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1. Introduction

Etherington introduced certain algebraic methods into the study of popu-
lation genetics (6). It was noted that algebras arising in genetic systems tend
to have certain abstract properties and that these can be used to give elegant
proofs of some classical stability theorems in population genetics (4, 5, 9, 10).

The aim of this paper is to both modernize the derivation of existing results
and obtain new results. Among the former, we indicate how the theory of
duplication (7) can be developed in a basis free manner, and how the technique
of (10) can be improved. Among the latter we extend the work in (10) to
include mutations. Finally, we shall emphasize genetic algebras rather than
special train algebras.

Although, unfortunately, there has not been much work in this area the
subject has been kept alive by the interesting work by Holgate in (11-15) and
by the appearance of some results in book form in (2).

We recently noticed an interesting coincidence connected with the remark
after Theorem 5.3 in (10) referring to the proof of Lemma 6.3 in (9). The same
self-reciprocal transformation arising in the theory of polyploidy is used in the
study of Hausdorff methods in summability theory in (17).

2. Genetic algebras
For convenience we shall deal with algebras over the complex numbers.

At any rate, we are not interested at this time in searching for the most general
field of coefficients for which a given theorem is valid. In fact, as in (9) and
(10) the coefficient field will play a background role only.

We define a genetic algebra to be a commutative algebra for which there
exists a basis ao,au...,an with a multiplication table of the following kind:

afij = lXlJkak where Aooo = 1; (D

Ojt = 0; (2)

and for i, j > 0 and k g max (i, j), XlJk = 0. (3)

Remark. Although we aim in most cases for basis free definitions, this
particular definition is expressed most succinctly with the help of a basis.

The reader is reminded that a baric algebra is an algebra for which there
exists a non-trivial homomorphism w, called the weight, into the coefficient

E.M.S.—T
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field, w exists and is unique for any genetic algebra. In fact, necessarily
w(flo) = 1 a n d w(at) = 0 for />0.

A special train algebra is a genetic algebra in which in addition all powers
of the ideal / = {a1( a2) ..., an} are ideals. We note first that all theorems in
(9) stated for special train algebras are valid for genetic algebras. This is clear
since the special condition on the ideal {au a2, •••, an) is never used in a proof.

Schafer (20) has also defined the concept of a genetic algebra. The use of
the same term is justified by the next theorem.

Theorem 2.1. An algebra is genetic in our sense if and only if it is genetic in
the sense of Schafer.

Proof. We first state Schafer's definition. Let a represent multiplication
by a. Then an algebra is genetic if and only if it is baric and the characteristic
polynomial of the determinant of the transformation M+f(Jju ...,Bn) where A
is a scalar and / i s a polynomial, depends only on the weights of the elements
bu ...,bn and not on these elements themselves.

Schafer has essentially shown in (20) that a genetic algebra in our sense is
a genetic algebra in his sense. Although he stated the result for special train
algebras, the extra property satisfied by these algebras is not used in the proof.

The proof of the converse uses some results in linear algebra. Unfortunately,
we know of no source for the next result from an elementary linear algebra
text but require a text on Lie algebras ((16), p. 34) which has it in a more general
form than is desired.

A set S of nilpotent matrices closed under multiplication can be simultane-
ously brought into triangular form. (The stated result refers to closure under
a more general type operation but this does not concern us here. Note that this
is trivially equivalent to the statement that there exists an m such that any
product consisting of m elements of S is zero.)

Let G be a genetic algebra in the sense of Schafer. Let a0, au ..., an be a
basis such that the weight w satisfies w(q0) = 1 and w(a() = 0 for i' ̂  1. Let
At denote multiplication by at. Note, for example, that the characteristic
polynomial of the determinant of At for J ^ 1 is the same as the characteristic
polynomial corresponding to multiplication by zero since the algebra is genetic,
hence is A"+1. Thus At is nilpotent for i ^ 1.

