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Abstract

We prove a subconvexity bound for the central value L(12 , χ) of a Dirichlet L-function
of a character χ to a prime power modulus q = pn of the form L(12 , χ)� prqθ+ε with a
fixed r and θ ≈ 0.1645 < 1

6 , breaking the long-standing Weyl exponent barrier. In fact,
we develop a general new theory of estimation of short exponential sums involving p-
adically analytic phases, which can be naturally seen as a p-adic analogue of the method
of exponent pairs. This new method is presented in a ready-to-use form and applies to
a wide class of well-behaved phases including many that arise from a stationary phase
analysis of hyper-Kloosterman and other complete exponential sums.

1. Introduction and statement of results

One of the principal questions about L-functions is the size of their critical values. In this paper,
we address an instance of the subconvexity problem, which we describe below, and break a long-
standing barrier known as the Weyl exponent for central values of certain Dirichlet L-functions.

In the case of the Riemann zeta-function, the distribution of values of ζ(12 + it) for large t
is of central interest; see Titchmarsh [Tit86]. From the functional equation and the Phragmén–
Lindelöf principle, it follows that

|ζ
(
1
2 + it

)
| � (1 + |t|)θ+ε (1)

with θ = 1
4 . The Lindelöf hypothesis, the statement that (1) holds with θ = 0, is a consequence

of the celebrated Riemann hypothesis and lies very much out of reach of current methods, but
an estimate of the form (1) where θ < 1

4 has important implications. It was proved by Hardy and
Littlewood, by using Weyl differencing, that (1) holds with θ = 1

6 . This exponent was lowered
by Walfisz [Wal24] in 1924 to θ = 163

988 ≈ 0.1650; many subsequent papers slowly improved the
result to the current value θ = 53

342 ≈ 0.1550, due to Bourgain [Bou14] (see also [Hux05]).
For an automorphic representation π of GL(n), the statement that

|L(12 , π)| � C(π)θ+ε, (2)

where C(π) is the analytic conductor of π as defined by Iwaniec and Sarnak [IS00] and θ = 1
4 ,

is known as the convexity bound and follows from the basic analytic properties of L(s, π).
The subconvexity conjecture states that such a bound always holds for some θ < 1

4 . Proving a
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subconvex estimate for any given L-function requires deep arithmetic considerations and can have
important arithmetic, geometric, or dynamical consequences; see surveys [IS00, Mic07]. Many
cases of subconvexity on lower-dimensional groups have been proved, often with exponents θ
very close to 1

4 . A breakthrough paper of Michel and Venkatesh [MV10] contains a fully general

subconvexity estimate for GL(2) L-functions (with θ close to 1
4) by a geometric method and

references to previous results. In some cases, θ = 1
6 was proved, and such a result goes under the

name of Weyl exponent.
In the case of a Dirichlet L-function of a character χ modulo q, the corresponding statement

that
|L(12 , χ)| � qθ+ε (3)

is known only with θ = 3
16 = 0.1875, due to Burgess [Bur63]. That the Weyl exponent θ = 1

6
is not known for this family is a major source of frustration. However, building on the ideas of
Postnikov [Pos55], Barban et al. [BLT64] proved estimates allowing them to take θ = 1

6 when
considering Dirichlet L-functions L(s, χ) associated to characters χ modulo pn, where p is a fixed
prime and n →∞. This result was generalized by Heath-Brown [Hea78] to a hybrid bound that
contains (3) with an exponent 1

6 6 θ < 1
4 assuming that the modulus q has a divisor d in a

suitable range, with θ = 1
6 for moduli q having a divisor d � q1/3+o(1) (including all sufficiently

powerful moduli). Using a very different approach, Conrey and Iwaniec [CI00] obtained the Weyl
exponent θ = 1

6 in the case when χ is a real (that is, quadratic) character.
The first main result of this article is the following theorem.

Theorem 1. Let θ > θ0 ≈ 0.1645 be given. There is an r > 0 such that

L(12 , χ)� pr · qθ(log q)1/2

holds for every Dirichlet character χ to any prime power modulus q = pn.

In particular, we see that, for sufficiently large n > n0, Theorem 1 yields the subconvexity
bound (3) with θ < 1

6 . We stress that, even though our method is p-adic, the implied constant
and the values of r and n0 in Theorem 1 depend only on the value of θ and are universal across
all primes p and all prime powers q = pn. This is the first family of L-functions since Walfisz’s
1924 result for the Riemann zeta-function in which a better exponent than 1

6 has been obtained.

As the principal device of this paper, we develop a theory of estimation of exponential sums
of the form ∑

M<m6M+B

e

(
f(m)

pn

)
, (4)

where f(t) is an analytic function on the ring Zp of p-adic integers satisfying certain conditions.
Here, and throughout the paper, e(x) denotes e2πix and its obvious unique extension from⋃
k∈Z p

kZ to a Zp-periodic function on Qp. In Definition 1 (§ 3, below), we specify a class
of (p-adically analytic) power series F, which includes multiples a logp(1 + pκt) of the p-adic
logarithm, and to which our estimates apply. Roughly speaking, series f in F satisfy f ′(t) =
pwω′(1 + pκωt)−y + pwγ0 + pu+wg(t) with suitable parameters (which vary and are suppressed
in this introduction) and a power series g satisfying suitable conditions (ensuring it does not
interfere with the first, leading term). We call a pair of non-negative real numbers (k, `) a
p-adic exponent pair if, roughly, for every f ∈ F as above, every sufficiently large n, and every
0 < B 6 pn−w−κ, ∑

M<m6M+B

e

(
f(m)

pn

)
� pr

(
pn−w−κ

B

)k
B`(log pn−w−κ)δ,

826

https://doi.org/10.1112/S0010437X15007381 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007381


Sub-Weyl subconvexity

with some r, δ depending on the exponent pair and the parameters implied in f . We will only
need δ ∈ [0, 1] in the exponent pairs we construct. In fact, we will be rather more precise and
talk about p-adic exponent data in order to track all dependencies explicitly; see Definition 2
(§ 3, below).

The heart of our method of estimating sums of the form (4) is contained in Theorems 4 and 5,
which we term B- and A-processes, respectively. An immediate consequence of these results is
the following compact statement.

Theorem 2. If (k, `) is a p-adic exponent pair, then so are

A(k, `) =

(
k

2(k + 1)
,
k + `+ 1

2(k + 1)

)
and B(k, `) =

(
`− 1

2
, k +

1

2

)
.

Starting from the ‘trivial’ p-adic exponent pair (0, 1), we obtain with use of Theorem 2 further
pairs: B(0, 1) = (12 ,

1
2) (which corresponds to a variant of the Pólya–Vinogradov inequality),

AB(0, 1) = (16 ,
2
3), and infinitely many more, including, for example, ABA3B(0, 1) = (1182 ,

57
82).

Section 3, among other things, also presents the intuition behind the class F and Theorem 2
and describes a typical use of our method as well as further examples of phases in F that naturally
arise in analytic number theory.

We step back for a moment to reflect on the analogy with the Archimedean aspect. The
parallel between the subconvexity problem (1) in the t-aspect and (3) in the ‘depth’ aspect (level
pn, n →∞) is particularly natural from the adelic point of view: one focuses on ramification at
a single Archimedean or non-Archimedean place (or at a few places at once in hybrid bounds).
The best available improvements on the bound (1) are obtained by estimating the exponential
sum

∑
N<n6N+M nit in short intervals (M � (1 + |t|)1/2+ε). The method of exponent pairs

of van der Corput [VdC22], Phillips [Phi33], and Rankin [Ran55], a fundamental tool in the
theory of exponential sums, relies on the iteration of two ‘processes’, the (‘Archimedean’) A- and
B-process, which exploit the arithmetic structure by transforming a given exponential sum into
rather different sums with different ranges of summation. Graham and Kolesnik [GK91] give an
excellent survey of the theory of exponential sums. Note that transformations of p-adic exponent
pairs given by Theorem 2 formally coincide with those provided by the Archimedean A- and
B-processes.

The ‘q-analogues’ of Weyl differencing allowed previous researchers to establish the Weyl
exponent in the context of estimating L(12 , χ) with a character χ to a powerful modulus and the
associated exponential sums [Pos55, BLT64, FGM76, Hea78]. In Theorem 5, which establishes the
A-process as a recursive process relying on a q-analogue of the Weyl–van der Corput inequality
(Lemma 11), we embrace a different paradigm of f as a p-adic analytic function rather than a
finite (essentially cubic in the works just referenced) polynomial. This allows us to obtain more
general results, leaves us flexibility for iterative estimates, and brings to the fore the analogy with
the Archimedean situation, while also presenting some serious difficulties which we overcome in
the proof. Vinogradov’s method was also applied by Gallagher [Gal72] and Iwaniec [Iwa74] in
the study of zero-free regions for L(s, χ) near the line Re s = 1 and the prime number theorem
in arithmetic progressions to powerful moduli. Note that iterations of the A-process alone yield
exponent pairs (k, `) in which k is very small and ` is very close to 1; such estimates are suitable
in ranges relevant to the behavior close to the edge of the critical strip.

Theorem 4 establishes the analogue of the B-process. Along with Lemmas 9 and 10 and
Theorem 3 which we develop in the course of proving it, this result appears to have no non-
trivial precedents in the literature. Our approach involves a careful application of p-adic Poisson
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summation, with the Fourier transform êf (s) given by a complete exponential sum as in (23).
We analyze such a sum using the p-adic analogue of the method of stationary phase (Lemma 7),
which expresses it as a sum of contributions over all approximate critical points. In Lemma 9, we
show that all such points indeed arise from actual, non-singular p-adic critical points and develop
a p-adic implicit function theorem to express the critical points through analytic functions. This
analysis culminates with Lemma 10, in which we evaluate êf (s) in appropriate ranges. We show
that contributions from all approximate critical points can be collected via the p-adic Gaussian,
and find that, for any given f ∈ F, êf (s) vanishes unless s lies in a certain arithmetic progression
(roughly) of the form a0 + pκt, in which case an extremely handsome formula

êf (a0 + pκt) = εp(n−w+κ)/2e

(
f̆(t)

pn

)
holds, with some f̆ ∈ F. As a particularly pleasing application, we obtain, in Theorem 3, a
summation formula in which an exponential sum involving f is related to its ‘dual sum’, an
exponential sum involving f̆ , with a long original sum giving rise to a short dual sum and
conversely. The statement of the B-process, Theorem 4, follows when the existing pair (k, `) is
applied to the dual sum. In fact, the summation formula turns out to be extremely versatile,
and we use it in the proof of the A-process (Theorem 5) to obtain tighter estimates.

Exponential sums of the form (4) enter the estimation of the central value L(12 , χ) via the
approximate functional equation. As we will see in § 6, every character χ modulo pn satisfies
χ(1 + pκt) = e(a logp(1 + pκt)/pn) for some a ∈ Zp, with a ∈ Z×p corresponding to primitive
characters (here, we can take κ = 1 for odd p). After splitting the Dirichlet polynomials according
to classes modulo pκ and applying a p-adic exponent pair (k, `), the best value of the exponent
θ which can be obtained in the estimate of Theorem 1 is given by 1

2(k + `)− 1
4 ; see Theorem 6.

(In fact, while the factor (log q)1/2 in Theorem 1 is not needed with the present slick formulation,
we keep it there so that the values of r and θ arising from the p-adic exponent data apply
verbatim without modification.) In particular, the trivial pair (0, 1) recovers the convexity bound
θ = 1

4 , the pair (16 ,
2
3) gives the Weyl exponent θ = 1

6 , while already the pair (1182 ,
57
82) gives

θ = 27
164 ≈ 0.1646, breaking the Weyl exponent barrier in this family. In light of Theorem 2,

the set of p-adic exponent pairs obtainable by the p-adic A- and B-processes coincides with the
classical situation. Rankin [Ran55] found the infimum of (k+`) over all exponent pairs obtainable
by A- and B-processes; his result gives the value of θ0 ≈ 0.1645 in Theorem 1.

With trivial modifications, our proof yields the bound L(12 + it, χ)� (1 + |t|)Aprqθ(log q)1/2

with A = 5
4 , applicable along the entire critical line; see the remark after the proof of Theorem 6

for details. A hybrid bound also subconvex in t or even of sub-Weyl strength in both t- and
q-aspects would be very interesting, but we do not pursue it here.

In addition to its intrinsic interest and the context into which it puts the method of
exponential sums, the importance of Theorem 1 lies in how it informs our understanding of
the various aspects of the subconvexity problem (including the t-aspect, the ‘depth’ aspect with
which we are concerned, and the q-aspect) and of the available methods. We prefer to think of
our A- and B-processes not as static estimates but as dynamical ways to transform (possibly
incurring inequalities) a sum into (possibly a number of) other sums, which can in turn be
transformed time and again, exploiting and transcoding the arithmetic structure present in the
original sum. In this light, the fact that the analogous steps can be used in the transformations
of p-adic and Archimedean sums indicates a deep analogy of their built-in, ‘genetic’ arithmetic
structures.
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From a generalist point of view (such as Selberg class), it is generally believed [MV10] that
the analytic behavior of L-functions is controlled in a universal fashion by the conductors C(π).
Theorem 1 points at intrinsic features of the depth aspect and helps shed light on the structure
that distinguishes between those families of L-functions in which the Weyl subconvexity exponent
θ = 1

6 is available through current techniques from those in which the naturally obtained exponent
is Burgess’s θ = 3

16 . The universality of these exponents and techniques which allow one to
break them and obtain better estimates toward the Lindelöf hypothesis were principal research
themes of a 2006 workshop at the American Institute of Mathematics [Ric06]. Subsequent to
the current paper, in [BM15a], Blomer and the author consider the subconvexity problem
L(12 , f⊗χ)�f (q2)θ+ε for character twists of a GL(2) L-function, in which θ = 3

16 is currently the
best known result in general, and develop further p-adic tools to obtain the Weyl exponent θ = 1

6
in depth aspect and corresponding estimates for twisted sums of Hecke eigenvalues. For other
recent striking examples of the distinctive rôle played by the square-full direction in analytic
number theory, see [Hia14, NPS14, Tem14, Vis13]. Strong results can also be obtained in a
number of problems when the modulus is well-factorable or ‘smooth’; see, for example, [BM15b],
or [HMQ14] for a hybrid subconvexity bound (3) for Dirichlet L-functions to factorable moduli.

The close of this introduction is a good place to open several questions suggested by our
work. A number of subconvexity, non-vanishing, and moments-related problems for L-functions
have so far found stronger answers in the t-aspect than in the q-aspect. The results of the
present paper and [BM15a] indicate that the analogy with the depth aspect carries over in some
of them; it will be interesting to see further ways in which it intervenes and how far it goes.
Quantitatively stronger or hybrid (adelic in a sense) versions of Theorem 1 would also appear
seriously interesting; the author has obtained some positive results in the initial investigations
in this direction. Finally, our results establish a theory of short exponential sums involving
p-adically analytic fluctuations independent of the specific application to Theorem 1. There are
many applications of the method of (Archimedean) exponential sums to problems other than
estimates of L-functions (such as in the geometry of numbers), and our results are general enough
to be appropriate analogues of the machinery that is needed to break the canonical exponents
in most of the better known of these applications; it appears extremely intriguing to investigate
whether some of these questions have appropriate p-adic analogues.

Several notations will be used throughout the paper. For a positive integer i, we write

(y)i = y(y − 1) · · · (y − i+ 1).

For y ∈ Q+, let ι(y) = max(0, ordp(y
−1)) and ι′(y) = max(0, ordp y), so that ordp y = ι′(y)− ι(y).

We also write ι and ι′ for ι(y) and ι′(y), respectively, when the value of y is unambiguous from the
context. We denote ε(y) = 1 if ordp y 6= 0 and ε(y) = 0 if ordp y = 0. We write f � g or f = O(g)
to denote that |f | 6 Cg for some constant C, or, equivalently, that lim sup(|f |/g) < +∞.

2. Preliminaries on p-adic analysis

In this section, we collect facts about p-adic exponential, logarithmic, and power series and prove
several auxiliary results related to these p-adic series which will be useful in our later capstone
estimates. The reader is encouraged to postpone details of proofs for the second reading. Much
of the pain in this section comes from the occasional need, inherent in the method of exponent
pairs, to deal with power series of the form (1 + pκt)y, even when ordp y 6= 0, and our desire to
minimize losses while doing so.
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Throughout this section, all formal power series have coefficients in Qp unless specified
otherwise. For such a series a(t) =

∑∞
k=0 akt

k, we follow the notation of [Rob00] and denote
its radius of convergence by

ra = sup{r > 0 : lim |ak|prk = 0} =
(
lim sup |ak|1/kp

)−1
(5)

and its growth modulus by

Mra = Mr(a) = max |ak|prk (0 6 r < ra).

Note that we may very well have logp ra ∈ R\Z even though each logp |ak|p is an integer. We will

write Mra
.
= |ak0 |prk0 if there is a unique k0 ∈ N achieving the maximum and the value of k0 is

clear from the context; such radii r are said to be regular.
We record the following standard fact.

Lemma 1. Let f(t) =
∑∞

k=0 akt
k = a0 + tf1(t) be a formal power series with a1 6= 0, and

let 0 < r < rf be such that Mrf1
.
= |a1|p. Then, for every x,y with |x|p, |y|p 6 r, we have

|f(x)− f(y)|p = |a1|p|x− y|p. In other words, for every x, y with |x|p, |y|p 6 r,

f(x) ≡ f(y) (mod pj |a1|−1p ) ⇐⇒ x ≡ y (mod pj).

Proof. The proof is simple. We have that, for every k > 2,

|ak(xk − yk)|p = |ak(x− y)(xk−1 + xk−2y + · · ·+ yk−1)|p
6 |ak|prk−1 · |x− y|p < |a1|p|x− y|p.

Therefore,

|f(x)− f(y)|p =

∣∣∣∣ ∞∑
k=1

ak(x
k − yk)

∣∣∣∣
p

= |a1|p|x− y|p. 2

For two power series f(t) and g(t) such that g(0) = 0, one can define purely formally the
power series (f ◦ g)(t) = f(g(t)) obtained by formal substitution. On the other hand, for any
power series a(t) =

∑∞
k=0 akt

k, we can define its derivative series Da(t) = a′(t) =
∑∞

k=1 kakt
k−1.

The usual rules for differentiation hold, including the sum and product rules, as well as the chain
rule,

D(f ◦ g)(t) = Df(g(t))Dg(t), (6)

valid for any two power series f and g with g(0) = 0 [Rob00, p. 289].
We will repeatedly use the following standard proposition, which gives a sufficient condition

for this substitution to correspond to numerical substitution in convergent p-adic power series.

Lemma 2. Let f and g be two convergent power series with g(0) = 0. If |x| < rg and M|x|(g) < rf ,
then rf◦g > |x| and the numerical evaluation of the composite f ◦ g can be made according to

(f ◦ g)(x) = f(g(x)).

Proof. This statement is from [Rob00, p. 294]. 2

In particular, consider the power series

ε(x) = expp(x) =

∞∑
k=0

1

k!
xk = 1 + ε0(x), λ(x) = logp(1 + x) =

∞∑
k=1

(−1)k−1

k
xk.
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Recall that

ordp(k!) =

⌊
k

p

⌋
+

⌊
k

p2

⌋
+ · · · < k

p− 1
, and so ordp(k!) 6

k − 1

p− 1
.

