfying some
mild conditions, 2) F' is with trivial canonical sheaf. In this note, a numerical
characterization for f: X — B to be birationally trivial is given.

81. Introduction

Let X be a complex projective manifold, and f: X — B be a morphism
over a smooth projective curve B with connected fibers. A natural problem
is to find a numerical characterization for f: X — B to be birationally
trivial (see (2.1) for the definition).

When X is a surface, it is well-known that, if g(F') > 2, f is birationally
trivial if and only if ¢(X) — g(B) = g(F), where F is a general fiber of f,
g(F) (resp. g(B)) is the genus of F' (resp. B), and ¢(X) is the irregularity
of X (cf. [2]).

In this note, we consider the higher dimensional case.

For any 1 < i < dim X, let H% be the image of the map H(Q%) ®
Ox — Qg(, where QfX is the sheaf of holomorphic i-forms on X. Let rk Hgf
be the rank of H’. It is easy to see that tk H% is a birational invariant.
Let h"9(X) = dim H°(QY%) and py(X) be the geometric genus of X. Our
main result is the following.

THEOREM 1.1. Let X be a complex projective manifold of dimension
n+1(n >2), and f: X — B be a morphism over a smooth projective
curve B with connected fibers. Let F' be a general fiber of f. Assume that
" 1O(F) =0, and that either the canonical map ¢r of F is birational, or
oF is generically finite of degree being a prime number and py(Im ¢r) = 0.
Then f is birationally trivial if and only if Tk H% = 1 and h™%(X) = py(F).
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Theorem 1.1 will be proved in Section 2. In Section 3 we will give some
criteria for fiber spaces whose general fibers have trivial canonical sheaf to
be birationally trivial.

We use standard notations as in [3] or [10].
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§2. Proof of Theorem 1.1

2.1. A fiber space f: X — B of relative dimension n is a surjective
morphism between smooth projective varieties X and B with connected
geometric fibers of dimension n. We say that two fiber spaces f;: X — B;
(1 =1, 2) are birationally equivalent if there are birational maps m: X1 —
X5 and mo: By — Bs such that fomy = mof1. A fiber space f: X — B is
called birationally trivial, if it is birationally equivalent to the trivial fiber
space p: F'x B — B, where F is a general fiber of f and p is the projection.

2.2. Let f: X — B be a fiber space, and F' a general fiber of f. We
say that f has constant moduli, if any two smooth geometric fibers of f are
birationally equivalent.

Assume that f has constant moduli and that the Kodaira dimension
of F'is non-negative. Then f admits a very concrete description, i.e., there
exists a finite group G acting on F' and on some smooth variety B such
that f is birationally equivalent to (the smooth model of) the fiber space
p: (F x B)/G — B/@, where the action of G on the production F x B is
compatible with the actions on each factor and p is the projection to the
second factor. (See [6, Theorem 2.11] or [7, Proposition 1] for a proof.)

2.3. Let f: X — B be a fiber space of relative dimension n, and
F' a general fiber of f. In what follows we always assume that B is a
curve. Then R" f,Ox is a locally free sheaf of rank py(F'). By Theorem 3.1
[5], OJGBBhO(R”f*OX)

sequence,

is a direct factor of R"f,Ox. By the Leray spectral

hY(R"f,Ox) + h' (R £,.0x) = h"(Ox).

Combining these two facts, we get h"(Ox) < 1 (R"1 £.Ox) + py(F).
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NOTATION 2.4. Let X be a complex projective manifold. For any 0 #
a € HQ%) (1 < i < dimX), we denote by Z(«) the zero-locus of the
holomorphic i-form a.

2.5. Let f: X — B and F be as in 2.3. Let ¢ be the embedding of
F in X. We can factor the pullback of forms under the restriction map
Q% — Q% by

s
X — Qklr — Q.

Consider the long exact sequences associated with the exact sequences of
sheaves

0— Q%(—F) — Q% —— Q%|r — 0 and

0— Q81— Q% |p — QF — 0.

Then we have that, if h*~10(F) = 0, then for any 0 # ¢ € H°(Q%), 1*¢ =0
if and only if ¢ € Ker r, i.e., F' C Z(yp).

2.6. Let X be a complex projective manifold of dimension n + 1
(n > 2), with h°(X) > 2. Assume that there are two linearly independent
n-forms ¢ and @y such that 1 Ay = 0in HO(A? 0%). Then there exists a
non-constant rational function h on X such that o = hpy. Let 7: X' — X
be the blowing up of the locus of indeterminacy of the rational map

(1:h): X ——— P!,

and f,: X' — C the Stein factorization of (1 : h) o m. We have that h is
constant along the fibers of fj,.