Let Co = (AQ—kl)...(A0—kr) where XuX2,...,kr are the characteristic
roots of Ao. Then Co is nilpotent. Consider the semigroup S generated by
{A™C0, A"Ai} where m ^ 0 and 1 ^ / g n. Every element in the semigroup
is either a product which contains an A f as a factor for some i '^ 1 or a poly-
nomial in Ao which is a multiple of Co. In the former case, since the algebra
is genetic, we can obtain the characteristic polynomial by replacing at by 0 (i.e.
At by 0). In the latter case the element is clearly nilpotent. By the above
result quoted from (16) the semigroup is nilpotent. (In the sense that any

https://doi.org/10.1017/S0013091500009548 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500009548


CONTRIBUTIONS TO GENETIC ALGEBRAS 291

product consisting of n +1 elements of S is zero. The distinction between this
and nilpotency of individual elements is crucial.)

The space V generated by {a,}, i ^ 1, (i.e. the ideal of elements of weight
0) is invariant with respect to S. A fortiori S is nilpotent on V. Let
W = SV c V. V is invariant with respect to Ao and the eigenvalues of Ao

restricted to V are included in (A1; X2, ..., Xr). Since V is spanned by elements
x satisfying (Ao—Xtfx = 0 for some i and /, any basis of W can be extended
to a basis of V by means of such elements.

If x satisfies (AQ—Xtfx = 0 then by a standard argument

Therefore (A0-X-)x e C0V <= SV = W. Of course, for / ^ 1, Atx e SV = W.
W is, of course, invariant with respect to At for / ^ 1. Since 5 is closed with
respect to premultiplication by Ao, W is also invariant with respect to Ao.

The whole argument can now be repeated with W replacing Kand continued
by induction. We finally obtain a basis bls b2, ..., bn of V such that if

Afij = Z/iyA
then (iiJk = 0 if k<j and fiiJk = 0 if / ^ 1 and k ^ j .

Finally we show that with respect to the basis a0, bu b2, ..., bn the algebra
is genetic in our sense. Since w(a0) = 1 and w(bt) = 0 for / ^ 1 it follows that
/l000 = 1- Since aobt = Aobi then k0}k — 0 for k<j. Consider bfij where / ^ 1
a n d y ^ l . b; has the form £ vhah. Hence ft,6, = J) vhahbj= Y, vhA

hbj.

Hence li j4 = 0 for A: g / By commutativity Xi)k = 0 for A: ^ /. This com-
pletes the proof.

By a careful examination of the proof it can be seen that a weakened form
of Schafer's condition suffices. We shall not pursue this point; in fact, the rest
of this paper is independent of Theorem 2.1.

3. General remarks
In our definition of a genetic algebra, it is enough to have a finite partially

ordered set with zero of indices for the basis elements with the following,
conditions on the multiplication table.

ôoo = 1 (1)
X0Jk=t O^k^j (2)
A-m / 0=>k>j and k> i. (3)

Although this is trivial, it is worth mentioning, since in many important
systems arising in genetics a partial ordering is naturally obtained with the
required properties. This remark makes it unnecessary to explicitly choose a
linearly ordered extension in each individual case. Polyploidy with multiple
alleles (10) is a good example. We can define

Dii(D1-D2)
i>...(D1-Dny" > D{XD1-D2y\..(Dl-Dny-

if and only if for all t k 2, /, ^ j t .
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We outline a basis free approach to duplication. Let A be an arbitrary com-
mutative algebra and let A ® A be the usual tensor product as a vector space.
Let W be the vector space generated by vectors of the form a®b—b(g)a.
Let Ax A = A®A/W. By the third isomorphism theorem Ax A may be
regarded as the group G freely generated by (a, b) where a, be A, divided by
the ideal / generated by all elements of the form {a, b + c) — (a, b)—(a, c),
(Xa,b) — (a,Xb), and (a,b)—(b,a). We denote the class containing (a, b) by
axb. Define scalar multiplication by X(axb) = Xaxb. It is easy to verify
that this is well-defined and that with this operation A x A is a vector space.

Let {aj be a basis of A. We claim that {at x a;}, where / ^ j , is a basis of
Ax A. It is obvious that this is a spanning set. The only problem, as usual,
is the danger of " unwanted " cancellation. Let Q be a vector space with
basis {dij} where / ^ j . If b = 'Lkjql and c = 2^0,- let

f(b,c)=1Xlfiidii+ £

Then/extends to a map of G into Q. It is easy to verify that/(/) = 0, hence/
induces a map of Ax A into Q. f(at x a,) = du. There is a map g of Q into
Ax A such that g(dy) = atxaj. Clearly gf = fg = 1. In particular the set
{a,- x aj} is independent.