It is therefore seen that

rε = rε0 = rp, Mrε0
.
= r for all r < rp,

rλ = 1, Mrλ
.
= r for all r < rp,

where rp = p−ρp , ρp = 1/(p − 1). Moreover, if O is any complete valuation ring extension of
Zp (possibly O = Zp) and K is the field of fractions of O, and if Br = {t ∈ O : |t|p < r}, then
ε0, λ : Brp → Brp are isometries such that, according to Lemma 2, ε0 ◦ λ = λ ◦ ε0 = idBrp .

Of particular interest to us will be the power series πy(x), defined for y ∈ K× as

πy(x) = 1 + πy0(x) = ε(yλ(x)) =
∞∑
k=0

(
y

k

)
xk.

It is easy to see that the radius of convergence rπy = rπy0 equals ∞ if y ∈ N0, 1 if ι(y) = 0 and

y 6∈ N0, and rpp
−ι(y) if ι(y) > 0. In any case, for r < rpp

−ι(y), the above composition is also valid
as a numerical evaluation by Lemma 2, and Mrπ

y
0
.
= |y|pr. Moreover, πy0 : Brpp−ι(y) → Brpp−ι′(y)

is an isometry such that π
1/y
0 ◦ πy0 = idB

rpp
−ι(y) . We write πy(x) = (1 + x)y. We have that(

(1 + x1)(1 + x2)
)y

= (1 + x1)
y(1 + x2)

y (7)

for all x1, x2 ∈ Brpp−ι(y) .
In particular, the equation (1 + x)y = 1 + t has a solution x ∈ Brpp−ι(y) if and only if

t ∈ Brpp−ι′(y) , in which case the solution is unique and given by 1 + x = (1 + t)1/y.

Among all power series a(t) =
∑∞

k=0 akt
k with coefficients ak ∈ Zp, we consider the following

subsets:

I0(Zp) = {a(t) : ak ∈ Zp (k > 0), lim |ak|p = 0},
I(Zp) = Zp + ptI0(Zp) = {a(t) : a0 ∈ Zp, ak ∈ pZp (k > 1), lim |ak|p = 0},

I×(Zp) = Z×p + ptI0(Zp) = {a(t) : a0 ∈ Z×p , ak ∈ pZp (k > 1), lim |ak|p = 0},
I1(Zp) = (1 + pZp) + ptI0(Zp) = 1 + pI0(Zp),
I1κ(Zp) = (1 + pκZp) + pκtI0(Zp) = 1 + pκI0(Zp).

We see that all power series in the ring I0(Zp) define analytic functions Zp → Zp, that I(Zp) is
a subring of I0(Zp), and that I×(Zp) is the group of invertible elements of I(Zp). We note for
reference that obviously

ra > 1 for all a ∈ I0(Zp),
Mr(a) 6 1 for all r 6 1, a ∈ I0(Zp),
Mr(a)

.
= 1 for all r 6 1, a ∈ I×(Zp).

Let y ∈ Q×p and an integer κ > 1 + ι′(2) be arbitrary, and let ι = ι(y), ι′ = ι′(y), so that
κ+ ι′ = κ+ ι+ ordp y. Then the power series πy[κ+ι](x) = 1 + πy[κ+ι]0(x) = (1 + pκ+ιx)y satisfies

Mrπ
y
[κ+ι]0

.
= |y|pp−κ−ιr = p−κ−ι

′
r

for every r < pκrp (in particular for r = 1), and πy[κ+ι] belongs to I1κ+ι′(Zp).
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We will also consider, for any given λ ∈ R>0, the following subspaces of I0(Zp):

I0[λ](Zp) = {a(t) ∈ I0(Zp) : ordp ak > dkλe (k ∈ N0)},
In0 [λ](Zp) = tI0[λ](Zp),
I1κ[λ](Zp) = (1 + pκZp) + pκIn0 [λ](Zp).

(8)

For example, if λ ∈ N0, then I0[λ](Zp) consists of power series of the form a(t) = a1(p
λt) for some

a1(t) ∈ I0(Zp). It is clear that each I0[λ](Zp) is a ring, that In0 [λ](Zp) is an I0[λ](Zp)-module, and
that, when κ > λ, I1κ[λ](Zp) is a subgroup of I0[λ](Zp)×. It is also clear that ra > pλ for every
a(t) ∈ I0[λ](Zp).

The relevance of these classes for us stems from the fact that, as is easily verified,

πy[κ+ι] ∈
{
I1κ+ι′ [κ− ρp](Zp), ordp y 6= 0,

I1κ+ι′ [κ](Zp), ordp y = 0.

We can write πy[κ+ι] ∈ I1κ+ι′ [κ− ρp(y)](Zp), where ρp(y) equals ρp if ordp y 6= 0 and 0 otherwise.

For every a(t) ∈ I1κ+ι(Zp), a(t) = a0 + pκ+ιta1(t), a0 ∈ (1 + pκ+ιZp), a1(t) ∈ I0(Zp), we can
consider a(t)y = ay0(1 + pκ+ιa−10 ta1(t))

y, with the latter power defined by formal substitution.
This power series a(t)y belongs to I1κ+ι′(Zp). According to Lemma 2, the values a(t)y can be
numerically evaluated as compositions for t ∈ Zp. In particular, for every two a(t), b(t) ∈ I1κ+ι(Zp),
we have, according to (7), the equality of values

(a(t)b(t))y = a(t)yb(t)y

for every t ∈ Zp. Consequently, both sides of this equation must also agree as power series in
I1κ+ι′(Zp). Similarly, let a(t) ∈ I1κ+ι(Zp), and let b(t) = a(t)y ∈ I1κ+ι′(Zp). For every t ∈ Zp, we

have an equality of values a(t)y = b(t) in 1 + pκ+ι
′Zp. Therefore, we must also have

a(t) = b(t)1/y

as an equality of values a(t) = b(t)1/y in 1 + pκ+ιZp for every t ∈ Zp, and therefore also as an
equality of series in I1κ+ι(Zp).

Finally, we comment on the compositions of series of the form (8). Suppose that a(t) =∑∞
k=0 akt

k ∈ I0[λa](Zp) and b(t) = t
∑∞

k=0 bkt
k ∈ In0 [λb](Zp), where λa > 0. For every r < pλb ,

Mr(b) 6 r, so that numerical substitution in a(b(t)) is allowed for all r < min(pλa , pλb) according
to Lemma 2. Moreover, from the formal substitution

a(b(t)) =

∞∑
k=0

akt
k

( ∞∑
`=0

b`t
`

)k
=

∞∑
k=0

( ∑
k=k0+`1+···+`k0

ak0b`1 . . . b`k0

)
tk,

it is clear that (a ◦ b) ∈ I0[min(λa, λb)](Zp). If, in addition, a(t) ∈ I1κ[λa](Zp) for some κ > λa,
then it follows from above that (a◦b)(t) ∈ I1κ[min(λa, λb)](Zp). In particular, if a(t) ∈ I1κ+ι[λ](Zp),
then a(t)y ∈ I1κ+ι′ [min(κ− ρp(y), λ)](Zp).

The following two Lemmas 3 and 4 will be useful in obtaining successive convergents to the
solution of an implicit function problem in Lemma 9.

Lemma 3. Let y ∈ Q×p and κ ∈ N be arbitrary, and let ι = ι(y), ι′ = ι′(y). Further, let a(t) and
b(t) be two power series with a(t) ∈ I1κ+ι[λa](Zp) and b(t) ∈ In0 [λb](Zp), λa, λb > 0. Then there

exists a power series b̃(t) ∈ In0 [min(κ− ρp(y), λa, λb)](Zp) such that

(a(t) + pκ+ιb(t))y = a(t)y + pκ+ι
′
b̃(t).
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Proof. We may assume that λa 6 κ+ ι. Note that

(a(t) + pκ+ιb(t))y =
[
a(t)

(
1 + pκ+ιa(t)−1b(t)

)]y
= a(t)y

(
1 + pκ+ιa(t)−1b(t)

)y
.

As indicated above, we have that a(t)y ∈ I1κ+ι′ [min(κ − ρp(y), λa)](Zp), as well as a(t)−1 ∈
I1κ+ι[λa](Zp), a(t)−1b(t) ∈ In0 [min(λa, λb)](Zp), and so(

1 + pκ+ιa(t)−1b(t)
)y ∈ I1κ+ι′ [min(κ− ρp(y), λa, λb)](Zp).

We can thus take

b̃(t) = a(t)y
(
1 + pκ+ιa(t)−1b(t)

)y − 1

pκ+ι′
. 2

We continue with a discussion regarding formal substitution in Taylor series. We start with
an easy observation [Rob00, Corollary on p. 76] that if bik ∈ Qp (i, k ∈ N0) are such that
limmax(i,k)→∞ |bik|p = 0, then

∑∞
i=0(

∑∞
k=0 bik) =

∑∞
k=0(

∑∞
i=0 bik).

For a power series a(t) =
∑∞

k=0 akt
k, we can also consider its ith derivative Dia(t) = a(i)(t) =

i!
∑∞

k=i

(
k
i

)
akt

k−i. The series for Dia converges on the disk of convergence D of a, and its sum
agrees with the (analytic) ith derivative of a on D; in fact, it is immediate from (5) that ra(i) = ra.
Moreover, for every x, b ∈ D, we have an equality of values

f(x) =

∞∑
i=0

f (i)(b)

i!
(x− b)i, (9)

since the order of summation can be exchanged with bik =
(
k
i

)
akb

k−i(x − b)i (k > i) [Kat07,
Proposition 3.22, p. 87].

On the other hand, suppose that f0, f1, f2, . . . is a sequence of formal power series in I0(Zp),
with fi(t) =

∑∞
k=0 aikt

k. If, for every fixed k ∈ N0, lim |aik|p = 0, then we can define the formal
sum f(t) =

∑∞
k=0(

∑∞
i=0 aik)t

k. If x ∈ Qp is such that

lim
max(i,k)→∞

|aik|p|x|kp = 0, (10)

then all fi(x) and f(x) converge, and in fact we have an equality of values f(x) =
∑∞

i=0 fi(x).
Finally, we will also consider, for an i ∈ N0, the class

I0,i[λ](Zp) = {a(t) ∈ I0(Zp) : ordp ak > d(k + i)λe (k ∈ N0)},
and, analogously, In0,i[λ](Zp) = tI0,i[λ](Zp). It is easy to see that if a(t) ∈ I0[λ](Zp), then

a(i)(t)/i! ∈ I0,i[λ](Zp). It is also easy to see that if a(t) ∈ I0,ia [λa](Zp) and b(t) ∈ In0,ib [λb](Zp),
then (a◦b) ∈ a(0)+I0,ia+ib [min(λa, λb)](Zp) (and the term a(0) may be omitted if ib = 0). Also, if
a(t) ∈ I0,i[λa](Zp) and b(t) ∈ tjI0[λb](Zp), then a(t)b(t) ∈ tmax(j−i,0)I0,max(i−j,0)[min(λa, λb)](Zp).

We use these observations in the proof of the final lemma of this section.

Lemma 4. Let f ∈ I0(Zp), g, h ∈ In0 (Zp), u ∈ N0. Then

f(g(t) + puh(t)) =

∞∑
i=0

f (i)(g(t))

i!
puih(t)i.

In particular, if f ∈ I0[λf ](Zp), g ∈ In0 [λg](Zp), h ∈ In0 [λh](Zp), then

f(g(t) + puh(t)) = f(g(t)) + puf1(t)

for some f1 ∈ In0,1[min(λf , λg, λh)](Zp).
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Proof. We have seen that if a(t) ∈ I0(Zp) and b(t) ∈ In0 (Zp), then (a ◦ b) ∈ I0(Zp). From the
discussion above, both sides of the first equality exist as formal power series in I0(Zp), numerical
substitution is allowed in all terms for t ∈ pZp, and the values of both sides agree for all t ∈ pZp
(in fact for all t for which g(t), h(t) ∈ Zp and numerical substitution is allowed); therefore, they
must agree as power series.

Suppose additionally that f ∈ I0[λf ](Zp), g ∈ In0 [λg](Zp), and h ∈ In0 [λh](Zp). Since f (i)(t)/i!∈
I0,i[λf ](Zp), we have that f (i)(g(t))/i! ∈ I0,i[min(λf , λg)](Zp), and so

f1(t) =
∞∑
i=1

f (i)(g(t))

i!
pu(i−1)h(t)i ∈ In0,1[min(λf , λg, λh)](Zp),

since pu(i−1)h(t)i/t ∈ ti−1I0[λh](Zp). 2

3. p-adic exponent data and pairs

Exponential sums of the shape (4) cannot, of course, be non-trivially estimated entirely
independently of the arithmetic structure of f . In this section, we define a class of functions
to which our method suitably applies as well as the principal parameters of our estimates,
p-adic exponent data and p-adic exponent pairs, derive some of their general properties, and
give examples illustrating our definitions and their typical uses. Occasionally, and for illustrative
purposes only, we reference in this section statements and equations from later sections, but, of
course, all actual definitions and propositions are independent of the later material. Additional
useful intuition, examples, and explanations can be found in § 6.

We may, in light of (9), think of f(t) as a power series in t. Of particular interest to us will be
the case when f(t) is a constant multiple of the p-adic logarithm logp(1 + pt) and B is relatively
short compared with pn. The method we develop, however, applies to estimation of sums of type
(4) with a rather general f , as we discuss below. This is a very pleasing aspect of our method,
although it is not entirely a matter of choice, for our recursive process produces many other f ,
in addition to the p-adic logarithm, which we need to be able to handle. Definition 1 gives a
universe of power series in which we find it convenient to formulate our results.

Definition 1. Let w ∈ Z, u, κ ∈ N with κ > 1+ι′(2), λ ∈ ρpN, y ∈ Q+, and let ι = ι(y), ι′ = ι′(y),
ω, ω′ ∈ Z×p . We say that a power series f ∈ Q×p I0(Zp) belongs to class F(w, y, κ, λ, u, ω, ω′) if

f ′(t) = pwω′(1 + pι+κωt)−y + pwγ0 + pu+wg(t) (11)

for some γ0 ∈ Zp and g ∈ I0[λ](Zp). We say that f belongs to class F(w, y, κ, λ, u) if f ∈ F(w, y,
κ, λ, u, ω, ω′) for some ω, ω′ ∈ Z×p .

The condition λ ∈ ρpN (rather than simply λ ∈ R+) is used only to obtain sharper estimates
in the proof of Lemma 10 and could easily be dispensed with, but the values of λ naturally
obtained from our iterative method lie in this discrete set anyway. We will sometimes use the
symbol ∞ in place of λ and u and say that f belongs to the class F(w, y, κ,∞,∞, ω, ω′) if f
satisfies Definition 1 for arbitrarily large values of λ and u, which is to say that (11) holds with
g = 0.

The class F(w, y, κ, λ, u) is wholly unnecessarily restrictive. In fact, for each particular
application of our method to an exponential sum involving a power series, say, in I0(Zp), we really
only need a finite list of non-vanishing conditions of the kind that are discussed, for example,
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in [Hux05]. Such non-vanishing conditions are tedious but straightforward to write down in
each particular instance. However, writing these conditions out in full generality appears very
involved, and the class of functions we consider amply suffices for the subconvexity application.
Our Definitions 1 and 2 should be compared with their Archimedean counterparts in [GK91,
pp. 30–31].

Note that, for every series f ∈ F(w, y, κ, λ, u) and every n > w,

ef (m) = e

(
f(m)

pn

)
defines a function ef : Z → C which is periodic with period pn−w. Indeed, by (9), we have, for
every q ∈ Z, an equality of values

f(m+ pn−wq) = f(m) + f ′(m)pn−wq +
∞∑
r=2

f (r)(m)

r!
p(n−w)rqr.

Since f ′(m) ∈ pwZp, while ordp r! 6 b(r − 1)ρpc and

ordp f
(r)(m) > w + min

(
(r − 1)κ, u+ d(r − 1)λe

)
for every r > 2, we conclude that f(m + pn−wq) − f(m) ∈ pnZp, from which the periodicity of
ef follows.

In this paper, we develop machinery to estimate sums of the form (4) whose general term
ef (m) = e(f(m)/pn) is a periodic function arising from some f ∈ F(w, y, κ, λ, u). We give several
examples illustrating varied situations in which such arithmetic sums arise as well as the rôle of
various parameters in Definition 1.

Character sums
Sχ(M,B) =

∑
M<m6M+B

χ(m)

for a Dirichlet character χ modulo q = pn are of classical interest and of direct relevance to our
subconvexity application; we discuss them in § 6. For definiteness, suppose that χ is primitive.
According to Lemma 13, there is an a0 ∈ Z×p such that

χ(1 + pκ1t) = e

(
a0 logp(1 + pκ1t)

pn

)
for every t ∈ Z, where κ1 = 1 + ι′(2). Splitting our character sum into classes modulo pκ for a
suitable κ > κ1 and fixing, for every 1 6 c 6 pκ such that p - c, an integer c′ with cc′ ≡ 1 (mod pn),
we have that

Sχ(M,B) =
∑

16c6pκ, p -c

χ(c)
∑

(M−c)/pκ<t6(M+B−c)/pκ
e

(
a0 logp(1 + pκc′t)

pn

)
. (12)

Note that, for any ω ∈ Z×p , since logp(1+pκωt) ∈ pκI0(Zp) and [logp(1+pκωt)]′ = pκω(1+pκωt)−1,
we have that logp(1+pκωt) ∈ F(κ, 1, κ,∞,∞, ω, ω). In particular, we have that the phase fc(t) =
a0 logp(1 + pκc′t) satisfies

fc ∈ F(κ, 1, κ,∞,∞, c′, a0c′), (13)

so the inner sum above can be treated using our techniques.
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We see already in this example the need for the parameter κ in (11). A given arithmetic
summand, such as χ(m) in this example, may exhibit its true local behavior as the exponential
with a phase expressed by a well-behaved p-adic power series when restricted to a suitable p-adic
neighborhood, such as the arithmetic progression c+ pκm with κ > κ1 = 1 + ι′(2). On the other
hand, the phase of our exponential is also properly a polynomial in t, and sometimes it can be
convenient to take a larger value of κ to obtain a lower-degree polynomial. In our case, the choices
κ > n/2+O(1) and κ > n/3+O(1) produce exponential sums with a linear and quadratic phase,
respectively, but of course they also require the splitting of the original sum into more pieces;
we postpone the discussion of the relative utility of such choices to § 6. This first example also
showcases the flexibility given by the extra parameters w, ω, and ω′ in (11). As the discussion
of periodicity of ef indicates, changing the value of w is effectively equivalent to changing the
modulus to pn−w, so, while this flexibility could just as well be achieved by adjusting n, and while
the value of w does change through the application of A- and B-processes, we find it convenient
to keep n as a fixed parameter and track the changes in w separately. Finally the inclusion of ι
in the exponent to pι+κ is simply a natural normalization in light of the properties of the p-adic
power function πy(x) discussed in § 2 and is responsible for the elegant statement of Lemma 9.