LEMMA 2.7. Let X and f, be as above. Then for any smooth fiber I
of fn, we have

(i) ¢p(m*@;) = 0 fori =1 and 2, where we denote by v the embedding
of F in X',

(i) A"~ 1O(F) > 0.

Proof. (i) Indeed, for any x € F, let z, 21, ..., 2, be a set of analytic
local coordinates of X around x, such that zy is the pullback of a local
coordinate of C' around the image ¢ of F' by f;. Then h is the pull-back of
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a non-constant holomorphic function of a neighborhood of ¢, and within an
analytic neighborhood of x, we can write

n
7T*(p1:ZAidZO/\"'/\dzi/\“~/\dZn,

n
Ty =Y Bidzg Ao Adzi Ao Adzy,

(CE indicating the omission of the i-th factor dz;) where A; and B; are
holomorphic functions of this neighborhood. Clearly we have that

Lp(m 1) = Aolpdzy A+ Ndzp.

Since g2 = he1, we have B; = hA; for i = 0,...,n. Since 7*¢; are d-closed,
we have

- DA;
Z( )82 =0 and Z 821

i=0
Now
oh 0By 0Ay 0By " L0A;
— Ay = —h = h —1)*
820 0 820 820 8,20 + zzl( ) 8zi
0By ,0B;
= + Z(—l) 97 0.

i=

Note that 0h/0zy # 0. Hence we get Ag|F = 0.

(ii) Let F’" be a general fiber of fj, such that F’ ¢ Z(7*¢1). Suppose
that h"~1O(F") = 0. Then by 2.5 we get ¢} (7*¢1) # 0. On the other hand,
by (i), we have ¢}, (7*p1) = 0. This is a contradiction. 0

The following lemma plays an important role in the proof of the The-
orem 1.1.

LEMMA 2.8. Let f: X — B be a fiber space of relative dimension n >
2, and F' a general fiber of f. Assume that rk H% =1 (where H% is as in
Section 1), and h"~0(F) = 0. Then h®(Q%(—F)) = 0.
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Proof. Consider the exact sequence
0/ron 0ron r 0ron
0 — H (% (=F)) — H (%) — H (|r).

Note that for any ¢ € H(Q%), ¢ € Kerr if and only if Z(¢) D F. Since
F is a general fiber of f, we have Imr # 0 if h™9(X) > 0. We choose and
fix a section g € H?(Q%) such that r(pg) # 0. Now it’s enough to prove
that Kerr = 0. Otherwise, let 0 # ¢ € Kerr. Then Z(p1) D F. Since
rtkH'% =1, o1 Ao = 0. So there exists a rational function h on X such
that 1 = hpg. Since Z(pg) 2 F by the choice of ¢g, h vanishes on F.

Let fr: X — C be the fiber space induced by the rational map

(1:h): X ——— P,

By 2.7, h"~10(F,) > 0, where F}, is a smooth fiber of f,. This implies f
and fj, are different fibrations of X since A" 1?(F) = 0 by the assumption.
So fn|r: F — C is surjective. Since h vanishes on F' and is constant on the
fibers of f;, we get that h vanishes on X. This is a contradiction. 0

The following proposition is a special case of 7.2.1 in [9].

PROPOSITION 2.9. Let f: X — Y be a morphism from a (n + 1)-fold
to a smooth projective n-fold. Suppose that, over a Zariski open set U
of X, ¢ € HY(X,Q%) can be writen locally around each point p € U as
¢ = af*(w), where a € Op x and w € Q% py- Then o = af*(w') for some
W€ HO(Y,Qn).

2.10. Proof of Theorem 1.1

We prove that if tk H; = 1 and h™Y(X) = py(F), then f is birationally
trivial; the converse is clear since rk H’, is a birational invariant of X (note
that tk H; equals to the greatest integer ¢ such that o1 Apa A+ Ap; #0
in HO(A\" Q%) for some @1, ...,¢; € HY(Q%)).

Let 0, ¢1,---,¢m (m = h™9(X) — 1) be a basis of H(Q%). Since
rk’H', = 1, there are non-constant rational functions h; on X such that
w; = hipo for i =1,...,m. Consider the rational map

O=(1:hy:hy: - :hy): X ———P™

By Bogomolov’s theorem [4], dim(Im ®) < n.
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Let F be a general fiber of f, and ¢ the embedding of F' in X. Since
1O(F) =0, by 2.5,

Ker(s*: HY(Q%) — HO(Q})) ~ HY(Q%(—F)).