We now define multiplication in Ax A. Let (a, b)(c, d) = (ai, cd). Extend
this to make it bilinear on G. If either factor is in / the product is in /. Hence
this induces a multiplication on Ax A: (axb)(cxd) = abxcd, which makes
Ax A a. commutative algebra. This is the duplication algebra. By choosing
a basis it is clear that this is equivalent to the definition in (7).

The usual properties can easily be proved in this context. For example,
if ab = 0 then (axb)(cxd) = abxcd = Oxcd = 0. Also, define a map T of
G into A such that T(a, b) = ab. Then T induces a map of Ax A into A such
that T(a x b) = ab. T is linear. Furthermore,

T[(a x b)(c x </)] = T[ab x cd~] = (ab)(cd) = T(a x b)T(c x d).

Hence T is a homomorphism. In addition, if A is baric with weight w then
Ax A is baric with weight wT.

It is easy to see that if A is genetic then Ax A is genetic. Although this
follows from Theorem 2.1 and (20) we outline a simple direct proof.

Let A be genetic with basis ao,au ..., an. Define an ordering on the basis
{at x aj: / ^ j} by ak x a, ^ at x aj if l>j or / = j and k ^ /.

It is routine to verify that Ax A is genetic with respect to this basis with the
above ordering. In fact, without loss of generality assume akxat ^ a:xaj.
Then consider

(ak x a,)(ai x a,) = aka, x a,aj = £ AuJ.iJn(am x an).
m, n

The coeflicient of amxan is necessarily 0 for amxan ^ akxa, unless possibly if
k = 0. In that case akxat can have a non-zero coefficient in the product
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only if i = j = 0, and all smaller basis elements have zero coefficients. This
completes the proof.

4. Polyploidy
Although the technique in (10) is an improvement over that in (9), the

methods of (10) can in turn be improved. Although it was emphasized in (10)
' ( " \

that n I Y, aipj is n o t a product within the algebra, it may be regarded
«• = i \j = i /

as a product after all. This is done by regarding II as a symmetric multilinear
map from the multiple allelic algebra C to the polyploidy algebra D. Define
Ft on the basis elements in the obvious way:

II extends by linearity to C". The natural weight can be expressed in the form

w[U(yuy2> ...,yny] = w{yx)w(y2)...w{y^.

Theorem 5.1 in (10) can be easily proved using this viewpoint. Let yu y2, ..., y2r

be arbitrary elements of C. We must show that

H, y2> •••> yr)][n(yr + 1, yr+2,..., y2r)~\

It J (ki...kr) '' ' 2

where (ku ..., kr) runs through all subsets of (1, 2 , . . . , 2r) containing r elements
and (Ii, ..., lr) is the complementary subset, (w is, of course, the standard
weight, i.e. it satisfies w(D,) = 1 for all z.) By definition, this is true if all the
j ' s are basis elements. Since both sides are multilinear it is true in general.

Maps have already been used in (9) to study mutations. In general, given
an algebra A and a linear transformation T one can define an operation ° by
a o b = T{ab) and obtain an algebra B. This is an isotope of the original algebra.
If A is baric and T is weight preserving then B is baric with the same weight.
Furthermore, if the algebra is genetic with basis a0, au ..., an and

the new algebra is clearly genetic with the same basis.
We give an example to show that the above result fails for special train

algebras.
Let the basis be a0, au ...,a20. Suppose that for all j , aoaj = a,-; for

all_/ ^ 20, fljflj- = o1+j', flifl20 = 0 and afij = 0 if i,j ^ 2.

{aua2, ...,a20} = /,

the ideal of elements of zero weight with respect to the unique non-trivial
weight. Since /" = {an,an+1, ...,a20} this is clearly a special train algebra.
Now let T(an) = a2n. (We use the convention that if a subscript greater than
20 is obtained, the element is 0.) In the new algebra / = {aua2, . . . , a 2 0 } ,
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I2 = {a4, a6, a8, ..., a20} and I3 = {al0, a14, a18}. Since T(a0a10) = a20 £ /3,
/ 3 is not an ideal.