Throughout our method, we think of the term pwω′(1 + pι+κωt)−y as the main term in (11),
and we track the remaining terms to ensure that they do not interfere with the leading term.
The extra flexibility afforded by allowing these smaller terms is both pleasing for the scope of
our method and essential; we proceed to explain one of their sources and the rôle of parameters
u and λ in controlling them. Our A-process relies on a version of Weyl differencing and reduces
estimation of the sum (4) with f ∈ F(w, y, κ, λ, u) to sums involving a phase of the form

fχ,h(t) = f(t+ pχh)− f(t) = pχhf ′(t) + p2χh2
∞∑
r=2

p(r−2)χhr−2
f (r)(t)

r!
;

see Lemma 12. For example, if f(t) = fc(t) = a0 logp(1 + pκc′t) as in the inner sum in (12),
(pχhf ′(t))′ = a0c

′2pχ+2κh(1 + pκc′t)−2. The infinite sum contributes a secondary term (whose
derivative is pu+wg(t) in (11)) which we must keep carrying while ensuring that it does not
interfere with the main term, especially in light of the implicit function theorem (Lemma 9); this
separation is the rôle of the parameter u. Moreover, the quantity u + bλc − κ − ι′ turns out to
control both the new value of u for the phase fχ,h in Lemma 12 and the success of Lemmas 9
and 10. The parameter λ is a measure of decay of coefficients of g(t) (recall that, for λ ∈ N0,
g0(p

λt) ∈ I0[λ](Zp) for every g0 ∈ I0(Zp), and compare with the form of the leading term) and,
in a sense, helps the secondary term keep pace with the extra factor of pκ that the main term
inherits with each differentiation.

As our third example, we consider sums of Kloosterman sums. According to Salié’s classical
evaluation (see [IK04, p. 322], [BM15a, § 7]), the Kloosterman sum S(m1,m2, q), for an odd
prime power q = pn (n > 2) and p - m1m2, vanishes unless

(
m1m2
p

)
= 1, in which case it is

explicitly given as

S(m1,m2, q) =
∑∗

x mod q

e

(
m1x̄+m2x

q

)
= q1/2

∑
±
ε(±`, q)e

(
±2`

q

)
,

where ±` are the two points satisfying the stationary phase condition `2 ≡ m1m2 (mod q)
(cf. Lemma 7), and ε(a, pn) is the explicit unit factor as in Lemma 8, which depends only
on p, the class of a mod p, and the parity of n. We refer the reader to [BM15a] for a more
refined discussion of p-adic square roots and content ourselves here with the observation that
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if ±` = ±`(c) are the solutions to `2 ≡ c (mod pn), then `(c+pκt) ≡ ±`(c)(1+pκc′t)1/2 (mod pn)
for every κ > 1, t ∈ Z. We thus have, for example,∑

M<m6M+B

S(1,m, q) = q1/2
∑
±

∑
16c6pκ, p -c

ε(±`(c), q)
∑

(M−c)/pκ<t6(M+B−c)/pκ
e

(
±
fc,1/2(t)

pn

)
,

with the phase fc,1/2(t) = 2`(c)(1 + pκc′t)1/2 in the class F(κ, 12 , κ,∞,∞, c′,±2`(c)c′) of
Definition 1. We remark that the good analytic behavior of derivatives of solutions to the
stationary phase equation is not accidental and is instead genetic to the corresponding implicit
function problem.

Many other cases of complete exponential sums to prime power moduli, for example hyper-
Kloosterman sums, similarly give rise to exponentials with p-adically analytic phases satisfying
the conditions of Definition 1. This involves an explicit evaluation of stationary points, which
leads to an implicit function problem that can, under rather general conditions, be solved within
the class F; see Lemma 9. In particular, this procedure also ultimately powers the duality
approach in the proof of the B-process in § 4. Solution of the implicit function problem is
another important source of the secondary term in (11) in applications. For another involved
and hands-on example, in which the phase f ∈ F arises from a repeated explicit evaluation by
the p-adic method of stationary phase, see [BM15a].

Finally, we discuss translational invariance in the classes F(w, y, κ, λ, u). For a power series
f ∈ Q×p I0(Zp) and any t,M ∈ Zp, we have by (9) an equality of values

f(M + t) =
∞∑
i=0

f (i)(M)

i!
ti.

We may therefore consider f(M + t) as a power series, which we denote by fM (t). Note that
the formal derivative of fM agrees with the translation of the derivative f ′, that is, (fM )′(t) =
(f ′)M (t) = f ′(M + t). The following lemma is a simple but important verification.

Lemma 5. Each of the classes I0(Zp), I0,j [λ](Zp), and F(w, y, κ, λ, u) is invariant under
translations, that is, if f belongs to one of these classes C, then fM ∈ C for every M ∈ Zp.

Proof. Suppose that f =
∑∞

k=0 ckt
k ∈ I0(Zp), so that lim |ck|p = 0, and M ∈ Zp. Then

f (i)(M)/i! =
∑∞

k=0

(
k+i
i

)
ck+iM

k, and so∣∣∣∣f (i)(M)

i!

∣∣∣∣
p

6 sup
k>0

∣∣∣∣(k + i

i

)
ck+iM

k

∣∣∣∣
p

6 sup
k>i
|ck|p → 0 (i →∞).

This shows that fM is a power series with integral coefficients and that, in fact, fM ∈ I0(Zp). If,
moreover, f ∈ I0,j [λ](Zp), then the above estimate shows that

ordp(f
(i)(M)/i!) > inf

k>i
ordp ck > inf

k>i
dλ(k + j)e = dλ(i+ j)e,

so fM ∈ I0,j [λ](Zp) too.
Now, let f ∈ F(w, y, κ, λ, u, ω, ω′), so that f ′ satisfies (11) with g ∈ I0[λ](Zp). Then, using

(7), we have for every t ∈ Bp−κ an equality of values

f ′(M + t) = pwω′
(
1 + pι+κω(M + t)

)−y
+ pwγ0 + pu+wg(M + t)

= pwω′(1 + pι+κωM)−y
[
1 + pι+κω(1 + pι+κωM)−1t

]−y
+ pwγ0 + pu+wgM (t).
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The right-hand side of this equality is a power series which must coincide with (fM )′. We have
already proved that fM ∈ Q×p I0(Zp) and that gM ∈ I0[λ](Zp), so fM ∈ F(w, y, κ, λ, u, ω(1 +
pι+κωM)−1, ω′(1 + pι+κωM)−y). 2

We now define p-adic exponent data and pairs. Let P denote the set of prime numbers. For
any sets X, Y , and any family of subsets Xp ⊂ X (p ∈ P ), let J(Xp;Y ) be the set of all functions
g : Q+ ×⊔p∈P ({p} ×Xp) → Y such that, for every y ∈ Q+, there is a finite subset P0(y) ⊂ P
and a function g0 : (P\P0(y))×X → Y such that g(y, p, x) = g0(p, x) for every p ∈ P\P0(y) and
every x ∈ Xp.

In particular, write J(Y ) := J(∅;Y ) for the set of functions g(y, p) : Q+ × P → Y with the
above properties, and J1(Y ) := J(N′p× ρpN;Y ) (with X = R+ and N′p = ι′(2) +N) for the set of
such functions g(y, p, κ, λ) : Q+ ×⊔p∈P ({p} × N′p × ρpN) → Y .

Classes J(Y ) and J1(Y ) for appropriate Y are suitable universes for certain components of
p-adic exponent data in Definition 2. For example, with variables keeping their meaning from
Definition 1, κ0(y, p) ∈ J(N) is the smallest value of κ to which our datum applies, and it may
well differ from its generic value for some exceptional (y, p). For example, if a datum is obtained
using our A- and B-processes, and if one of the iterations involves the power series π7y+2

[κ] (x), then

it may be necessary to require a higher value of κ for those pairs (y, p) for which ordp(7y+2) 6= 0;
when estimating (4), this simply corresponds to a finer initial splitting as in (12). We require
p-adic exponent data to be universal in that they ultimately apply to all values of y and p.
However, as our examples demonstrate, in a typical application we need to estimate a sum
involving a phase with one specific value of y. What really matters, then, is that our method
applies in a uniform (tightest possible) way for all primes outside a finite exceptional set (which
may depend on y) and with a possible finite adjustment of initial conditions at the exceptional
primes; this is precisely the content of our definitions, with Y denoting the universe of assumed
values and with J1(Y ) also taking into account the possible dependence of other parameters on
specific values of κ and λ. The reader interested in applications may treat quantities in classes
J(Y ) and J1(Y ) simply as explicit ‘expressions’ in terms of other parameters y, p, κ, λ, knowing
that their form suffices for the purpose of estimating any given exponential sum to which our
method applies.

We note on the side that, in all p-adic exponent data we produce, the functions in
corresponding classes J(Xp;Y ) actually satisfy the following stronger uniformity condition in y
and p: there is a finite set P0 ⊂ P , a finite set of non-vanishing linear forms li(y) = aiy + bi
(1 6 i 6 I), and functions g0 : ZI × P × X → Y and g′0 : ZI × X → Y such that f(y, p, x)
= g0((ordp li(y))Ii=1, p, x) for every y ∈ Q+, p ∈ P , and x ∈ Xp, as well as g0(z, p, x) = g′0(z, x)
for every z ∈ ZI , p ∈ P\P0, and x ∈ Xp.

We are now ready for the main definition.

Definition 2. Let Q be the set of all quintuples

q = (k, `, r, δ, (n0, u0, κ0, λ0)) (14)

where k, ` ∈ R, 0 6 k 6 1
2 6 ` 6 1, r ∈ J1(R), δ ∈ R+

0 , n0, u0 ∈ J1(N), κ0 ∈ J(N), λ0 ∈ J(R+
0 ),

and n0(y, p, κ, λ) > κ+ ι′(y).
We call a quintuple q ∈ Q as in (14) a p-adic exponent datum if, for every p ∈ P , y ∈ Q+,

w ∈ Z, κ ∈ N with κ > 1 + ι′(2), λ ∈ ρpN, n, u ∈ N such that

κ > κ0(y, p), λ > λ0(y, p), n > w + n0(y, p, κ, λ), u > u0(y, p, κ, λ),
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and for every f ∈ F(w, y, κ, λ, u), M ∈ Z, and 0 < B 6 pn−w−κ−ι
′
, we have the estimate

∑
M<m6M+B

e

(
f(m)

pn

)
� pr

(
pn−w−κ−ι

′

B

)k
B`(log pn−w−κ−ι

′
)δ, (15)

where r = r(y, p, κ, λ), and the implied constant depends only on the datum q.
We call a pair

π = (k, `)

of non-negative numbers a p-adic exponent pair if q = (k, `, r, δ, (n0, u0, κ0, λ0)) is a p-adic
exponent datum for some r ∈ J1(R), δ ∈ R+

0 , n0, u0 ∈ J1(N), κ0 ∈ J(N), λ0 ∈ J(R+
0 ).

Every p-adic exponent datum q carries two kinds of quantities: the values of k, `, r, and δ
describe the upper bound (15), while (n0, u0, κ0, λ0) can be thought of as ‘initial conditions’ that
control the moduli pn and the classes F(w, y, κ, λ, u) of phases f to which this estimate applies.
We emphasize that, while the implied constant in (15) may be different from one p-adic exponent
datum to another, it is, for a given datum q, absolute, and (15) holds uniformly across all other
parameters, including p, y, w, κ, λ, n, u, f , M , and B.

Note that (0, 1) is trivially a p-adic exponent pair, as (0, 1, 0, 0, (κ + ι′ + 1, 1, 1 + ι′(2), ρp))
is a p-adic exponent datum. Further, note that the estimate on the right-hand side of (15) is
an increasing function of B, and so, when applying this estimate, we may freely use an upper
bound on B instead of its exact value. We also mention that any δ ∈ J1(R+

0 ) would suffice for
applications; we ask for δ ∈ R+

0 simply because this will be the case in all p-adic exponent data
we construct.

We now describe a typical use of Definition 2. The estimate (15) holds uniformly in all
parameters. In a typical application, pn is the principal parameter, B is a certain power of pn

(depending on κ), and, upon choosing an allowable κ, the phase f and hence w, y, λ, u are all
fixed. In a depth-aspect problem, the p-adic exponent pair (k, `) controls the principal power
dependence of our estimate on pn, so, in practice, one first chooses the pair (k, `) to optimize
this dependence (for specific relative sizes of B and pn and the desired type of result) and then
considers the corresponding datum. For example, the pair (12 ,

1
2), given by the p-adic exponent

datum (36)

ω1/2 =
(
1
2 ,

1
2 , 0, 1,

(
κ+ ι′ + 1 + ι′(12),max(κ− bλc+ ι′ + 1, 1), 1 + ι′(4), ρp

))
,

is well suited for very long sums (4), yielding in (15) the upper bound∑
M<m6M+B

e

(
f(m)

pn

)
� (pn−w−κ−ι

′
)1/2 log pn−w−κ−ι

′
,

valid for all pn and f ∈ F(w, y, κ, λ, u) with κ > 1 + ι′(4), λ > ρp, n > w + κ + ι′ + 1 + ι′(12),
u > max(κ − bλc + ι′ + 1, 1) and for all M ∈ Z and 0 < B 6 pn−w−κ−ι

′
, which is uniform in B

and can be seen as a variant of the Pólya–Vinogradov inequality. Section 6 contains a supply
of explicit p-adic exponent data yielded by our method that one can choose from, as we do in
the course of proving the sub-Weyl subconvex bound (60). Each of these p-adic exponent pairs
arises from (0, 1) by finitely many A- and B-processes, which in turn give rise to successive p-adic
exponent data q. With each application, the quantities in q change and become fairly complicated
(cf. the statement of Lemma 5), but they always take a dramatically simpler form away from
finitely many p, such as for p 6∈ {2, 3}, p - y in the case of ω1/2. For such generic p, the original sum
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is split as in (12) with κ > κ0 (the latter being a constant for a fixed y and non-exceptional p),
and, assuming that the (generally mild) ‘separation’ conditions λ > λ0 and u > u0 are met, the
inner sum is estimated by (15). Since the p-adic exponent datum used ultimately applies to all
p, this proof is then easily adjusted at the finitely many exceptional primes, without necessarily
impacting the final result. We refer the reader to the proof of Theorem 6 and the discussion
around (60) for a sample execution of this approach. Finally, all these calculations simplify even
further if one is willing to simply treat constants in certain exponents of p (such as κ, n0, u0, r)
as O(1), a shortcut that we do not take but that would be perfectly acceptable in a purely
depth-aspect problem (when p is considered fixed).

We proceed to comment on why the conditions 0 6 k 6 1
2 6 ` 6 1 are included in Definition 2

and collect some additional useful information along the way. Consider f(t) = pw−κ−ι(−y +
1)−1(1 + pκ+ιt)−y+1 for y 6= 1, and f(t) = pw−κ logp(1 + pκt) for y = 1. Let

S(a) =
∑

M<m6M+B

e

(
af(m)

pn

)
.

Note that, for a ∈ Z×p , af(t) ∈ F(w, y, κ,∞,∞, 1, a). We have that∑
a∈(Z/pnZ)×

|S(a)|2 =
∑∑

M<m1,m26M+B

∑
a∈(Z/pnZ)×

e

(
a(f(m1)− f(m2))

pn

)
.

Recall from § 2 that Mrπ
0
−y+1

.
= |−y+1|pr for all r < rpp

−ι and Mrλ
.
= r for all r < rp. It follows

easily that ordp(f(m1) − f(m2)) = w + ordp(m1 − m2) for every m1,m2 ∈ Zp. Therefore, if
B 6 pn−w−1 (and so certainly throughout the range 1 6 B 6 pn−w−κ−ι

′
), the inner sum vanishes

unless m1 = m2, and so ∑
a∈(Z/pnZ)×

|S(a)|2 = ϕ(pn) ·B.

It follows that |S(a)| > B1/2 for at least one a ∈ (Z/pnZ)×. Thus, if an estimate of the form (15)
is to hold for all B in some interval I ⊆ [1, pn−w−κ−ι

′
], we must have

pr
(
pn−w−κ−ι

′

B

)k
B`(log pn−w−κ−ι

′
)δ � B1/2 (16)

throughout the entire range B ∈ I. This conclusion (‘no better than square root cancellation’)
will be used several times. In particular, with the choice B = 1 and n − w = n0, we have that
pr+(n0−κ−ι′)k(log pn0−κ−ι′)δ � 1. On the other hand, taking B = pn−w−κ−ι

′
, we see that the

defining property (15) cannot hold with ` < 1
2 .

Next, consider the behavior when f(t) is as above, M and B are arbitrary but fixed,
and n → ∞. An elementary application of Dirichlet’s box principle shows that we can find an
a ∈ (Z/pnZ)\(pnZ) such that

p−w(af(M + 1), af(M + 2), . . . , af(M +B)) ∈ Q/B/
p + pn−wZBp + ([0, pn−w/bpn/Bc] ∩ Z)B,

where Q/B/
p = {(q, . . . , q) ∈ QB

p : q ∈ Qp}. For this choice of a, we have that |S(a)| = |B +

O(Bp−n/B)| � B; on the other hand, af(t) ∈ F(ordp a + w, y, κ,∞,∞, 1, a|a|p) and ordp a 6

n − bn/Bc, and so pn−(ordp a+w)−κ−ι
′
> pbn/Bc−w−κ−ι

′
in (15). Taking n → ∞, we see that no

estimate of the form (15) can hold with k < 0.
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We have seen how, for two different reasons (not entirely unlike the heuristics behind large
sieve estimates), every p-adic exponent datum that is to satisfy (15) must have k > 0 and ` > 1

2 .
Finally, there is no need to consider data with (k > 0 and) ` > 1, since such an estimate would
be worse than that provided by the trivial datum (0, 1, 0, 0, (κ + ι′ + 1, 1, 1 + ι′(2), ρp)) in most
ranges. Similarly, there is no need to consider data with k > 1

2 (and ` > 1
2) since the estimate

obtained would be worse than that provided by the first non-trivial p-adic exponent datum (36).

The following Lemma 6, which states that the exponent datum condition may be verified
(with a minimal loss) over either sharp or smooth cutoff functions, will be convenient. We will
need several pieces of notation. Let C1

0 (R) denote the set of continuously differentiable functions
h : R → C such that lim|t|→∞ |t|N (|h(t)|+ |h′(t)|) = 0 for every N ∈ N. For an h ∈ C1

0 (R), denote

‖h‖? = inf
t0∈R

∫ ∞
−∞

(|t− t0|+ 1)|h′(t)| dt. (17)

Note that the quantity ‖h‖? is invariant under translations, that is, each of the translates hx(t) =
h(t+ x) (x ∈ R) has ‖hx‖? = ‖h‖?.

Let C = (Ci)i∈I be a family of classes Ci of power series in Q×p I0(Zp), each of which is

invariant under translations in the sense of Lemma 5, and let 0 6 k 6 1
2 6 ` 6 1, δ ∈ N0,

n0 : I → N0, w : I → Z, r : I → R. We say that a triple τ = (k, `, (r, w, n0)) satisfies the
condition H(δ) if the estimate∑

M<m6M+B

e

(
f(m)

pn

)
� pr(i)

(
pn−w(i)

B

)k
B`(log pn−w(i))δ

holds, with a uniform implied constant depending only on τ and δ (so, explicitly not on i ∈ I),
for every i ∈ I, every f ∈ Ci, and every n > n0(i), M ∈ Z, and 0 < B 6 pn−w(i). We will also
write the above condition with r and w in place of r(i) and w(i) for brevity. We say that τ
satisfies the condition H(δ)sq if, additionally, the right-hand side of the above bound is � B1/2

uniformly for every i ∈ I and all 0 < B 6 pn−w(i).
As the example most important for us, a quintuple q = (k, `, r, δ, (n0, u0, κ0, λ0)) is a p-adic

exponent datum if and only if, for the collection C = {F(w, y, κ, λ, u) : w ∈ Z, y ∈ Q+, κ > κ0,
λ > λ0, u > u0}, the triple (k, `, (r, w + κ + ι′(y), n0)) satisfies the condition H(δ). We have
already seen in (16) that, for these triples, H(δ) automatically implies H(δ)sq. Recall that each
of the classes F(w, y, κ, λ, u) is invariant under translations by Lemma 5.