By Lemma 2.8, h°(Q%(—F)) = 0. So *: H'(Q%) — HY(Q%) is an em-
bedding, hence an isomorphism by the assumption h™°(X) = py(F). This
implies that h;|z, the restricion of h; on F', are non-constant rational func-
tions on F', and

(I)‘F:(]‘:hllF:hQ‘F:"':hm‘F): X_——>]P)m

is nothing but the canonical map ¢ of F. Since ¢ is generically finite by
assumption, we get dim(Im ®) > dim(Im(®|r)) = n. So Im ® = Im(P|F) is
a variety of dimension n. This implies that f has constant moduli if ¢p is
birational. Now we show that if deg ¢ is prime and py(Im ¢r) = 0, f also
has constant moduli.

Consider the following commutative diagram

@/

X —— Y
]
X ——— Im®,

where 7 is the blowing up of the locus of indeterminacy of the rational map
® and @’ is the Stein factorization of ® o . Taking the desingularisation of
Y instead of Y, we can assume that Y is smooth.

CLAIM. py(Y) = h™0(X).

Proof of the Claim. The case when dim X = 3 is proved in [8, p. 861];
the general case can be similarly verified. Indeed, it’s enough to verify that
™¢; (i = 0,...,m) are pull-backs of holomorphic n-forms on Y. Since
Im ® has dimension n in P™, we may assume, after changing coordinates,
that z; = Z;/Zy for i = 1,...,n, forms a local coordinate system at a
generic point p € Im &, where Zj, ..., Z,, are homogeneous coordinates of
P™. Consider the compositions g; of s o ®" with the projection

pi: Im® — P (1:hy(z): ho(z) - 2 hp(2)) — (1: hi(z)).
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By blowing up if necessary, we may assume that all g; (i = 1,...,n) are
morphisms. Let

n
U=X"\ U{singular fibers of g;}.
i=1
Let 41 : F; C X' be the inclusion of a smooth fiber of g;. Then by 2.7, we
have ¢j(7*p;) = 0 for i = 0 and 1. Since y; = h;pg, we get ] (7" ¢;) = 0 for
all 4. It implies that around x € U,
i = aiigi(dz1) A T,

where a1; € Oy x7 and 715 € QZ}I, Similarly, we have

T = igs(dza) A Tog = -+ = aign (dzn) A Tni,
where aw;, ..., are in Oy x/ and 7o, ..., 7Ty are in QZ;}, This shows
that around = € U,
Tp; = agi(dz1) A gz(dze) A+ A gy (dzn)
= a®™*((p1 0 8)*(dz1) A (p2 o 8)*(dza) A+ A (pn o 8)*(dz,))

for some o € O, x/. Now by Proposition 2.9, we have that 7*¢; are pull-
backs of holomorphic n-forms on Y. 0

Now we continue to prove the Theorem 1.1. Let F’ be the strict trans-
form of F' under m. We have the following commutative diagram
D' |

F'—

| ot s

Q|p=¢F
F ——— Im®.
If deg¢r is prime and py(Im¢r) = 0, then degs # 1 since py(Y) #
pg(Im¢p). So deg(®’|r/) =1, and we have that f has constant moduli.
By 2.2, X is birationally equivalent to (F x B)/G, where B and G are
in 2.2. We claim that |G| = 1. In fact, from

hO(F x B) = py(F) = h™°(X) = dim H*(Q%, )€,

we get HO(Q)Y = HY(Q%). So G induces identity on Im ¢ . This implies
¢ factors through FF — F/G — Im¢p. So we have |G| = 1 under the
condition that either ¢ of F' is birational, or ¢r is generically finite of
degree being a prime number and p,(Im ¢5) = 0. 0
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Remark 2.11. We give some remarks about the conditions on F' in
Theorem 1.1.

(1) If we only assume that F is of general type, the question may be
too general to have a positive answer. But I failed to find an example of a
birationally trivial fiber space which has a birationally non-trivial smooth
deformation.

(2) If h»~LO(F) # 0, the existence of non-zero global (n—1)-forms on F
makes the case more complicated (compare 2.5). Fortunately, since varieties
with h"~1(OFp) = R*"19(F) > 0 are special in the class of n dimensional
varieties of general type, this is not a strong condition.

(3) Some typical examples of n-folds of general type with vanishing
R"~10: (a) regular surfaces of general type when n = 2, (b) smooth com-
plete intersections in a projective space, (c) cyclic coverings of CP" branched
along a smooth divisor, and (d) products of varieties satisfying certain nu-
merical conditions; e.g., let F' =Y x S, where Y (resp. S) is a smooth
projective (n — 2)-fold (resp. surface) of general type satisfying one of the
following conditions: (i) py(S) = 0, (ii) ¢(S) = 0 and R"*0(Y)) = 0, or (iii)
pg(Y) =0 and A" 30(Y) = 0.