Note that in the special case found in (9), where it is shown that this situation
occurs in the diallelic case with polyploidy, a special train algebra is obtained.
Incidentally, the work simplifies tremendously if the multilinear maps mentioned
above are used. In fact, let S be a mutation map in the simple gametic algebra.
In this case SD = (l-r)D+rR and SR = sD+(l-s)R for some r and s
(mutation rates). Then S(D - R) = (1 - r - s)(D - R) and SD may be expressed
as D—r(D—R). The mutation map Tin the polyploidy algebra can be expressed
conveniently as T[U{Dh, Dh, ..., Dir)] = U(SDh, SDh, ..., SDir). This is
clear by elementary reasoning in probability and is valid for multiple alleles.
It follows from multilinearity that T\Ii{bu b2, ..., br)~] = U-iSb^ Sb2, ..., Sbr),
where the b's are arbitrary in C. The collecting of terms in (9) makes the work
harder. As mentioned in (10), cw = Dn~w(D-R)w. Hence
Tcw = T[D"-W(D-R)W] = (SD)n-w[S(D-R)¥

= [D-r(D-R)y-w(l-r-S)w(D-R)w.
By expanding we obtain the formula for Tcw found in page 51 just above Theorem
7.1 in (9).

We now combine polyploidy, multiple alleles, and mutations.

Theorem 4.1. Polyploidy multiple allelic algebras with mutation are genetic
algebras.

Proof. Let the gametic types be Du D2, ..., Dn and choose the basis
D, a2, ..., an where D = Dy and a{ = D^ — Dx for />1 . Then {a2, a3, ..., an}
is invariant with respect to the mutation map S. A basis («2, u3, ..., wn) exists
such that Su; e {uh ui+1, ..., un}. Note that {H(Dl, vu v2, ..., #,._;)} is a basis
of the algebra where 0 ^ / ^ r and the set vu v2, ..., vr_{ is a subset of the u's
with repetitions possible. The basic formula for T which we use is

T[Il(bu b2,..., br)1 = U(Sbu Sb2, ..., Sbr)
for arbitrary bt in C. By combining the above formula for Tin the polyploidy
algebra with Theorem 5.2 in (10) we obtain

vi, v2, ..., vr^i)oU(DJ, wu w2, ..., wr-j)

= An[(SD1)l+-/-f, Svu Sv2, ..., Svr.t, Swu Sw2, ..., Swr_y]

where the i>'s and w's are among the u's and X is a scalar. Of course, if i+j<r
by convention this is 0.

It is easy to see that the algebra is genetic by defining a partial order on the
basis elements as follows.

Let a - TL{D\ vu v2, ..., vr-t) and b = U(DJ, wu w2, ..., wr_;) where the
u's and w's are among the M'S and are arranged so that the subscripts are in
non-decreasing order. Then a ^ b if and only if i<j or / = j and vk ^ wk for
all k. (Precisely speaking the latter inequality refers, of course, to the subscripts
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of the corresponding «'s.) It is an elementary cute exercise that if the above
inequalities are satisfied for the v's and vv's in some order then they are auto-
matically satisfied if they are arranged in the above order. To complete the
proof that the algebra is genetic, note that the choice of the basis is such that
Sut contains no terms involving M'S with a subscript less than i.

Note that unlike the diallelic case in the general case the basis may depend on S.
It is even true though harder to prove that the algebra is special train. We

verify this for the sake of completeness. We first note that the scalar X referred
to above is always distinct from zero when i+j ^ r. The ideal / of weight 0
is generated by {H(D', v1} v2, ..., vr_t): i<r} where the v's are among the w's.
LetK= {w2,w3, ...,«„}. ThenV=>SV=>S2V...SmV=>Sm+1V.... In the diallelic
case, for example, V is one-dimensional and SV = 0 if and only if r+s = 1.
As mentioned in (9) the table is especially simple in that case.

We claim that 7™ where 2 ^ m ^ r is generated by the set

{U[JLSDy,vl,v2,...,vr_$
where i ^ r—m, all the v's are in SFand if 2 ^ p 5s m — \ then at least m—p + l
v's are in SPV (of course, Im is 0 for m>r). We verify this by induction.