With the same notation, we say that τ satisfies the condition Hsm(δ) if the estimate∑
m∈Z

e

(
f(m)

pn

)
h

(
m

B

)
� c(h) · pr(i)

(
pn−w(i)

B

)k
B`(log pn−w(i))δ

holds, with a uniform implied constant depending only on τ and δ and with c(h) depending only
on the cutoff function h, for every i ∈ I, every f ∈ Ci, and every n > n0(i), 0 < B 6 pn−w(i),

and h ∈ C1
0 (R). We say that τ satisfies the condition H]

sm(δ) if the above holds with

c(h) = ‖h‖?.

The conditions Hsm(δ)sq and H]
sm(δ)sq are defined analogously. Finally, denote

δ1/2 =

{
1, (k, `) = (12 ,

1
2),

0, else;
δ01 =

{
1, (k, `) = (0, 1),

0, else.
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Lemma 6. Let C = (Ci)i∈I be a family of classes Ci of power series in Q×p I0(Zp), each of which is
invariant under translations in the sense of Lemma 5. Then, for every triple τ = (k, `, (r, w, n0)),
0 6 k 6 1

2 6 ` 6 1, n0 : I → N0, w : I → Z, r : I → R, and for every δ ∈ N0, we have the
following implications:

H(δ) =⇒ H]
sm(δ) =⇒ Hsm(δ), Hsm(δ)sq =⇒ H(δ + δ1/2)

sq.

Proof. Suppose that Hsm(δ)sq holds. Fix a smooth, compactly supported cutoff function φ ∈
C∞c (R) with the following properties:
• 0 6 φ(x) 6 1 for all x;
• φ(x) = 0 for all x 6∈ [0, 34 ];
• φ(x) + φ((1 + x)/2) = 1 for all 0 6 x 6 1

2 .
Using φ, we define smooth, compactly supported cutoff functions φi ∈ C∞c (R) (i ∈ N0) as follows:
let

φ0(x) =

{
1− φ(|x|), |x| 6 1

2 ,

0, |x| > 1
2 ,

and, for i > 1, let φi(x) = φ(2i−1|x| − (2i−1 − 1)). Then, for all i > 1, 0 6 φi(x) 6 1 for all x,
φi(x) = 0 for all x with |x| 6∈ [1 − 1/2i−1, 1 − 1/2i+1], and φi−1(x) + φi(x) = 1 for all x with
|x| ∈ [1− 1/2i−1, 1− 1/2i]. Therefore, the cutoff function φ̃i(x) =

∑i
j=0 φj(x) satisfies:

• 0 6 φ̃i(x) 6 1 for all x;
• φ̃i(x) = 0 for all x with |x| > 1− 1/2i+1;
• φ̃i(x) = 1 for all x with |x| 6 1− 1/2i.

Now, let f ∈ Ci, and let n > n0(i), M ∈ Z, and 0 < B 6 pn−w(i) be given. Since the class
Ci is closed under translations, we have that fM ′ ∈ Ci for every M ′ ∈ Z. Write B = 2βC +B1,
where 0 6 B1 < 2β, and β ∈ N will be suitably chosen later. Then,∑

M<m6M+B

e

(
f(m)

pn

)
=
∑
m∈Z

e

(
f(m)

pn

)
φ̃β−1

(
m−M − 2β−1C

2β−1C

)
+ O(B1 + C)

=
∑
m∈Z

e

(
fM+2β−1C(m)

pn

)
φ0

(
m

2β−1C

)

+
∑
m∈Z

β−1∑
j=1

e

(
fM+2β−1C(m)

pn

)
φ

( |m| − (2β−1 − 2β−j)C

2β−jC

)
+ O

(
B

2β
+ 2β

)

=
∑
m∈Z

e

(
fM+2β−1C(m)

pn

)
φ0

(
m

2β−1C

)
+

β−1∑
j=1

∑
m∈Z

e

(
fM+(2β−2β−j)C(m)

pn

)
φ

(
m

2β−jC

)

+

β−1∑
j=1

∑
m∈Z

e

(
fM+2β−jC(m)

pn

)
φ

(
− m

2β−jC

)
+ O

(
B

2β
+ 2β

)
.

Since each translate of f belongs to Ci and 2β−jC 6 B 6 pn−w(i), we may apply the condition
Hsm(δ) to see that the sum of the first three summands is at most

� pr
(
pn−w

2β−1C

)k
(2β−1C)`(log pn−w)δ +

β−1∑
j=1

pr
(
pn−w

2β−jC

)k
(2β−jC)`(log pn−w)δ

� pr
(
pn−w

B

)k
B`(log pn−w)δ(1 + δ1/2β),
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recalling that ` > k, with ` > k unless k = ` = 1
2 . Finally, we choose β so that 2β � B1/2; then

β � logB � log pn−w. We thus obtain∑
M<m6M+B

e

(
f(m)

pn

)
� pr

(
pn−w

B

)k
B`(log pn−w)δ+δ1/2 +B1/2

� pr
(
pn−w

B

)k
B`(log pn−w)δ+δ1/2 ,

as desired, since the first term dominates in light of the condition H(δ)sq. This shows that τ
satisfies H(δ + δ1/2)

sq, proving the implication Hsm(δ)sq =⇒ H(δ + δ1/2)
sq.

Suppose that H(δ) holds. Let h ∈ C1
0 (R) be arbitrary, and let f ∈ Ci, n > n0(i), M ∈ Z, and

0 < B 6 pn−w(i) be given. Fix a t0 ∈ R, and let

S̃(t) =



∑
t0B6m6t

e(f(m)/pn), t > t0B,

0, t = t0B,

−
∑

t6m<t0B

e(f(m)/pn), t < t0B.

We can break the sum defining S̃(t) into at most |t− t0B|/B+ 1 blocks of size at most B. Using
the condition H(δ) to estimate each of the blocks, we find that

S̃(t)�
( |t− t0B|

B
+ 1

)
· pr
(
pn−w

B

)k
B`(log pn−w)δ.

Using summation by parts, we estimate∑
m∈Z

e

(
f(m)

pn

)
h

(
m

B

)
=

∫
R
h

(
t

B

)
dS̃(t) = − 1

B

∫
R
S̃(t)h′

(
t

B

)
dt

� 1

B

∫
R

( |t− t0B|
B

+ 1

)∣∣∣∣h′( t

B

)∣∣∣∣ dt · pr(pn−wB
)k
B`(log pn−w)δ

=

∫
R

(|t− t0|+ 1)|h′(t)| dt · pr
(
pn−w

B

)k
B`(log pn−w)δ.

This estimate is valid, with a uniform implied constant, for every t0 ∈ R. Taking the infimum of
the right-hand side over all t0 ∈ R, we find that H]

sm(δ) holds. This proves that H(δ) =⇒ H]
sm(δ)

and completes the entire proof, since H]
sm(δ) =⇒ Hsm(δ) is trivial. 2

4. B-process

We are now ready for the proof of the B-process, which relies on Poisson summation to replace
an exponential sum with a short dual sum and on the method of stationary phase and the
implicit function theorem to evaluate the dual sum. Although historical precedent would have
us presenting the A-process first, we find that this order of exposition allows us to obtain tighter
estimates.

The following lemma is a version of the p-adic analogue of the method of stationary phase
and the starting point for the analysis of the Fourier transform êf (s) (defined below in (23)).
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A variant of this method (as well as of Lemma 8) can be found in [IK04, §§ 3.5 and 12.3], but we
include it for completeness as Lemma 7 and fine-tune the statement and proof to our particular
situation.

Lemma 7 (Method of stationary phase). Let p be a prime, let f ∈ Q×p I(Zp) be such that f ′ ∈
(Zp + pµtI0(Zp)) for some µ ∈ N0, and let n, j ∈ N be such that j 6 n− 1 and

2(n− j) + µ > n+ ι′(2).

Then ∑
m mod pn

e

(
f(m)

pn

)
=

∑
m mod pn

f ′(m)≡0 mod pj

e

(
f(m)

pn

)
.

Proof. We can write

S =
∑

m mod pn

e

(
f(m)

pn

)
= p−j

∑
m mod pn

∑
k mod pj

e

(
f(m+ pn−jk)

pn

)
.

We can use Taylor’s expansion (9) to write

f(m+ pn−jk) = f(m) + pn−jf ′(m)k +
∞∑
r=2

1

r!
pr(n−j)f (r)(m)kr.

We claim that, under our conditions, all terms in the rightmost sum are divisible by pn. Indeed,
writing f ′(t) = b0 +

∑∞
k=1 p

µbkt
k, we have f (r)(t) = pµ

∑∞
k=0 bk+r−1(k + r − 1)r−1t

k, so that

ordp

(
1

r!
pr(n−j)f (r)(m)kr

)
> (2(n− j) + µ) + ((r − 2)(n− j)− ordp r).

That the right-hand side is divisible by pn is now immediate for r = 2 and r = 3; for r > 4, the
claim follows from pr−2 > 2r−2 > r.

It follows that

S = p−j
∑

m mod pn

e

(
f(m)

pn

) ∑
k mod pj

e

(
f ′(m)k

pj

)
.

The inner sum equals pj if f ′(m) ≡ 0 (mod pj) and vanishes otherwise. This gives the desired
equality. 2

The method of stationary phase, in some variation of that presented in Lemma 7, goes back at
least to Salié [Sal32]. A simple instance of this method is the classical evaluation of the Gaussian
sum, which we record for reference. We will in fact only use the most elementary case n ∈ {0, 1}
of this lemma (n ∈ {2, 3} for p = 2).

Lemma 8 (Gauss). For a prime p, n ∈ N, and a ∈ Z with p - a, let

τa(p
n) =

∑
m mod pn

e

(
am2

pn

)
.

Then
τa(p

n) = p(n+ι
′(2))/2ε(a, pn),
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where ε(a, pn) is a unit factor given explicitly as

ε(a, pn) =



1, p 6= 2, 2 | n,(
a

p

)
, p ≡ 1 mod 4, 2 - n,(

a

p

)
i, p ≡ 3 mod 4, 2 - n;

ε(a, 2n) =



0, p = 2, n = 1,
1 + ia√

2
, 2 | n, n > 2,(

2

a

)
1 + ia√

2
, 2 - n, n > 3.

Proof. This is adapted to our notation from [BEW98, Theorems 1.5.1 and 1.5.2 and Proposition
1.5.3, p. 26]. 2

In the following lemma, we develop the p-adic implicit function theorem which we will use
to characterize the critical points in the exponential sum (23).

Lemma 9 (Implicit function theorem). Let f ∈ F(w, y, κ, λ, u, ω, ω′), and assume that

u > κ− bλc+ ι′, λ̃ = min(κ− ρp(y), λ) > 0.

Let g̃0 = f ′(0)p−w − ω′ ∈ Zp. Then there is a power series f̃ ∈ In0 [λ̃](Zp) such that

f̃(t) = p−ι−κω−1(1 + pι
′+κt)−1/y − p−ι−κω−1 + pu+bλc−κ−ι

′
g̃(t) (18)

for some g̃ ∈ In0 [λ̃](Zp) and such that

f ′(f̃(t))p−w = g̃0 + ω′(1 + pι
′+κt). (19)

Moreover, for j > ι′ + κ and s′ ∈ Zp, the congruence

f ′(m)p−w ≡ s′ (mod pj)

has solutions m ∈ Zp if and only if s′ ≡ g̃0 + ω′ (mod pι
′+κ). In this case, writing j′ = j − ι′ − κ

and s′ = g̃0 + ω′(1 + pι
′+κt) for some t ∈ Zp unique modulo pj

′
, the above congruence holds if

and only if
m ≡ f̃(t) (mod pj

′
).

Proof. Recall that
f ′(t)p−w = ω′(1 + pι+κωt)−y + γ0 + pug(t),

where g ∈ I0[λ](Zp). We can write

γ0 + pug(t) = γ0 + pug(0) + pu+bλc−κpκtg1(t) = g̃0 + pu
′+κtg1(t),

where u′ = u+ bλc−κ > ι′ and g1 ∈ I0[λ](Zp). We will now construct a power series f̃ such that

f ′(f̃(t))p−w = g̃0 + ω′(1 + pι+κωf̃(t))−y + pu
′+κf̃(t)g1(f̃(t))

= g̃0 + ω′(1 + pι
′+κt),

with all numerical substitutions allowed for t ∈ Zp.
Let ω′′ = ω′−1. Define a sequence of power series f̃k as follows:

f̃0(t) =
(1 + pι

′+κt)−1/y − 1

pι+κω
,

f̃k+1(t) =

(
1 + pι

′+κt− pu′+κω′′f̃k(t)g1(f̃k(t))
)−1/y − 1

pι+κω
(k > 0).

(20)

845

https://doi.org/10.1112/S0010437X15007381 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007381


D. Milićević

Let ρk = (k + 1)(u′ − ι′). We claim that f̃k is a sequence of power series with

f̃0 ∈ In0 [κ− ρp(y)](Zp) and f̃k ∈ In0 [λ̃](Zp) (k > 1)

such that
f̃k+1 = f̃k + pρk F̃k (21)

for some F̃k ∈ In0 [λ̃](Zp).
We prove this claim by induction on k. For k = 0, π

−1/y
[ι′+κ] ∈ I1ι+κ[κ− ρp(y)](Zp) implies that

f̃0 ∈ In0 [κ − ρp(y)](Zp). Then g1(f̃0(t)) ∈ I0[λ̃](Zp) and ω′′f̃0(t)g1(f̃0(t)) ∈ In0 [λ̃](Zp). Applying
Lemma 3,(

1 + pι
′+κt− p(u′+κ−ι′)+ι′ · ω′′f̃0(t)g1(f̃0(t))

)−1/y
= (1 + pι

′+κt)−1/y + pu
′+κ−ι′+ιb̃(t)

for some b̃(t) ∈ In0 [λ̃](Zp). We see that we can take F̃0(t) = ω−1b̃(t) in (21).
Assume that (21) holds for some k ∈ N0; then clearly f̃k+1 ∈ In0 [λ̃](Zp). Moreover, according

to Lemma 4, we can write

g1(f̃k+1(t)) = g1(f̃k(t) + pρk F̃k(t)) = g1(f̃k(t)) + pρkg2(t)

for some g2 ∈ In0,1[λ̃](Zp). We can rearrange(
1 + pι

′+κt− pu′+κω′′f̃k+1(t)g1(f̃k+1(t))
)−1/y

=
[(

1 + pι
′+κt− pu′+κω′′f̃k(t)g1(f̃k(t))

)
− p(u′+κ+ρk−ι′)+ι′ω′′

(
F̃k(t)g1(f̃k(t)) + f̃k+1(t)g2(t)

)]−1/y
.

Since g1(f̃k(t)) ∈ I0[λ̃](Zp), we have that

1 + pι
′+κt− pu′+κω′′f̃k(t)g1(f̃k(t)) ∈ I1ι′+κ[λ̃](Zp),

F̃k(t)g1(f̃k(t)) + f̃k+1(t)g2(t) ∈ In0 [λ̃](Zp).

Applying Lemma 3, we conclude that(
1 + pι

′+κt− pu′+κω′′f̃k+1(t)g1(f̃k+1(t))
)−1/y

=
(
1 + pι

′+κt− pu′+κω′′f̃k(t)g1(f̃k(t))
)−1/y

+ pu
′+κ+ρk−ι′+ιb̃k(t)

for some b̃k(t) ∈ In0 [λ̃](Zp). We see that we can take F̃k+1(t) = ω−1b̃k(t) in (21), since ρk+1 =
u′ − ι′ + ρk. This completes the inductive proof of (21).

We now define

g̃(t) =
∞∑
k=0

pρk−ρ0F̃k(t), f̃(t) = f̃0(t) + pu
′−ι′ g̃(t). (22)

In light of u′ > ι′, it is clear that the series converges and that g̃(t), f̃(t) ∈ In0 [λ̃](Zp). Moreover,

for r = |t|p < pλ̃, we have (22) also as equalities of values, and Mrf̃
.
= r. We claim that f̃ has all

desired properties; it is now immediate that (18) holds.
Define F̌k =

∑∞
`=k p

ρ`−ρk F̃`. Then

f̃k = f̃ − pρk F̌k
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and F̌k ∈ In0 [λ̃](Zp). The second equation in (20) is equivalent to

1 + pι+κωf̃k+1(t) =
(
1 + pι

′+κt− pu′+κω′′f̃k(t)g1(f̃k(t))
)−1/y

.

Applying Lemma 3 and Lemma 4 as above (with f̃k(t), f̃(t), and −F̌k(t) in place of f̃k+1(t),
f̃k(t), and F̃k(t), respectively), we can rewrite the right-hand side of this equality to see that

1 + pι+κωf̃(t) = 1 + pι+κωf̃k+1(t) + pρk+1+ι+κωF̌k+1(t)

=
(
1 + pι

′+κt− pu′+κω′′f̃(t)g1(f̃(t))
)−1/y

+ pρk+1+ι+κ(b̌k(t) + ωF̌k+1(t))

for some b̌k(t) ∈ In0 [λ̃](Zp). For k large enough, this is possible only if

1 + pι+κωf̃(t) =
(
1 + pι

′+κt− pu′+κω′′f̃(t)g1(f̃(t))
)−1/y

.

This equality of series in I1ι+κ(Zp) is equivalent to

(1 + pι+κωf̃(t))−y = 1 + pι
′+κt− pu′+κω′′f̃(t)g1(f̃(t)),

f ′(f̃(t)) = pwg̃0 + pwω′(1 + pι
′+κt).

According to Lemma 2, the numerical substitution of f̃(t) in f ′ is justified for all |t|p < pλ̃.
We pass to characterizing the solutions to the congruence f ′(m)p−w ≡ s′ (mod pj), that is,

g̃0 + ω′(1 + pι+κωm)−y + pu
′+κmg1(m) ≡ s′ (mod pj),

where j > ι′ + κ. Recalling that π−y[ι+κ] ∈ I1ι′+κ(Zp), it is seen that solutions m exist only if

s′ = g̃0 + ω′(1 + pι
′+κt) for some t ∈ Zp, in which case the above congruence becomes equivalent

to
f ′(m)p−w ≡ f ′(f̃(t))p−w (mod pj).

In light of u′ > ι′, the series f ′(t)p−w =
∑∞

k=0 a
]
kt
k satisfies the conditions of Lemma 1 for every

r < pλ̃, with |a]1|p = p−(ι
′+κ). In particular, an m ∈ Zp is a solution of the above congruence if

and only if
m ≡ f̃(t) (mod pj

′
),

as announced. 2

Lemma 10. Let f ∈ F(w, y, κ, λ, u, ω, ω′), and assume that

min(n− w, u+ bλc) > κ+ ι′, λ̃ = min(κ− ρp(y), λ) > 0.