(4) We note that, if the canonical map ¢ of F' is generically finite, then
we have either py(Im ¢p) = 0 or py(Im ¢pp) = py(F) (cf. [1, Theorem 3.1]).
The following example shows that the condition on ¢ can not be weaken.

EXAMPLE 2.12. Let S be a (smooth projective) regular surface. As-
sume that ¢g: S — Im¢g is generically finite of degree 2 and p4(S) =
pg(Im¢g). (See [1, Proposition 3.6] for examples of such surfaces.) Let o
be the involution of S corresponding to ¢g. Let B be a smooth curve with
an involution 7 such that B — B: = B/T is étale. Take X = (S x B)/Zs,
where Zy acts on S x B by (s,b) — (0(s),7(b)). It’s casy to check that
rk’H3 = 1 and h*°(X) = p,(S). But the fiber space f: X — B, which is

induced by the projection S x B — B, is not birationally trivial.

§3. Miscellaneous results

Let F' be a projective manifold with trivial canonical sheaf. An auto-
morphism o of F' is said symplectic, if o induces trivial action on H%(wr),
where wr is the canonical sheaf of F.

THEOREM 3.1. Let f: X — B be a fiber space of relative dimension
n over a curve B, and F a general fiber of f. Assume that F is a pro-
jective manifold with trivial canonical sheaf and that h"~4°(F) = 0 (e.g.,
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an algebraic K3 surface and its higher dimensional analogue, a projective
Calabi-Yau manifold, etc.). Then h™%(X) < 1, and h™°(X) = 1 if and
only if either f is birationally trivial, or f is birationally isomorphic to
(F x B)/G — B/G, where G is a finite group acting on F and B such that
the action of G on F' is symplectic and E/G ~ B.

Proof. h™°(X) < 1 follows by 2.3. Now we assume that h™?(X) = 1.
Let

Y. = {critical points of f} U{p € B | f'p C Z(p)},

where ¢ be the unique holomorphic n-form on X up to scalar multiple. Set
B°=B\X, X°= f"1B°and f° = f|xo.

Since py(F) =1, L := flwxe is an invertible sheaf. We have an exact
sequence of sheaves

0 — (f)"L — wxo.

So wxe = (f°)"L ® Oxo(D) for some non-negative divisor D on X°. From
Or = wxo|r = (f°)*L @ Oxo(D)|r = Op(D), we have that D consists of
fibers of f°. Hence wyo = (f°)*L’ for some L' € pic(B°).

Since h"~19(F) = 0 by the assumption, by 2.5 we have that for any
fiber F of f° "¢ # 0, where ¢ is the embedding of F' in X°. By Lemma 4.3
of [5], we get that f° has constant moduli.

By 2.2, X is birational to (F x B)/@, where G and B are in 2.2. Since

dim HO(Q7, =% = °(Q%) = 1=h0(Q7. &),

we have that either |G| =1 or G acts trivially on H°(Q%). This proves the
“only if” part. The “if” part is clear. 0

THEOREM 3.2. Let f: X — B be a fiber space of relative dimension n
over a curve B, and F' a general fiber of f. Assume that F is an Abelian
variety. Then q(X) < n+g(B), and ¢(X) = n+g(B) if and only if either f
is birationally trivial, or f is birationally isomorphic to (F x B)/G — B/G,
where G is a finite Abelian group acting on F and B such that the action
of G on F consists of translations of F' and E/G ~ B.

Proof. By the universal property of the Albanese map, we have a
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morphism «: Alb X — Alb B such that the following diagram
ale
X ——AbX
I
albp
B —— AbB

commutes. Note that « is a fiber bundle whose fiber A is an Abelian variety
of dimension ¢(X) — g(B). Let p be a general point of B. We have that

alby f*(p)* f*(p) —s A= a*(ale(p)>
is surjective since the image of f*(p) in A generates A and f*(p) itself is an
Abelian variety. So ¢(X) — g(B) < n = dim f*(p).

Now assume that ¢(X) — g(B) = n. Then f has constant moduli since
there are at most coutable Abelian varieties isogenous to a given Abelian
variety. By 2.2, X is birational to (F' x B)/G, where G and B are in 2.2.
Since

dim H°(Q,

)¢ =h%(Qk) = n+9g(B) = n"(Q 5),

x B
we have that G acts trivially on H°(QL.). If there is an element o € G such
that ¢ has a fixed point, say p € F, then o acts trivially on the tangent
space T, F, since o acts trivially on H°(QL). This implies o = 1. So we
have either |G| = 1 or G consists of translations of F'. This proves the “only
if” part. The converse is clear. 0
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