For m = 2 the last condition is vacuous and the result is clear. Note that if
an SD is replaced by S2D then the new term remains in the space generated by
the above set.
n(S2D,bub2>...,br.{)

= U{SD, bu b2, ..., br.1)+U(S2D-SD, blt b2, ..., &,_!)•
Now S2D-SD = S(SD-D) e SV. Hence both the first and second term are
in the above set. By extending the above reasoning, several SD terms may be
simultaneously replaced by S2D. In a similar way it can be seen that if all the
SD terms are replaced by S2D then the original set is included in the space
generated by the new set.

We can now verify the above for m = 3. For convenience we replace all
terms D by SD in a typical generator of /. We now examine the possible terms
in (72)/. Consider the product of a typical generating element in I2 and a
generating element of I. By the above simplification this is a monomial. The
guaranteed two terms in I2 of the form Sv give rise to two terms of the form
S2v. Otherwise, there is complete freedom in the v's except that they belong
to SV. We thus obtain what we want except for S2D terms instead of SD
terms. However, by an above remark, this is fine.

The rest of the induction is simple. We use the same manoeuvring with
SD and S2D. Also note that all terms contained in SPV in F" become terms
contained in Sp+1Kin 7 m + \

To show that the algebra is special train it suffices to check that {SD)'Im <=. Im.
This is clear from the above since multiplication by {SD)r does no more than
change SD terms to S2D terms, add one more S to the v's and contribute a
scalar.
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5. Mixture of algebras
This concept was introduced by Holgate (11). Let A and B be two algebras

on the same underlying vector space. Denote the multiplications on A and B
by / and g respectively. Define a.b = Xf(a, b) + (l —X)g(a, b) for some fixed
scalar X. Then the new algebra is a mixture of the given algebras. In the cases
of most interest X is real and 0 ^ X ^ 1. Now assume that the algebras are
genetic with respect to a common ordering of the basis. It is clear from the
definition that the new algebra is genetic. This generalizes in an obvious way
to more than two algebras on the same space.

This is not true for special train algebras. Again, the extra condition on the
powers on the ideal / of elements of weight 0 causes awkwardness. For example,
let the common basis of the two algebras be a0, at, a2, a3. Let

f(a0, a,) = g(a0, a,) = a, if / ^ 2; f(a0, a2) = g(a0, a2) = a3;
fiflu fli) = g{au at) = a2; f(au a2) = a3;
g{aua2) = -a3; f(a2, a2) = g(a2,a2) = 0.

All other products are necessarily 0 by definition of genetic algebra. In both
cases I2 = {a2, a3} and I3 = 0. Hence both algebras are special train.

We consider the mixture using X = %. In that case I2 = (a2) which is not
an ideal since ao.a2 = a3, and so the mixture is not a special train algebra.

6. Conclusion
We have seen that in all cases it is more natural to work with genetic algebras

rather than special train algebras. It is true that special train algebras have an
easier basis free definition than genetic algebras. On the other hand, we have
seen that the property of being genetic is preserved with respect to various
operations on algebras whereas the property of being special train is often not
preserved. The same basic difficulty appears in all cases. If a basis is used the
definition of a genetic algebra essentially says that in the multiplication table
certain coefficients in the products are necessarily 0. This is what makes the
proofs in (9) for example possible. The further requirement satisfied by a
special train algebra is on one hand not useful for proofs and on the other hand
hard to verify in various situations. The existence of extra zero coefficients
not required by the definition of a genetic algebra often causes these difficulties
and is the underlying trick for getting counter-examples. For example,
Ik<=z{ak,ak+U ...,an} from the definition of a genetic algebra. If we had equality
for all k the algebra would clearly be special train. Roughly speaking, the
problem can be regarded in general as one of unwanted cancellation.

We have emphasized throughout the use of mappings. Although an explicit
computation of the multiplication tables would be highly involved we have seen
that at least theoretically the structures of the algebras can be visualized. If we
were forced to use the original basis elements which correspond to genotypes
the table would truly become messy. But this is essentially what happens in

https://doi.org/10.1017/S0013091500009548 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500009548


CONTRIBUTIONS TO GENETIC ALGEBRAS 297

classical population genetics. Thus we have seen examples how the technique
of genetic algebras can handle problems which are difficult to handle by classical
methods.
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