Let

êf (s) =
∑

m mod pn−w

e

(
f(m)p−w − sm

pn−w

)
, (23)

and let ελ = bλc − dλ̃e. Then, assuming additional conditions listed below if p ∈ {2, 3}, there
exists a power series f̆ ∈ F(w̆, y−1, κ, λ̃, ŭ, 1,−ω′ω−1) with f̆ ′ ∈ pw+ι′+κIn0 [λ̃](Zp), where

w̆ = w + ordpy, ŭ = u+ ελ − ordpy,

and an ε ∈ C, |ε| = 1 such that

êf (s) = êf (g̃0 + ω′(1 + pι
′+κt)) = εp(n−w+ι

′+κ)/2e

(
f̆(t)

pn

)
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if s = g̃0 + ω′(1 + pι
′+κt) for some t ∈ Zp, and êf (s) = 0 otherwise. The unit ε depends only on

ω, ω′, y, p, the parity of n−w+ ι′+κ− ι′(2), and, for p = 2 only, on pu−κ−ι
′
g′(0); in particular,

it is independent of s.
In the case p ∈ {2, 3}, we must make additional assumptions. Let ν ∈ {0, 1} be the residue

of n− w + ι′ + κ− ι′(2) modulo 2, n1 = n− w − κ− ι′ − 1, and κ+ ι′(y + 1) = ν + 2ι′(2) + κ1.
Then assume additionally that

κ+ ι′(y + 1) > ν + 2ι′(2), n1 > 2ι′(2)ν, n1 + κ1 > ι
′(3).

These assumptions are automatically satisfied if κ > 1 + ι′(4) and n− w > ι′ + κ+ ι′(12), or if
κ > 1 + ι′(12) and n− w > ι′ + κ+ ι′(4).

Proof. In light of π−y[ι+κ] ∈ I1ι′+κ(Zp) and u+dλe > ι′+κ, we have that p−wf ′(t) ∈ Zp+pµtI0(Zp),
with µ = ι′ + κ. Write

n− w + ι′ + κ− ι′(2) = 2j + ν,

with j ∈ N and ν ∈ {0, 1}. Note that, under our assumptions,

ι′ + κ 6 j < n− w,

as well as

2(n− w − j) + (ι′ + κ) > n− w + ι′(2).

This shows that all conditions are satisfied for an application of Lemma 7 to (23). According
to Lemma 7, the summation in (23) can be restricted to indices m for which

f ′(m)p−w ≡ s (mod pj). (24)

All conditions are also satisfied for an application of Lemma 9. Let f̃ be the power series
whose existence is established there, and let j′ = j− ι′−κ. According to Lemma 9, we have that
indices m satisfying (24) exist if and only if

s = g̃0 + ω′(1 + pι
′+κt)

for some t ∈ Zp (with congruence classes of s mod pj for which (24) is solvable in one-to-one

correspondence with congruence classes of t mod pj
′
), in which case an m mod pn−w satisfies

(24) if and only if m = f̃(t) + pj
′
q for some q mod pn−w−j

′
.

Consider two functions f̆(t, q) : Zp×Zp → Zp and f̆(t) : Zp → Zp defined by their pointwise
values as

f̆(t, q) = f(f̃(t) + pj
′
q)− pw(g̃0 + ω′(1 + pι

′+κt))(f̃(t) + pj
′
q),

f̆(t) = f̆(t, 0) = f(f̃(t))− pw(g̃0 + ω′(1 + pι
′+κt))f̃(t). (25)

With this notation, we have proved so far that

êf (s) = êf (g̃0 + ω′(1 + pι
′+κt)) =

∑
q mod pn−w−j′

e

(
f̆(t, q)

pn

)
(26)

if s = g̃0 + ω′(1 + pι
′+κt) for some t ∈ Zp, and êf (s) = 0 otherwise.
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Using the Taylor expansion (9), we obtain, for every t, q ∈ Zp, an equality of values

f̆(t, q) =
∞∑
r=0

f (r)(f̃(t))

r!
(pj
′
q)r − pw(g̃0 + ω′(1 + pι

′+κt))(f̃(t) + pj
′
q)

= f̆(t) +
[
f ′(f̃(t))− pw(g̃0 + ω′(1 + pι

′+κt))
]
pj
′
q +

∞∑
r=2

f (r)(f̃(t))

r!
prj
′
qr

= f̆(t) +
1

2
f ′′(f̃(t))p2j

′
q2 +

∞∑
r=3

f (r)(f̃(t))

r!
prj
′
qr,

recalling the defining property (19) of f̃ . Note that

f (r)(t)p−w = ω′(−y)r−1(p
ι+κω)r−1(1 + pι+κωt)−y−r+1 + pug(r−1)(t). (27)

Since u+ dλe > ι′ + κ, we have that

ν2 := ordp(
1
2f
′′(f̃(t))p2j

′
) = 2j′ + w + κ+ ι′ − ι′(2)

= 2j + w − κ− ι′ − ι′(2)

= n− ν − 2ι′(2).

We now consider the remaining infinite sum E in the Taylor expansion for f̆(t, q) and set
conditions under which ordpE > n holds. We have that, for r > 3,

ordp

(
f (r)(f̃(t))

r!
prj
′
qr
)
− w

> min
(
(r − 1)κ+ rj′ + ι′ + ι′(y + 1)− ordp r!, u+ d(r − 1)λe+ rj′ − ordp r

)
.

We now carefully (and tediously) examine each of the two terms in the above expression, which
we denote by νr,1(p) and νr,2(p). (This examination is not pleasant. At the first reading, the
reader is encouraged to skip it or consider the case p 6∈ {2, 3}, for which we will see that no
further assumptions are needed.)

Denote temporarily ι′′ = ι′(y + 1). Using that ordp r! 6 (r − 1)/(p − 1), we have that, for
r > 3,

νr,1(p) := (r − 1)κ+ rj′ + ι′ + ι′′ − ordp r!

> d(r − 1)(κ+ j′ − ρp)e+ j′ + ι′ + ι′′

> d2κ+ 3j′ − 2ρpe+ ι′ + ι′′

= 2κ+ 3j′ + ι′ + ι′′ − ι′(12).

In fact, we have the slightly stronger estimate

νr,1(p) > 2κ+ 3j′ + ι′ + ι′′ − ι′(6).

Namely, when p = 2, this follows by direct verification for r = 3 and from νr,1(2) > d3κ+ 4j′ −
3ρ2e+ ι′ + ι′′ and κ > 2 for r > 4.

On the other hand,

νr,2(p) := u+ d(r − 1)λe+ rj′ − ordp r

> u+ rj′ + d(r − 1)(λ− ρp)e
> u+ 3j′ + d2(λ− ρp)e.
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In fact, recalling also that λ ∈ N for p = 2, we have ν3,2(2) = u + 3j′ + 2λ and ν4,2(2) =
u+ 4j′ + 3λ− 2; since ord2 r 6 r − 5 for r > 5, we also have νr,2(2) > u+ 5j′ + 4λ > ν3,2(2) for
all r > 5, and so

νr,2(p) > u+ 3j′ + ν̂2, ν̂2 :=

{
d2(λ− ρp)e, p > 3,

min(2λ, j′ + 3λ− 2), p = 2.

Summing up, we have

ordpE > νE := min
(
2κ+ 3j′ + ι′ + ι′′ − ι′(6), u+ 3j′ + ν̂2

)
+ w.

This gives us two conditions that need to be met for νE > n. The first is that

2κ+ 3j′ + ι′ + ι′′ − ι′(6)

= 3j − 3ι′ − κ+ ι′ + ι′′ − ι′(6)

= 3
2(n− w + ι′ + κ− ι′(2))− 3

2ν − 3ι′ − κ+ ι′ + ι′′ − ι′(6) > n− w,
which is equivalent to

(n− w − ι′ + κ− ι′(2))− ν + 2ι′′ > 2ν + ι′(16 · 9).

By parity considerations, this inequality will be satisfied whenever

(n− w) + κ+ 2ι′′ > ι′ + 2ν + ι′(32 · 9). (28)

In light of n− w = κ+ ι′ + 1 + n1, n1 > 0, the above is satisfied whenever

2κ+ 2ι′(y + 1) + 1 + n1 > 2ν + ι′(32 · 9),

and this is automatically satisfied for p 6∈ {2, 3}. For p ∈ {2, 3}, substituting κ+ι′′ = ν+2ι′(2)+κ1,
κ1 > 0, the above inequality reads as

1 + n1 + 2κ1 > ι
′(18),

which is trivially satisfied in light of the condition that n1 + κ1 > ι′(3).
The other condition for νE > n is that

u+ 3j′ + ν̂2 = u+ 3
2(n− w + ι′ + κ− ι′(2))− 3

2ν − 3ι′ − 3κ+ ν̂2 > n− w
(n− w − 3ι′ − 3κ− 3ι′(2))− ν + 2u+ 2ν̂2 > 2ν.

Again, by parity considerations, this inequality will be satisfied whenever

(n− w) + 2u+ 2ν̂2 > 3ι′ + 3κ+ 2ν + ι′(8). (29)

We first comment on how (29) is always satisfied for p > 3. Indeed, for p > 3 we have that

ν̂2 = d2(λ− ρp)e > bλc;
this is trivially true if λ = ρp and follows from 2(λ− ρp) > λ if λ > 2ρp. The inequality (29) now
follows from n− w > ι′ + κ+ 1 and u+ bλc > ι′ + κ+ 1.

Verifying the condition (29) for p = 2 involves checking all cases. The above argument clearly
applies if ν̂2 = 2λ. If ν̂2 = j′ + 3λ− 2, then (substituting for j′ as above), (29) reads as

(n− w) + 2u+ 2j − 2ι′ − 2κ+ 6λ− 4 > 3ι′ + 3κ+ 2ν + 3

2(n− w) + 2u+ 6λ > 4ι′ + 4κ+ 3ν + 8,
(30)

and this follows immediately in light of n− w > ι′ + κ+ 1 + 2ι′(2)ν.
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Having checked that νE > n, we conclude that

f̆(t, q) ≡ f̆(t) + 1
2f
′′(f̃(t))p2j

′
q2 (mod pn).

Writing ν̃ = n− ν2 = ν + 2ι′(2), the summation in the intermediate stationary phase expression
(26) becomes

êf (g̃0 + ω′(1 + pι
′+κt)) =

∑
q mod pn−w−j′

e

(
f̆(t) + 1

2f
′′(f̃(t))p2j

′
q2

pn

)

= p(n−w−j
′−ν̃)e

(
f̆(t)

pn

) ∑
q mod pν̃

e

( 1
2f
′′(f̃(t))p2j

′−ν2q2

pν̃

)
.

The remaining sum can be evaluated by Lemma 8 as

p(ν̃+ι
′(2))/2ε(12f

′′(f̃(t))p2j
′−ν2 , pν̃),

where, for an odd prime p, ε(a, pν̃) depends on p, the parity of ν̃, and the class of a mod p only,
while for p = 2 and ν̃ ∈ {2, 3}, ε(a, 2ν̃) also depends on the class of a mod 2ν̃ . We have already
seen (compare (27) for r = 2) that, for an odd p (when ν̃ ∈ {0, 1}),

a = 1
2f
′′(f̃(t))p2j

′−ν2 ≡ ωω′(−y/2)|y/2|p (mod pν̃).

In the case p = 2 (when ν̃ ∈ {2, 3}), considering the power ν+2 of p in non-constant terms in
(27), we find that

ν+2 − ν2 > min
(
κ+ ι′′, u+ d2λe+ ι′(2)− κ− ι′, u+ d3λe − κ− ι′

)
> min(ν + 2ι′(2), 3) = ν̃,

and therefore

a = 1
2f
′′(f̃(t))p2j

′−ν2 ≡ ωω′(−y)|y|p + pu−κ−ι
′
g′(0) (mod pν̃)

in this case.
We conclude that, in any case,

êf (g̃0 + ω′(1 + pι
′+κt)) = pñ/2ε

(
ωω′(−y/2)|y/2|p + pu−κ−ι

′
g′(0), pν̃

)
e

(
f̆(t)

pn

)
,

where

ñ = 2(n− w − j′ − ν̃) + (ν̃ + ι′(2))

= 2(n− w)− 2j + 2ι′ + 2κ− ν − ι′(2)

= n− w + ι′ + κ.

Note that (25) also defines f̆(t) as a formal power series; since rf = rf ′ > pλ̃, f̃(t) ∈ In0 [λ̃](Zp),
and, for every r < pλ̃, Mrf̃

.
= r, the numerical substitution of f̃(t) in (25) is allowed for |t|p < pλ̃.

To complete the proof of Lemma 10, it remains to prove that f̆ belongs to the announced classes.
According to the chain rule (6), we obtain from (25), (19), and (18) that

f̆ ′(t) = f ′(f̃(t))f̃ ′(t)− pw(g̃0 + ω′(1 + pι
′+κt))f̃ ′(t)− ω′pw+ι′+κf̃(t)

= −ω′pw+ι′+κf̃(t)

= −ω′ω−1pw+ordp y(1 + pι
′+κt)−1/y + ω′ω−1pw+ordp y − ω′pw+u+bλcg̃(t).
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This clearly shows that f̆ ′ ∈ pw+ι
′+κIn0 [λ̃](Zp). Recalling Definition 1, we have that, indeed,

f̆ ∈ F(w̆, 1/y, κ, λ̃, ŭ, 1,−ω′ω−1) with

w̆ = w + ordp y, ŭ = u+ bλc − dλ̃e − ordp y,

as announced. 2

We would like to point out the following feature of (23), which is a complete exponential
sum modulo pn−w. That such exponential sums reduce to sums over the (approximate) critical
points is classical; however, in general, one also encounters contributions from singular critical
points, and these can be very difficult to evaluate or estimate. An extremely important feature of
our definition of the class F is that it guarantees that we never encounter singular points, while
still being sufficiently broad to cover all cases of interest for the estimation of short character
sums. It is this feature that allows for the handsome, compact looks of the result of Lemma 10,
the main thrust of whose proof is to explicate the p-adic implicit function f̃ in a neighborhood
of a non-singular critical point and collect all contributions through explicit computations with
p-adic Gaussians.

We also remark that many of the conditions included in Lemma 10 for p ∈ {2, 3} can be
relaxed or altogether dropped by allowing higher-order terms and directly evaluating the resulting
sums. For example, the condition n−w > ι′+κ actually suffices for (30) in the case p = 2. Namely,
(30) also holds if n − w = ι′ + κ + 1 (when ν = 0), or if u + λ > ι′ + κ + 2, or if λ > 2. In the
remaining case n−w = ι′+κ+ 2, ν = 1, ν̃ = 3, j′ = 0, λ = 1, u = ι′+κ, we incur the extra term

f (iv)(f̃(t))

4!
p4j
′
q4 ≡ A2p

n−1q4 (mod pn),

where A2 = pu+w−n+1g(iii)(0)/4! ∈ Z2, and the summation in (26) becomes

êf (g̃0 + ω′(1 + pι
′+κt)) = pn−w−3e

(
f̆(t)

pn

) ∑
q mod 8

e

(
aq2 + 4A2q

4

8

)
.

Since 4A2q
4 ≡ 4A2q

2 (mod 8), the inner sum can again be evaluated by Lemma 8, yielding
Lemma 10 with only a change in the value of ε. However, we chose the current formulation,
which reflects conditions that guarantee a purely quadratic-term expansion at each stationary
point.

In the applications of Lemma 10, we will simply assume that κ > 1 + ι′(4) and n − w >
ι′ + κ + ι′(12); while these conditions can occasionally be somewhat relaxed, we will not be
concerned with this aspect, which is anyway relevant for p ∈ {2, 3} only.

We collect the fruits of our labor in the following summation formula.

Theorem 3 (Summation formula). Let f ∈ F(w, y, κ, λ, u, ω, ω′), n ∈ N, B > 0, and a Schwarz
function h ∈ C∞0 (R) be given, and assume that

κ > 1 + ι′(4), n− w > κ+ ι′ + ι′(12),

u+ bλc > κ+ ι′, λ̃ = min(κ− ρp(y), λ) > 0.
(31)

Let ελ = bλc − dλ̃e. Then there exists a function

f̊ ∈ F(w + ordp y, y
−1, κ, λ̃, u+ ελ − ordp y, ω

′−1,−ω−1) (32)
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depending on f only and an ε ∈ C, |ε| = 1, such that∑
m∈Z

e

(
f(m)

pn

)
h

(
m

B

)
=

εB

p(n−w−ι′−κ)/2

∑
t∈Z

e

(
f̊(t)

pn

)
ĥf,B

(
t

pn−w−ι′−κ/B

)
,

where ĥf,B is a reflected translate of the Fourier transform ĥ given by

ĥf,B(t) = ĥ

(
−t− f ′(0)

pn/B

)
.

Proof. Let S denote the sum on the left-hand side of the equality to be proved. Since e(f(t)/pn)
is periodic with period pn−w, we have that

S =
∑

m mod pn−w

∑
q∈Z

e

(
f(m+ pn−wq)

pn

)
h

(
m+ pn−wq

B

)

=
∑

m mod pn−w

e

(
f(m)p−w

pn−w

)
h]B(m), (33)

where

h]B(m) =
∑
q∈Z

h

(
m+ pn−wq

B

)
is a (Z/pn−wZ)-periodic function. Applying Parseval’s identity, we have that

S =
1

pn−w

∑
s mod pn−w

êf (s)ĥ]B(−s),

where êf (s) is as in (23), while, by unfolding,

ĥ]B(s) =
∑

m mod pn−w

h]B(m)e

(
− sm

pn−w

)

=
∑

m mod pn−w

∑
q∈Z

h

(
m+ pn−wq

B

)
e

(
−s(m+ pn−wq)

pn−w

)

=
∑
m∈Z

h

(
m

B

)
e

(
− sm

pn−w

)
.

Applying the Poisson summation formula, we find that

ĥ]B(s) =
∑
σ∈Z

∫ ∞
−∞

h

(
x

B

)
e

(
− sx

pn−w
− σx

)
dx = B

∑
σ∈Z

ĥ

(
s

pn−w/B
+Bσ

)
,

where ĥ denotes the usual Fourier transform. Therefore,

S =
B

pn−w

∑
s mod pn−w

∑
σ∈Z

êf (s)ĥ

(
− s

pn−w/B
+Bσ

)
. (34)

We remark that, while the expression of S as (34) can be reached in fewer steps, we have
structured the above proof so as to emphasize the rôle of duality in passing from a long sum in
(33) to a short one or conversely.
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We now crucially apply Lemma 10. According to this lemma, which may be applied in light
of (31), the Fourier transform êf (s) vanishes unless s = g̃0 + ω′(1 + pι

′+κt) for some t ∈ Zp, in

which case êf (s) is given in terms of the exponential e(f̆(t)/pn), with the function f̆ as in the
statement of Lemma 10. Using this result, we obtain

S =
B

pn−w
εp(n−w+ι

′+κ)/2
∑

t mod pn−w−ι′−κ

∑
σ∈Z

e

(
f̆(t)

pn

)
ĥ

(
− g̃0 + ω′(1 + pι

′+κt)

pn−w/B
+Bσ

)

=
εB

p(n−w−ι′−κ)/2

∑
t mod pn−w−ι′−κ

∑
σ∈Z

e

(
f̆(ω′−1t)

pn

)
ĥ

(
−(t− pn−w−ι′−κσ) + (g̃0 + ω′)p−ι

′−κ

pn−w−ι′−κ/B

)

=
εB

p(n−w−ι′−κ)/2

∑
t∈Z

e

(
f̆(ω′−1t)

pn

)
ĥ

(
− t+ (g̃0 + ω′)p−ι

′−κ

pn−w−ι′−κ/B

)
,

by unfolding again. The statement of the theorem follows by setting

f̊(t) := f̆(ω′−1t) ∈ F(w̆, y−1, κ, λ̃, ŭ, ω′−1,−ω−1),

noting that (f̊(t))′ = ω′−1f̆ ′(ω′−1t) and recalling that g̃0 + ω′ = f ′(0)p−w. 2

Theorem 4 (B-process). If (k, `, r, δ, (n0, u0, κ0, λ0)) is a p-adic exponent datum, then so is

B(k, `, r, δ, (n0, u0, κ0, λ0)) =
(
`− 1

2 , k + 1
2 , r̃, δ̃, (ñ0, ũ0, κ̃0, λ̃0)

)
,

where, denoting λ̃ = min(κ− ρp(y), λ),

r̃(y, p, κ, λ) = r(y−1, p, κ, λ̃), δ̃ = δ + δ01,

κ̃0(y, p) = max
(
1 + ι′(4), κ0(y

−1, p), λ0(y
−1, p) + ρp(y)

)
,

λ̃0(y, p) = λ0(y
−1, p),

ñ0(y, p, κ, λ) = max
(
κ+ ι′ + 1 + ι′(12), ordpy + n0(y

−1, p, κ, λ̃)
)
,

ũ0(y, p, κ, λ) = max
(
κ− bλc+ ι′ + 1, ordpy + u0(y

−1, p, κ, λ̃) + dλ̃e − bλc, 1
)
.

Proof. Let f ∈ F(w, y, κ, λ, u, ω, ω′) and 0 < B 6 pn−w−ι
′−κ be given. Fix a Schwarz function

h ∈ C∞0 (R), and consider the sum

S =
∑
m∈Z

e

(
f(m)

pn

)
h

(
m

B

)
,

with an eye to invoking Lemma 6. According to Theorem 3, assuming that conditions (31) hold,
we have that

S =
εB

p(n−w−ι′−κ)/2

∑
t∈Z

e

(
f̊(t)

pn

)
ĥf,B

(
t

pn−w−ι′−κ/B

)
,

with ĥf,B as in Theorem 3, |ε| = 1, and

f̊ ∈ F
(
w + ordp y, y

−1, κ, λ̃, u+ ελ − ordp y, ω
′−1,−ω−1

)
.

We now estimate the sum on the right-hand side using the given p-adic exponent datum and
Lemma 6. We note that, importantly, the cutoff function ĥf,B satisfies ‖ĥf,B‖? = ‖ĥ‖?, where

‖ · ‖? is the (translation-invariant) quantity defined in (17) which enters the condition H]
sm(δ)
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in Lemma 6. The given exponent datum can be directly applied as long as

1 6 pn−w−ι
′−κ/B 6 p(n−w−ι

′+ι−κ)−ι,

which is trivially satisfied, and

n− w − ordp y > n0(y−1, p, κ, λ̃), κ > κ0(y−1, p),
λ̃ = min(κ− ρp(y), λ) > λ0(y−1, p), u+ bλc − dλ̃e − ordp y > u0(y−1, p, κ, λ̃).

(35)

We thus find that

S =
εB

p(n−w−ι′−κ)/2

∑
t∈Z

e

(
f̊(t)

pn

)
ĥf,B

(
t

pn−w−ι′−κ/B

)

� ‖ĥf,B‖? ·
B

p(n−w−ι′−κ)/2
pr
(
p(n−w−ι

′+ι)−κ−ι

pn−w−ι′−κ/B

)k(pn−w−ι′−κ
B

)`
(log p(n−w−ι

′+ι)−κ−ι)δ

= ‖ĥ‖? · pr−(ι
′+κ)`+(ι′+κ)/2B1+k−`(pn−w)`−1/2(log pn−w−κ−ι

′
)δ

= ‖ĥ‖? · pr̃
(
pn−w−κ−ι

′

B

)`−1/2
Bk+1/2(log pn−w−κ−ι

′
)δ,

with
r̃ = r̃(y, p, κ, λ) = r(y−1, p, κ, λ̃).

We now apply Lemma 6 again. Since the estimate proved above holds with a constant
depending on the cutoff function h only, we have, according to the implication Hsm(δ)sq =⇒
H(δ + δ1/2)

sq, that, for every M ∈ Z and every 0 < B 6 pn−w−κ−ι
′
,∑

M<m6M+B

e

(
f(m)

B

)
� pr̃(y,p)

(
pn−w−κ−ι

′

B

)`−1/2
Bk+1/2(log pn−w−κ−ι

′
)δ̃,

with δ̃ = δ+δ01 (and δ01 equal to the δ1/2 applied to the pair (`− 1
2 , k+ 1

2)) and a uniform implied
constant. This estimate is valid as long as all conditions listed in (31) and (35) are satisfied; this
gives us the p-adic exponent datum announced in the statement of the theorem. 2

In particular, applying Theorem 4 to the trivial p-adic exponent datum

ω01 = (0, 1, 0, 0, (κ+ ι′ + 1, 1, 1 + ι′(2), ρp)),

we obtain the following important datum:

ω1/2 =
(
1
2 ,

1
2 , 0, 1, (κ+ ι′ + 1 + ι′(12),max(κ− bλc+ ι′ + 1, 1), 1 + ι′(4), ρp)

)
. (36)

5. A-process

The A-process relies on a procedure in which an estimate on the exponential sum (4) is obtained
by comparing it to sums obtained by replacing f with its differences over pairs of points in
appropriate p-adic neighborhoods (see (37) below); this has the effect of considerably reducing
the modulus relative to the length of the summation. This estimate can be seen as an adaptation
of the classical Weyl–van der Corput inequality. For clarity, we state the underlying inequality
separately and in some generality.

Lemma 11. Let b : Z → C be an arbitrary function such that |b(t)| � 1 for every t ∈ Z. Let
M ∈ Z and B ∈ N, and let

S =
∑

M<m6M+B

b(m).
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Then, for every positive integer 0 < H 6 B,

S2 � BH +H
∑

0<|h|<B/H

∣∣∣∣ ∑
m∈J(h)

b(m+ hH)b(m)

∣∣∣∣,
where

J(h) = (M,M +B − hH] ∩ (M − hH,M +B]

is an interval of length |J(h)| = B − |h|H 6 B.

Proof. Let I(m) be an interval of the real axis depending on m ∈ Z defined as

I(m) = {t ∈ R : M < m+ tH 6M +B} =

(
M −m
H

,
M +B −m

H

]
.

Note that |I(m)| = B/H for every m ∈ Z. We can adapt Weyl’s ‘smoothing’ trick to write∑
M−H<m6M+B

∑
h∈I(m)

b(m+ hH)

=
∑

M<m6M+B

b(m) ·#
{

(m1, h) :
M −H < m1 6M +B,
h ∈ I(m1), m = m1 + hH

}
=

∑
M<m6M+B

b(m) ·#{h ∈ Z : M −H < m− hH 6M +B}

=
∑

M<m6M+B

b(m)

(
B

H
+ O(1)

)
=
B

H
S + O(B).

The second equality follows from an observation that, given m ∈ (M,M +B], m1 ∈ (M −H,
M +B], and h ∈ Z such that m = m1 + hH, the condition h ∈ I(m1) is automatically satisfied.

Applying the Cauchy–Schwarz inequality, we have that

B2

H2
S2 �

∣∣∣∣ ∑
M−H<m6M+B

∑
h∈I(m)

b(m+ hH)

∣∣∣∣2 +B2

� B
∑

M−H<m6M+B

∣∣∣∣ ∑
h∈I(m)

b(m+ hH)

∣∣∣∣2 +B2

� B3

H
+B

∑
M−H<m6M+B

∑∑
h1,h2∈I(m), h1 6=h2

b(m+ h1H)b(m+ h2H) +B2

� B3

H
+B

∑∑∑
M−H<m6M+B, 0<|h|<B/H,

g∈I(m), g+h∈I(m)

b((m+ gH) + hH)b(m+ gH)

=
B3

H
+B

∑
0<|h|<B/H

∑
−B/H<g<B/H+1

∑
m∈J(h)

b(m+ hH)b(m)

� B3

H
+
B2

H

∑
0<|h|<B/H

∣∣∣∣ ∑
m∈J(h)

b(m+ hH)b(m)

∣∣∣∣,
with J(h) as in the statement of the lemma. This gives the desired inequality. 2

The condition |b(t)| � 1 is not essential and was introduced only with our application in
mind. Following the proof practically verbatim with an extra application of the Cauchy–Schwarz
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inequality to estimate the error term from the smoothing, one can prove that, for every function
b : Z → C,

S2 � H
∑

06|h|<B/H

∣∣∣∣ ∑
m∈J(h)

b(m+ hH)b(m)

∣∣∣∣,
with the term h = 0 accounting for the diagonal contribution; the statement of the lemma follows
trivially when |b(t)| � 1.

We will use Lemma 11 with b(t) = e(f(t)/pn) and with H = pχ chosen as a power of p. The
estimate we just proved reads as

S2 � BH +H
∑

0<|h|<B/H

∣∣∣∣ ∑
m∈J(h)

e

(
f(m+ pχh)− f(m)

pn

)∣∣∣∣. (37)

In the following lemma, we consider the function appearing in the inner exponential sum.

Lemma 12. Let f ∈ F(w, y, κ, λ, u, ω, ω′), and assume that

u > κ− bλc+ ι′ and λ+ χ > ρp.

Let ε̃(y) = 1 if ordpy < 0 and ε̃(y) = 0 otherwise, and let

λ̃ = min(κ− ε̃(y)ρp, λ), µ = min(2κ+ ι′ − ι′(2)− ε̃(y), u+ b2λ− ρpc).

Let χ > 0, h ∈ Z×p be fixed. Then there exists a power series g1 ∈ I0[λ̃](Zp) with g′1 ∈ pµI0[λ̃](Zp)
such that the equality

fχ,h(t) := f(t+ pχh)− f(t) = pχhf ′(t) + p2χ+wg1(t)

holds for all |t|p < pλ̃. In particular,

fχ,h ∈ F
(
w + χ+ κ+ ι′, y + 1, κ, λ̃,

min(u+ bλc − κ− ι′, χ+ κ− ι′(2)− ε(y)), ω, ωω′(−y)|y|ph
)
.

Proof. Since rf = rf ′ > pλ̃, we have according to (9) the equality of values

f(t+ pχh)− f(t) = pχhf ′(t) + p2χh2
∞∑
r=2

p(r−2)χhr−2
f (r)(t)

r!

for every |t|p < pλ̃.
We now consider the infinite sum of the series on the right-hand side as a formal sum. With

g(t) as in (11) and writing g′(t) =
∑∞

j=0 gjt
j ∈ I0,1[λ](Zp), the coefficient of the rth series with

tj (j > 0) equals

arj =
hr−2pw+(r−2)χ

r!

(
ω′ωj+r−2pκ+ι

′+(ι+κ)(j+r−2) (−y − 1)j+r−2
j!

+ pugj+r−2(j + r − 2)r−2

)
.

It follows that

ordp(arj) > w + (r − 2)χ− ordp(r!) + min
(
κ(j + r − 1)− ε̃(y) ordp(j!) + ι′, u+ dλ(j + r − 1)e

)
> w + min

(
d(κ+ χ− ρp)(r − 2)− ρpe+ d(κ− ε̃(y)ρp)je+ κ+ ι′,

u+ dλ(j + 1) + (r − 2)(λ+ χ− ρp)− ρpe
)
.
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According to our discussion in (10), since min(κ, λ) + χ > ρp, the formal sum of power series
converges to a power series g̃1(t) =

∑∞
j=0 g̃jt

j with

ordp g̃j > w + min
(
d(κ− ε̃(y)ρp)je+ κ+ ι′ − ι′(2), u+ dλ(j + 1)− ρpe

)
;

moreover, we have that g̃1(t) ∈ pwI0[λ̃](Zp), and the pointwise equality of values holds for all

|t|p < pλ̃. Hence we can take g1(t) = h2p−wg̃1(t). We also have that

ordp((j + 1)g̃j+1) > w + min
(
d(κ− ε̃(y)ρp)je+ 2κ+ ι′ − ι′(2)− ε̃(y), u+ dλ(j + 2)− ρpe

)
,

so that g′1(t) ∈ pµI0[λ̃](Zp) with µ = min(2κ+ ι′− ι′(2)− ε̃(y), u+ b2λ− ρpc), as announced. 2

The following theorem establishes the p-adic A-process. Its statement may appear somewhat
frightening, but this is due to our desire to work in full generality. We will see in § 6 how one
obtains very concrete and easy to work with exponent data as long as one stays away from a
finite number of primes and makes a concrete choice of κ. To keep the expressions manageable,
we write g(y±) to denote max(g(y), g(y−1)).

Theorem 5 (A-process). If (k, `, r, δ, (n0, u0, κ0, λ0)) is a p-adic exponent datum, then

A(k, `, r, δ, (n0, u0, κ0, λ0)) =

(
k

2(k + 1)
,
k + `+ 1

2(k + 1)
, r̃, δ̃, (ñ0, ũ0, κ̃0, λ̃0)

)
is also a p-adic exponent datum.

Here, if 0 < k 6 1
2 6 ` < 1, then, denoting λ̃ = min(κ− ρp(y), λ),

r̃(y, p, κ, λ) =
r + k

(
1− κ−min(ι′(y + 1), ι′(y−1 + 1))

)
2(k + 1)

, δ̃ =
max(1, δ)

2
,

as well as

κ̃0(y, p) = max
(
1 + ι′(4), κ0(y

± + 1, p), ρp(y) + λ0(y
± + 1, p), ρp(y) + 2ρp

)
,

λ̃0(y, p) = max
(
λ0(y

± + 1, p), 2ρp
)
,

ũ0(y, p, κ, λ) = max
(
1, u0(y + 1, p, κ, λ̃) + κ− bλc+ ι′(y),

u0(y
−1 + 1, p, κ, λ̃) + κ+ dλ̃e − bλc − bλ̃c+ ι′(y),

2κ− bλc − bλ̃c+ ι′(y(y + 1)) + 1,

2κ+ dλ̃e − bλc − 2bλ̃c+ ι′(y) + ι′(y−1 + 1) + 1
)
,

ñ0(y, p, κ, λ) = κ+ ι′(y) +

⌈
max

(
2κ+ 2ι′(y± + 1) + 2ι′(12),

n0(y
± + 1, p, κ, λ̃) + κ+ ι′(y± + 1)− 1,

3
2n0(y

± + 1, p, κ, λ̃)− 1
2κ− 1

2 ι
′(y± + 1)− 3

2 ,

n0(y
± + 1, p, κ, λ̃) + ι′(2) + ι′(y± + 1) + ε(y±)− bλ̃c,

2(r + κ+ ι′(y± + 1)) + (k − 1)

1− ` ,

εu

(
2k + 1− `

k
(u0(y

± + 1, p, κ, λ̃)− κ+ ι′(2) + ε(y±))

− r − 1

k(k + 1)
+
κ+ ι′(y± + 1)

k + 1

))⌉
,

where εu = 0 if u0(y
± + 1, p, κ, λ̃)− κ+ ι′(2) + ε(y±) 6 0 and εu = 1 otherwise.
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If k = 0, the above holds with

r̃(y) = r(y)/2, δ̃ = δ/2,

κ̃0 = κ0(y, p), λ̃0 = λ0(y, p), ñ0 = n0, ũ0 = u0.

If ` = 1, the above holds with

r̃(y) = 0, δ̃ =
k

k + 1
, κ̃0 = 1 + ι′(4), λ̃0 = ρp,

ñ0 = κ+ ι′(y) + 1 + ι′(12), ũ0 = max(κ− bλc+ ι′(y) + 1, 1).

Proof. Let f ∈ F(w, y, κ, λ, u, ω, ω′), M ∈ Z, and 0 < B 6 pn−w−κ−ι
′

be given, and let

S =
∑

M<m6M+B

e

(
f(m)

pn

)
.

We consider the principal case 0 < k 6 1
2 6 ` < 1; the complementary cases are easy and will be

addressed at the end of the proof. Denote w̃ = w + κ + ι′, and let ρ and σ be real parameters,
to be suitably chosen later. We seek to prove an estimate of the form

S � pr̃
(
pn−w̃

B

)k/(2(k+1))

B(k+`+1)/(2(k+1))(log pn−w̃)δ̃. (38)

The basic strategy is to estimate S by applying the given p-adic exponent datum to the inner
sum in (37). For this purpose, we will choose H to be a positive integer, in fact a power of p,
satisfying

H = pχ = pσ
(
pn−w̃

B

)k/(k+1)

B`/(k+1) (39)

for some σ ∈ R to be suitably chosen. It turns out that this strategy works well if B is neither
too small nor too large, in a sense which will be made precise.

To make the discussion easier to follow, we present the proof in two parts. The principal
range for B, along with the easy case when B is small, is treated in the first part of the proof.
We will address the range when B is large in the second part of the proof by using the summation
formula of Theorem 3 to shorten the sum down to the first range.

1. Range 1 6 B 6 pn−w̃−ρ/H. If 1 6 B 6 H, then we use the trivial bound |S| 6 B to obtain

|S| 6 B 6 (BH)1/2 = pσ/2
(
pn−w̃

B

)k/(2(k+1))

B(k+`+1)/(2(k+1)).

This suffices for (38) as long as
r̃ > σ/2 + op, (40)

where (here and on) we denote op = O(1/log p) and 0 6 o+p � 1/log p, so that pop , po
+
p � 1.

We now consider the range H 6 B 6 pn−w̃−ρ/H, which is of principal interest. The lower
bound on B implies that

H > pσ
(
pn−w̃

H

)k/(k+1)

H`/(k+1) = pσ(pn−w̃)k/(k+1)H(`−k)/(k+1),

H > pσ/(2k+1−`)(pn−w̃)k/(2k+1−`), (41)
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since we are assuming that (k, `) 6= (0, 1). The upper bound on B can be equivalently written as

B 6 pn−w̃−ρp−σ
(
pn−w̃

B

)−k/(k+1)

B−`/(k+1) = p−(ρ+σ)(pn−w̃)1/(k+1)B−(`−k)/(k+1)

B 6 p−(ρ+σ)(k+1)/(`+1)(pn−w̃)1/(`+1). (42)

We will assume that
ρ > κ̂,

where κ̂ = κ+ ι′(y + 1), thus ensuring that

B 6 pn−w̃−χ−κ̂.

We can rewrite (37), the result of Weyl differencing (Lemma 11), as

S2 � BH +H
∑

0<|h|<B/H

∣∣∣∣ ∑
m∈J(h)

e

(
fχ,h(m)

pn

)∣∣∣∣, (43)

where fχ,h(t) = f(t+ pχh)− f(t). According to Lemma 12, assuming that

u > κ− bλc+ ι′(y), λ+ χ+ ordp h > ρp, (44)

we have that

fχ,h ∈ F
(
w + χ+ ordp h+ κ+ ι′, y + 1, κ, λ̃,

min(u+ bλc − κ− ι′, χ+ ordp h+ κ− ι′(2)− ε(y)), ω, ω′h|h|p(−y)|y|p
)
.

The inner sum S(h) in (43) will be estimated using an appropriate existing p-adic exponent
datum. Write w̃χ = χ+ w̃, hp = |h|−1p = pχp . We see that we can use the given p-adic exponent
datum for those values of h for which χp satisfies

n− w̃χ − χp > n0 := n0(y + 1, p, κ, λ̃),

as long as all other conditions are satisfied. We separate the sum in (43) into two appropriate
ranges for h as

S2 � BH +H(S1 + S2),

where
S1 =

∑
0<|h|<B/H

06χp6n−w̃χ−n0

|S(h)|, S2 =
∑

0<|h|<B/H
χp>n−w̃χ−n0

|S(h)|.

We think of BH and HS1 as the two main terms in this estimate on S2. All other terms we
encounter will be estimated so as to be (essentially) majorized by upper bounds on one of them
(as was already done in the case B 6 H).

We first estimate S1. The inner sum S(h) in S1 can be estimated using the given p-adic
exponent datum as long as

κ > κ0(y + 1, p), λ̃ = min(κ− ρp(y), λ) > λ0(y + 1, p),

u > u0(y + 1, p, κ, λ̃) + κ− bλc+ ι′(y),
(45)

as well as
χ > u0(y + 1, p, κ, λ̃)− κ+ ι′(2) + ε(y).
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The latter condition is trivially satisfied when the right-hand side is non-positive. If this is not
the case, we still need this inequality only in the range (41), so that it is satisfied whenever

n− w̃ > εu
(

2k + 1− `
k

(u0(y + 1, p, κ, λ̃)− κ+ ι′(2) + ε(y))− σ

k

)
. (46)

Writing r = r(y + 1, p, κ, λ̃), we thus obtain the estimate

|S(h)| � pr
(
pn−w̃χ−χp−κ̂

|J(h)|

)k
|J(h)|`(log pn−w̃χ−χp−κ̂)δ

6 pr
(
pn−w̃χ−χp−κ̂

B

)k
B`(log pn−w̃)δ

valid for all h appearing in S1 for which |J(h)| 6 pn−w̃χ−χp−κ̂, as well as the estimate

|S(h)| � pr(pn−w̃χ−χp−κ̂)`
( |J(h)|
pn−w̃χ−χp−κ̂

+ 1

)
(log pn−w̃)δ,

valid for all h in S1 regardless of the size of |J(h)|. Combining these estimates, we find that,
assuming that (45) and (46) are satisfied, we have

HS1 � prB

(
pn−w̃χ−κ̂

B

)k
B`(log pn−w̃)δ

+ prH
∑

0<|h|<B/H,
χp>n−w̃χ−κ̂−logB/log p

B

(pn−w̃χ−χp−κ̂)1−`
(log pn−w̃)δ.

The second term of this estimate is

6 pr
BH

p(n−w̃χ−κ̂)(1−`)

∑
ψ>n−w̃χ−κ̂−logB/log p

pψ(1−`)
B/H

pψ
(log pn−w̃)δ

� pr
B2

p(n−w̃χ−κ̂)(1−`)

(
pn−w̃χ−κ̂

B

)−`
(log pn−w̃)δ = pr

B2+`

pn−w̃χ−κ̂
(log pn−w̃)δ.

In light of B 6 pn−w̃χ−κ̂, this term is � prB1+`(log pn−w̃)δ and is absorbed in the first term of
the estimate. Summing up, we have proved that, assuming (45) and (46),

HS1 � pr
(
pn−w̃χ−κ̂

B

)k
B1+`(log pn−w̃)δ.

We now turn our attention to S2, where we estimate the inner sum S(h) using the p-adic
exponential datum (36). This is allowable as long as

n− w̃χ − χp > κ̂+ 1 + ι′(12)

as well as
κ > 1 + ι′(4), λ̃ = min(κ− ρp(y), λ) > ρp,

u > 2κ− bλc − bλ̃c+ ι′(y(y + 1)) + 1,
(47)
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and
χ+ χp > ι

′(2) + ι′(y + 1) + ε(y) + 1− bλ̃c.
Note that the final condition is required for χp > n− w̃χ − n0 + 1, so that it is satisfied as long
as

n− w̃ − n0 > ι′(2) + ι′(y + 1) + ε(y)− bλ̃c. (48)

Assuming this to be the case, we obtain the estimate

|S(h)| � (pn−w̃χ−χp−κ̂)1/2
( |J(h)|
pn−w̃χ−χp−κ̂

+ 1

)
log pn−w̃χ−χp−κ̂,

valid for all h appearing in S2 for which χp 6 n− w̃χ − κ̂− 1− ι′(12). Estimating the remaining
summands in S2 trivially as |S(h)| 6 B, we thus find that

HS2 � H
∑

ψ>n−w̃χ−n0+1

B/H

pψ

(
B

p(n−w̃χ−κ̂−ψ)/2
+ p(n−w̃χ−κ̂−ψ)/2

)
log pn−w̃

+H
∑

ψ>n−w̃χ−κ̂−ι′(12)

B/H

pψ
B

� B2

p(n−w̃χ−κ̂)/2
1

p(n−w̃χ−n0+1)/2
log pn−w̃

+Bp(n−w̃χ−κ̂)/2
1

p3(n−w̃χ−n0+1)/2
log pn−w̃ +

B2

pn−w̃χ−κ̂−ι
′(12)

� BH
Bp(n0−1)/2+κ̂/2 +Bpι

′(12)+κ̂ + p3(n0−1)/2−κ̂/2

pn−w̃
log pn−w̃.

We now arrange for our parameters to be such that this upper bound on HS2 is no more than
BH log pn−w̃. (Here and below, we sacrifice a small power of logarithm for no other reason
but clarity.) We will initially do this for the entire range H 6 B 6 pn−w̃χ−ρ; this range will
be restricted in the second part of the proof, relaxing the conditions to be imposed. Letting
µ = max((n0 − 1)/2 + κ̂/2, ι′(12) + κ̂), the condition Bpµ 6 pn−w̃ is, in light of the range (42)
for B, satisfied whenever

p−(ρ+σ)(k+1)/(`+1)(pn−w̃)1/(`+1)pµ 6 pn−w̃,

p−(ρ+σ)(k+1)/(`+1)pµ 6 (pn−w̃)`/(`+1).

Along with the condition that p3(n0−1)/2−κ̂/2 6 pn−w̃, we will have that HS2 � BH log pn−w̃ as
long as (47) and (48) hold as well as

n− w̃ > `+ 1

2`
(max(n0 − 1 + κ̂, 2ι′(12) + 2κ̂))− (ρ+ σ)

k + 1

`
,

n− w̃ > 3

2
n0 −

1

2
κ̂− 3

2
.

(49)

Collecting all contributions from the estimations of HS1 and HS2, we find that, in the range
under consideration, and assuming (44)–(49), we have that

S2 � BH +H(S1 + S2)

� BH log pn−w̃ + pr
(
pn−w̃−κ̂

B

)kB1+`

Hk
(log pn−w̃)δ.

(50)
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An H satisfying

Hk+1 = pr
(
pn−w̃−κ̂

B

)k
B`

would be essentially optimal. We can’t make this exact choice as we are bound by the condition
that H be a non-negative power of p. However, it is reasonable to seek an H to be the power of
p for which

cHp
(r−1)/(k+1)

(
pn−w̃−κ̂

B

)k/(k+1)

B`/(k+1)

= H∗ < H 6 H∗ = cHp
(r+k)/(k+1)

(
pn−w̃−κ̂

B

)k/(k+1)

B`/(k+1),

with a suitable choice of cH > 0, since H∗ = pH∗. Such a choice is admissible as long as H∗ > 1.
There are several ways to ensure this; we find it convenient to invoke the condition (55) below,
which will be imposed anyway. In light of this condition, we have that n − w̃ − κ̂ + 1 > (n0 −
κ̂) + max(n− w̃− n0 + 1, 12(n0− κ̂− 1)), with the first of the two latter expressions > κ̂, so that
n−w̃− κ̂+1 > (n0− κ̂)+max(12(n−w̃−n0+ κ̂+1), 12(n0− κ̂−1)) > (n0− κ̂)+ 1

4(n−w̃). It follows

that H∗ > cH
(
pr+(n0−κ̂)k(log pn−w̃)δ

)1/(k+1)
p(n−w̃)/(4(k+1))/(log pn−w̃)δ > 1 for a sufficiently large

cH > 1 (depending only on the initial p-adic exponent datum in Theorem 5), since the second
factor is trivially � 1, while the first factor is � 1 as seen (following Definition 2) after (16).

With such a choice of H, we have

r − 1− kκ̂
k + 1

+ o+p < σ 6
r + k − kκ̂
k + 1

+ o+p , (51)

as well as

S2 � p(r+k−kκ̂)/(k+1)

(
pn−w̃

B

)k/(k+1)

B(k+`+1)/(k+1)(log pn−w̃)max(1,δ).

We see that this is allowable for (38) as long as

r̃ >
r + k(1− κ− ι′(y + 1))

2(k + 1)
, δ̃ >

max(1, δ)

2
. (52)

Note that the first of these two inequalities subsumes (40). Further, the first of the two
conditions (44) is subsumed in (47). The second condition can also be dispensed with if λ > 2ρp
or if χ > 0. We could ensure the latter by imposing a lower bound on n− w̃, but we keep things
simple and make an innocuous assumption

λ̃ > 2ρp (53)

to take the place of (44), with a λ̃ in place of λ with an eye on the second part of the proof.
Summing up, we have proved that the estimate (38) holds for all 0 < B 6 pn−w̃χ−ρ (where

ρ > κ̂), assuming that all conditions listed in (45)–(49), (52), (53), and (55) are met.

2. The complementary range, split at p(n−w̃)/2, and conclusion. The complementary range
pn−w̃χ−ρ < B 6 pn−w̃ really should be treated in a different way, for in this range the supposed
second main term in (50) does not correctly capture the full contribution of the terms |S(h)| to
HS1, because the length of summation |J(h)| in S(h) is unfavorably large compared with the
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modulus pn−w̃χ−χp−κ̂ already for χp = 0. This is in the nature of the method. The Weyl–van der
Corput inequality (Lemma 11) has the effect of substantially reducing the modulus relative to
the length of the summation; this is its intended purpose. But if the length of the summation,
which remains � B, is too large, then this effect goes too far.

One way to deal with the supplementary range, in which B is rather large compared with
the modulus pn−w̃, is to apply the p-adic exponent datum (36) and then make sure that the
resulting estimate p(n−w̃)/2 is no more than (38). (This approach should be compared to the
application of the Pólya–Vinogradov inequality in [BLT64] to dispense with the range x� q2/3

when estimating the sum
∑

n6x χ(n).) This turns out to work wonderfully for pn−w̃χ 6 B 6 pn−w̃,

requiring no adjustments to the final result, and not too badly for pn−w̃χ−ρ < B < pn−w̃χ , where
the price to be paid is that one must require r̃ > (ρ+σ)/2 +op > (κ̂+σ)/2 +op, which increases
the final upper bound by a factor of at least pκ̂/2. This would not be horrible (and it is certainly
inconsequential if one is only concerned with a fixed prime p), but we can do substantially better.
If we think about the proof of the datum (36), we realize that it consists of an application of
the summation formula of Theorem 3, followed by a trivial estimate of the resulting shortened
sum. In this light, the range pn−w̃χ 6 B 6 pn−w̃ corresponds dually to the range 1 6 B 6 H, in
which our estimate (38) was indeed obtained by the trivial bound. It thus becomes clear that,
to avoid losses for B < pn−w̃χ , we should follow the application of the summation formula not
by the trivial estimate but by exactly the same estimates that we used in the dual range B > H.

At this point, we reflect back on the range considered in the first part of the proof, choose

ρ = κ̂,

and instead claim (38) for all 1 6 B 6 p(n−w̃)/2 and only those B. It suffices to establish (38)
for all 1 6 B 6 p(n−w̃)/2/b, where b > 0 is a suitably chosen large constant. Note that, for all B
in this interval,

pn−w̃χ−κ̂ >
pn−w̃−κ̂

pσ(p(n−w̃)/2/b)(k+`)/(k+1)

= p−κ̂−σb(k+`)/(k+1)(pn−w̃)(k+2−`)/(2(k+1))

= p−κ̂−σb(k+`)/(k+1)(pn−w̃)(1−`)/(2(k+1))p(n−w̃)/2.

We want to ensure that the left-hand side, which is a power of p, is at least p(n−w̃)/2; for this, it
suffices to ensure that the right-hand side is > p(n−w̃−1)/2. Keeping in mind the range for σ in
(51) and adjusting the constant b as necessary, we conclude that the proof of the estimate (38)
in the first part covers the entire range 1 6 B 6 p(n−w̃)/2 as long as

n− w̃ > 2(k + 1)

1− `

(
κ̂+

r + k − kκ̂
k + 1

− 1

2

)
=

2(r + κ+ ι′(y + 1)) + (k − 1)

1− ` . (54)

As we announced, this restriction of range also allows us to relax the condition (49) somewhat.
In light of B 6 p(n−w̃)/2, the condition Bpµ 6 pn−w̃ is satisfied whenever n− w̃ > 2µ, so we may
replace (49) with

n− w̃ > max
(
n0 − 1 + κ̂, 2κ̂+ 2ι′(12), 32(n0 − 1)− 1

2 κ̂
)
. (55)

We now address the case when B > p(n−w̃)/2. Instead of S, consider

S′ =
∑
m∈Z

e

(
f(m)

pn

)
h

(
m

B

)
.
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According to Theorem 3, assuming that

κ > 1 + ι′(4), n− w̃ > 1 + ι′(12),

u+ bλc > κ+ ι′, λ̃ = min(κ− ρp(y), λ) > 0,
(56)

we have that

S′ =
εB

p(n−w̃)/2

∑
t∈Z

e

(
f̊(t)

pn

)
ĥf,B

(
t

pn−w̃/B

)
,

with |ε| = 1 and f̊ as in (32):

f̊ ∈ F(w + ordp y, y
−1, κ, λ̃, u+ ελ − ordp y, ω

′−1,−ω−1).
Note that w̃′ := (w + ordp y) + κ+ ι = w + κ+ ι′ = w̃. Since pn−w̃/B 6 p(n−w̃)/2, the first part

of the proof shows that sharp-cutoff sums of e(f̊(t)/pn) of length no more than pn−w̃/B can be
estimated as in (38), as long as f̊ satisfies all conditions accumulated in the process of proving
this estimate. Referring to (45)–(48), (52), (54) and (55), we find that we require the following
additional assumptions:

κ > κ0(y−1 + 1, p), λ̃ > λ0(y−1 + 1, p),

u+ ελ − ordp y > u0(y−1 + 1, p, κ, λ̃) + κ− bλ̃c+ ι(y),

n− w̃ > εu
(

2k + 1− `
k

(u0(y
−1 + 1, p, κ, λ̃)− κ+ ι′(2) + ε(y−1))− σ′

k

)
,

u+ ελ − ordp y > 2κ− 2bλ̃c+ ι′(y−1(y−1 + 1)) + 1,

n− w̃ − n′0 > ι′(2) + ι′(y−1 + 1) + ε(y−1)− bλ̃c,

r̃ >
r + k(1− κ− ι′(y−1 + 1))

2(k + 1)
,

n− w̃ > 2(r + κ+ ι′(y−1 + 1)) + (k − 1)

1− ` ,

n− w̃ > max
(
n′0 − 1 + κ̂′, 2κ̂′ + 2ι′(12), 32(n′0 − 1)− 1

2 κ̂
′),

(57)

where

n′0 := n′0(y
−1 + 1, p, κ, λ̃), κ̂′ := κ+ ι′(y−1 + 1),

r − 1− kκ̂′
k + 1

+ o+p < σ′ 6
r + k − kκ̂′
k + 1

+ o+p .

Assuming that these hold, and in light of ‖ĥf,B‖? = ‖ĥ‖?, we can estimate S′, using also the

implication H(δ) =⇒ H]
sm(δ) of Lemma 6, as

S′ � B

p(n−w̃)/2
pr̃Bk/(2(k+1))

(
pn−w̃

B

)(k+`+1)/(2(k+1))

(log pn−w̃)δ̃,

with a uniform implied constant depending on h only. From this it follows that

S′ � pr̃(pn−w̃)`/(2(k+1))B(2k+1−`)/(2(k+1))(log pn−w̃)δ̃

= pr̃(pn−w̃)k/(2(k+1))B(`+1)/(2(k+1))(log pn−w̃)δ̃
(
pn−w̃

B2

)(`−k)/(2(k+1))

� pr̃
(
pn−w̃

B

)k/(2(k+1))

B(k+`+1)/(2(k+1))(log pn−w̃)δ̃
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for all B > p(n−w̃)/2. Using the implication H(δ) =⇒ Hsm(δ) of Lemma 6, it follows from the

first part of the proof that the same estimate also holds for all B 6 p(n−w̃)/2 and thus for all

1 6 B 6 pn−w̃. The same upper bound follows for S in light of Hsm(δ)sq =⇒ H(δ)sq of Lemma 6,

since no extra factor of δ1/2 appears in the power of the logarithm because the exponent pair

(k/(2(k + 1)), (k + `+ 1)/(2(k + 1))) cannot equal (12 ,
1
2).

The stated p-adic exponent datum for 0 < k 6 1
2 6 ` < 1 follows from collecting all conditions

(45)–(48), (52)–(57).

The remaining cases k = 0 and ` = 1 follow directly by convex interpolation from bounds

given by known p-adic exponent data. If k = 0, we interpolate between the bound (15) for the

given p-adic exponent datum and the trivial bound S � B to obtain

S � (prB`(log pn−w̃)δ)1/2B1/2 = pr/2B(`+1)/2(log pn−w̃)δ/2.

If ` = 1, we use convex interpolation between the bound (15) for the first non-trivial datum (36)

and the trivial bound S � B as follows:

S � (p(n−w̃)/2 log pn−w̃)k/(k+1)B1/(k+1) =

(
pn−w̃

B

)k/(2(k+1))

B(k+2)/(2(k+1))(log pn−w̃)k/(k+1). 2

We comment briefly on possible optimality of the obtained value of ñ0. The condition that

ñ0 > (1 + ε)n0 with a fixed ε = ε(k, `) > 0 appears essential to the Weyl differencing method. We

do not believe that, for example, a condition of the form ñ0 > n0 +C(k, `) can suffice in general.

Substantial effort was put into making 1 + ε as small as we could, but it is not clear that the

factor of 3
2 is necessarily optimal.

While processes engaging some ‘q-variant’ of the Weyl–van der Corput inequality have been

used by previous authors, our approach in Theorem 5 is, to our knowledge, novel in a number

of ways, including the use of the (12 ,
1
2) pair to reduce the required ñ0 and of the summation

formula to shorten the sum in the range B � p(n−w̃)/2 and obtain what are probably nearly

optimal exponents, as well as the entire paradigm of the method applying to classes of p-adic

analytic functions.

6. Application to L-functions

The relevance of the class F to Dirichlet L-functions stems from the following (in hindsight)

simple Lemma 13. In a more elementary form, this line of reasoning seems to have been first

used in the context of analysis of L-functions by Postnikov [Pos55].

Recall that the group (Z/pnZ)× of invertible congruence classes modulo pn is cyclic for an

odd prime p and a product of the subgroup {±1} and a cyclic group of order 2n−2 if p = 2 and

n > 2 (we ignore the trivial case pn = 2 here). Let

κ1 = 1 + ι′(2),

and let (Z/pnZ)×1 = {a+ pnZ : a ≡ 1 mod pκ1}. We have that (Z/pnZ)× = Gn × (Z/pnZ)×1 with

a subgroup Gn ∼= (Z/pκ1Z)×.

Let Γn denote the set of all Dirichlet characters modulo pn, and let Γn1 denote the set of all

characters of the subgroup (Z/pnZ)×1 . We have the isomorphism of dual groups Γn = Ĝn × Γn1,

and restriction to 1 + pκ1Z gives a natural surjection Γn � Γn1.
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Lemma 13. Let n > κ1 be given. For every a = a0p
−n ∈ p−nZp,

χa(1 + pκ1t) = e(a logp(1 + pκ1t)) = e

(
a0 logp(1 + pκ1t)

pn

)
defines a character χa ∈ Γn1. Moreover, every character of Γn1 is of this form, and the
correspondence a 7→ χa induces an isomorphism p−nZp/p−κ1Zp ∼= Γn1, with primitive characters
being those corresponding to p−nZ×p /p−κ1Zp.

Proof. We saw in § 2 that the series λ(x) = logp(1 + x) has rλ = 1 and Mrλ
.
= r for all r < rp.

Since

λ(x+ y + xy) = λ(x) + λ(y)

for every x, y ∈ B1, it follows that χa is a multiplicative function χa : 1 + pκ1Z → S1. On the
other hand, since pκ1t ∈ Brp for every t ∈ Z, we have that

ordp(a logp(1 + pκ1t)) = ordp(ap
κ1t).

Note that χa(1 + pκ1t) = 1 if and only if a logp(1 + pκ1t) ∈ Zp. We see that 1 + pnZ ⊆ kerχa, so

that χa is indeed a character of (Z/pnZ)×1 .
It is immediate that a 7→ χa is a homomorphism of groups p−nZp → Γn1. Moreover, we see

that χa is the trivial character if and only if apκ1t ∈ Zp for every t ∈ Z (and in particular for t= 1),
that is, exactly when a ∈ p−κ1Zp, so that we have a monomorphism p−nZp/p−κ1Zp → Γn1. This
must be an isomorphism since |p−nZp/p−κ1Zp| = |Γn1| = pn−κ1 ; in particular, every character of
Γn1 is of the form χa for some a ∈ p−nZp. Since the characters of Γn−1,1 are consequently of the
form χa for some a ∈ p−n+1Zp, the primitive characters of Γn1 correspond to a ∈ p−nZ×p . 2

Lemma 13 presents a parametrization of the restrictions to 1 + pκ1Z of Dirichlet characters
modulo pn by classes of p-adic rationals. The isomorphism exhibited in the Lemma extends to

an isomorphism of inductive limits Qp/p
−κ1Zp ∼= Γ

(p)
1 , with Γ

(p)
1 =

⋃∞
n=1 Γn1 being the group of

restrictions of all Dirichlet characters modulo all non-negative powers of p to 1 + pκ1Z.
Let χ be a primitive character modulo q > 1 (q = pn in our case). The Dirichlet L-function

L(s, χ) continues to an entire function and satisfies the functional equation(
q

π

)s/2
Γ

(
s+ ς

2

)
L(s, χ) = ε(χ)

(
q

π

)(1−s)/2
Γ

(
1− s+ ς

2

)
L(1− s, χ̄),

where ς = 0 or 1 according to whether χ is even or odd, and

ε(χ) =
i−ς√
q

∑
m mod q

χ(m)e

(
m

q

)
is a unit multiple of the normalized Gauss sum (see [IK04, Theorem 4.15 on p. 84]). We will use
the following standard expansion of L(12 , χ) in terms of short Dirichlet polynomials.

Lemma 14 (Approximate functional equation). Let χ be a primitive character modulo q > 1,
and let A be a positive integer. Then

L

(
1

2
, χ

)
=
∞∑
m=1

χ(m)√
m
V

(
m√
q

)
+ ε(χ)

∞∑
m=1

χ(m)√
m
V

(
m√
q

)
,
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where V (y) is a smooth function of y > 0 defined by

V (y) =
1

2πi

∫
(3)
y−u

(
cos

πu

4A

)−4AΓ(14 + u+ς
2 )

Γ(14 + ς
2)

du

u
,

and V (y) and its derivatives satisfy the estimates

yaV (a)(y)� (1 + y)−A, yaV (a)(y) = δa0 + O(y1/6).

Proof. This is an instance of [IK04, Theorem 5.3 and Proposition 5.4, pp. 98–100], with G(u) =
(cosπu/4A)−4A as on p. 99. 2

We now arrive at the theorem in which a p-adic exponent datum will be used to estimate
the central value L(12 , χ).

Theorem 6. Suppose that (k, `, r, δ, (n0, u0, κ0, λ0)) is a p-adic exponent datum. Let δ′ = 1 if
` = k + 1

2 , and δ′ = 0 otherwise.
If ` > k + 1

2 , then, for every κ > max(κ0(1, p), 1 + ι′(2)) and with r = r(1, p, κ,∞), and for
every n > max(n0(1, p, κ,∞) + κ, 2κ) and every primitive Dirichlet character χ modulo q = pn,

L(12 , χ)� pr+κ(1−k−`)(pn)[(k+`)/2−1/4](log q)δ+δ
′
.

If ` < k + 1
2 , then, for every κ > max(κ0(1, p), λ0(1, p), 1 + ι′(4)) and with r = r(1, p, κ, κ),

and for every n > max(n0(1, p, κ, κ) + κ, 2κ+ 1 + ι′(12)) and every primitive Dirichlet character
χ modulo pn,

L(12 , χ)� pr+κ(1−k−`)(pn)[(k+`)/2−1/4](log q)δ.

Proof. Using Lemma 14 with A = 2, we can write L(12 , χ) = S + ε(χ)S′, where

S =

∞∑
m=1

χ(m)√
m
V

(
m

pn/2

)
, S′ =

∞∑
m=1

χ(m)√
m
V

(
m

pn/2

)
.

We will prove an upper bound for S; the estimate on the sum S′ is exactly the same with χ
replaced by χ̄. We first consider the case ` > k + 1

2 .
For every 1 6 c 6 pκ such that p - c, fix an integer c′ with cc′ ≡ 1 (mod pn). We can decompose

S as

S =
∑

16c6pκ,p -c

∞∑
m=0

χ(c+ pκm)√
c+ pκm

V

(
c+ pκm

pn/2

)

=
∑

16c6pκ,p -c

χ(c)
∞∑
m=1

χ(1 + pκc′m)Wc(m) + O(pκ/2)

with the cutoff function

Wc(t) =
1√

c+ pκt
V

(
c+ pκt

pn/2

)
.

According to Lemma 13, the values of the primitive character χ modulo pn on 1+pκ1Z are given
by a character χa for some a = a0p

−n, a0 ∈ Z×p . Since κ > κ1, we can write

S =
∑

16c6pκ,p -c

χ(c)

∞∑
m=1

e

(
a0 logp(1 + pκc′m)

pn

)
Wc(m) + O(pκ/2). (58)
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Recall from (13) that the phase fc(t) = a0 logp(1 + pκc′t) belongs to F(κ, 1, κ,∞,∞, c′, a0c′).
We estimate the inner sum S(c) in (58) using a summation by parts argument similar to the one
used in the proof of Lemma 6. Let

S̃(t) =
∑

16m6t

e

(
fc(m)

pn

)
if t > 1, and S̃(t) = 0 for t < 1. Since

n− κ > n0, κ > κ0,

we can estimate S̃(t) using the given p-adic exponential datum to find that

S̃(t)� pr
(
pn−2κ

t

)k
t`(log q)δ (59)

for 1 6 t 6 pn−2κ, and, more generally, for all t > 0,

S̃(t)� pr
(
p(n−2κ)kt`−k +

t

p(n−2κ)(1−`)

)
(log q)δ.

Using summation by parts, we obtain

S(c) =

∫ ∞
1−0

Wc(t) dS̃(t) = Wc(t)S̃(t)

∣∣∣∣∞
1−0
−
∫ ∞
1

S̃(t)W ′c(t) dt

� pr(log q)δ
∫ ∞
1

(
p(n−2κ)kt`−k +

t

p(n−2κ)(1−`)

)
×
(

pκ

(c+ pκt)3/2

∣∣∣∣V (c+ pκt

pn/2

)∣∣∣∣+
pκ−n/2√
c+ pκt

∣∣∣∣V ′(c+ pκt

pn/2

)∣∣∣∣) dt.
Introducing a substitution t = (pn/2τ − c)p−κ, we find that

S(c)� pr−n/4(log q)δ
∫ ∞
τ0

(p(n−2κ)(k+`)/2τ `−k + p(n−2κ)(`−1/2)τ)

( |V (τ)|
τ3/2

+
|V ′(τ)|√

τ

)
dτ,

where τ0 > pκ−n/2. Multiplying out the integrand, we obtain a sum of four improper integrals.
In light of the asymptotic behavior of V (τ), all four of these integrals converge absolutely when
extended to (0,∞) if `− k > 1

2 ; in the case `− k = 1
2 , the same is true except that the integral

of |V (τ)|τ `−k−3/2 has a logarithmic singularity at zero. We thus have that

S(c)� pr−n/4(log q)δ(p(n−2κ)(k+`)/2(log q)δ
′
+ p(n−2κ)(`−1/2))

� pr−(k+`)κ(pn)[(k+`)/2−1/4](log q)δ+δ
′
,

since (k + `)/2 > `/2 > `− 1/2.
Going back to (58), we have that

S � pr+κ(1−k−`)(pn)[(k+`)/2−1/4](log q)δ+δ
′
+ pκ/2.

Since the estimate (59) holds for all 1 6 t 6 pn−2κ, we know from (16) that its right-hand side
is greater than t1/2 throughout the same range. In particular, for t = pn/2−κ, we find that

pr(pn/2−κ)k+`(log q)δ > pn/4−κ/2,
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from which it follows that the first term dominates in our estimate of S. This completes the
proof in the case ` > k + 1

2 .
If ` < k+ 1

2 , we apply the B-process (Theorem 4) to the given exponential datum and obtain
a new datum

B(k, `, r, δ, (n0, u0, κ0, λ0)) =
(
`− 1

2 , k + 1
2 , r̃, δ̃, (ñ0, ũ0, κ̃0, λ̃0)

)
,

where

r̃(1, p, κ,∞) = r(1, p, κ, κ), δ̃ = δ + δ01 = δ,

κ̃0(1, p) = max
(
1 + ι′(4), κ0(1, p), λ0(1, p)

)
,

ñ0(1, p, κ,∞) = max
(
κ+ 1 + ι′(12), n0(1, p, κ, κ)

)
.

Since k + 1
2 > (` − 1

2) + 1
2 , the first case of our theorem applies to this new p-adic exponent

datum; this gives the stated result. 2

We remark that the proof of Theorem 6 applies verbatim to estimation of the values
L(12 + it, χ) at any point along the critical line. Using the appropriate approximate functional
equation from [IK04, Theorem 5.3 and Proposition 5.4], and denoting

Vs(y) =
1

2πi

∫
(3)
y−u

(
cos

πu

4A

)−4AΓ(12s+ u+ς
2 )

Γ(12s+ ς
2)

du

u
, Wc[s](t) =

1

(c+ pκt)s
Vs

(
c+ pκt

pn/2

)
,

we find as above that

L

(
1

2
+ it, χ

)
�
∫ ∞
1
|S̃(τ)|

(∣∣∣∣Wc

[
1

2
+ it

]′
(τ)

∣∣∣∣+

∣∣∣∣Wc

[
1

2
− it

]′
(τ)

∣∣∣∣) dτ + pκ/2

� pr+κ−n/4(log q)δ
∫ ∞
τ0

(p(n−2κ)(k+`)/2τ `−k + p(n−2κ)(`−1/2)τ)

×
(

(3 + |t|)|V1/2+it(τ)|
τ3/2

+
|V ′1/2+it(τ)|
√
τ

)
dτ + pκ/2,

with τ0 > pκ−n/2. Using the asymptotic yaV
(a)
1/2+it(y) � (1 + y/

√
3 + |t|)−A and proceeding as

above, we conclude that

L(12 + it, χ)� (3 + |t|)(`−k)/2+3/4pr+κ−n/4+(n−2κ)(k+`)/2(log q)δ+δ
′

+ (3 + |t|)5/4pr+κ−n/4+(n−2κ)(`−1/2)(log q)δ + pκ/2

� (3 + |t|)5/4pr+κ(1−k−`)(pn)[(k+`)/2−1/4](log q)δ+δ
′
.

In the remainder of this section, we describe explicit p-adic exponent data and apply them
to estimation of the central value L(12 , χ). The above bound (which is somewhat lossy for all
non-trivial (k, `) but conveniently compact), used with the same p-adic exponent data, then
yields analogous estimates for L(12 + it, χ) valid along the entire critical line with an explicit
dependence on t, including the bound announced in the introduction.

Using Theorem 6, we can obtain a subconvex estimate on L(12 , χ) from every p-adic exponent
datum in which k + ` < 1. We show how to obtain such p-adic exponent data by iterating the
A- and B-processes (Theorems 5 and 4). We have seen that the p-adic exponent data can take
rather complicated forms in general, to account for all the adjustments which need to be made at
a finite number of special primes, possibly depending on y; the set of such primes was denoted by
P0(y) in the definition of p-adic exponent data. We will, for simplicity, state our p-adic exponent
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data in their cleanest form, in which they are valid away from finitely many primes, and state
the exceptions; however, for the application to Theorem 6, it is important to remember that the
method does apply to every single prime without exception.

Applying the A-process to the datum ω1/2, we obtain with some labor the datum

A(ω1/2) = AB(ω01) =
(
1
6 ,

2
3 ,

1
6(1− κ), 12 ,(⌈

max(5κ− 1, εu(133 + 5
3κ− 3bλ̃c))

⌉
,

max(2κ+ dλ̃e − bλc − 2bλ̃c+ 1, 1), 1, 2ρp
))

valid for all p 6∈ {2, 3} such that ordp y = ordp(y + 1) = 0,

A2B(ω01) =
(

1
14 ,

11
14 ,

1
7(1− κ), 12 ,(⌈

max(8κ− 3, ε′u(3κ− 9
2bλ̃c+ 5), εu(477 κ+ 4dλ̃e − 12bλ̃c+ 58

7 ))
⌉
,

max(3κ+ 2dλ̃e − bλc − 4bλ̃c+ 1, 1), 1, 2ρp
))

valid for all p 6∈ {2, 3} such that ordp y = ordp(y+1) = ordp(y+2) = ordp(2y+1) = 0 (ε′u refers to
the value of εu in the previous datum), and so on. We recall from the statement of Theorem 5 that,
when constructing a new p-adic exponent datum Aq from an existing datum q = (k, `, r, δ, (n0,
u0, κ0, λ0)) using the A-process, εu is defined as εu = 0 if u0(y

±+1, p, κ, λ̃)−κ+ ι′(2)+ε(y±) 6 0
and εu = 1 otherwise.

Our p-adic exponent data take an even simpler form if we restrict them to κ = λ̃, which is
equivalent to λ > κ and ρp(y) = 0. Note that this condition is always satisfied in the cases needed
for Theorem 6 away from finitely many primes. Moreover, this condition ‘propagates’ through
the recursive A- and B-processes, since a pair (κ, λ̃) always satisfies the condition κ = λ̃ away
from finitely many primes (possibly depending on y) if the pair (κ, λ) does. Finally, note that, as
shown below, with this restriction, every datum obtained from ω01 using the A- and B-processes
has u0 = 1; in particular, this means that, away from finitely many primes, we always have εu = 0
upon application of Theorem 5. With this convenient restriction, we thus obtain the following
p-adic exponent data:

ω01[κ = λ̃] = (0, 1, 0, 0, (κ+ 1, 1, 1, ρp)),

ordp y = 0,

B(ω01)[κ = λ̃] = (12 ,
1
2 , 0, 1, (κ+ 1, 1, 1, ρp)),

p 6∈ {2, 3}, ordp y = 0,

AB(ω01)[κ = λ̃] = (16 ,
2
3 ,

1
6(1− κ), 12 , (5κ− 1, 1, 1, 2ρp)),

p 6∈ {2, 3}, ordp{y, y + 1} = 0,

A2B(ω01)[κ = λ̃] = ( 1
14 ,

11
14 ,

1
7(1− κ), 12 , (8κ− 3, 1, 1, 2ρp)),

p 6∈ {2, 3}, ordp{y, y + 1, y + 2, 2y + 1} = 0,

A3B(ω01)[κ = λ̃] = ( 1
30 ,

13
15 ,

1
10(1− κ), 12 , (d232 κ− 6e, 1, 1, 2ρp)),

p 6∈ {2, 3}, ordp{y, y + 1, y + 2, y + 3, 2y + 1, 2y + 3, 3y + 1, 3y + 2} = 0,

BA3B(ω01)[κ = λ̃] = (1130 ,
8
15 ,

1
10(1− κ), 12 , (d232 κ− 6e, 1, 1, 2ρp)),

p 6∈ {2, 3}, ordp{y, y + 1, y + 2, y + 3, 2y + 1, 2y + 3, 3y + 1, 3y + 2} = 0,
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ABA3B(ω01)[κ = λ̃] = (1182 ,
57
82 ,

7
41(1− κ), 12 , (d714 κ− 39

4 e, 1, 1, 2ρp)),
p 6∈ {2, 3}, ordp{y, y + 1, y + 2, y + 3, y + 4, 2y + 1, 2y + 3, 2y + 5,

3y + 1, 3y + 2, 3y + 4, 3y + 4, 3y + 5, 4y + 1, 4y + 3, 5y + 2, 5y + 3} = 0.

With a supply of p-adic exponent data, we can derive subconvex estimates on L(12 , χ), reflect
back on our method, and prove Theorem 1. Applying Theorem 6 using the datum AB(ω01) and
κ = 1, we get that, for every n > 4 and every primitive Dirichlet character χ modulo pn with
p 6∈ {2, 3},

L(12 , χ)� p(n+1)/6(log pn)3/2,

which recovers the Weyl exponent θ = 1
6 for a fixed p, as in [BLT64] and [FGM76], but with an

explicit implied constant. Note that we cannot use special devices which allow one to precisely
recover the Weyl exponent if one does not hope to iterate the process (as in [Hea78]). The
estimate does improve upon the Burgess exponent θ = 3

16 for n > 9, although this is a minor
point for us.

Note that, in the datum AB(ω01),
1
6 + 2

3 = 5
6 . To improve upon the Weyl exponent, we need

a p-adic exponent datum with k + ` < 5
6 . One such datum is provided by ABA3B(ω01) above.

Applying Theorem 6 with this datum and κ = 1, we get that for every n > 8 and every primitive
Dirichlet character χ modulo pn with p 6∈ {2, 3, 5, 7},

L(12 , χ)� p7/41(pn)27/164(log pn)1/2. (60)

This proves the main statement of Theorem 1,

L(12 , χ)� pr(pn)θ(log pn)1/2, (61)

with θ = 27
164 <

1
6 and r = 7

41 for all primitive characters χ modulo pn, p 6∈ {2, 3, 5, 7}, n > 8.
Since the A- and B-processes produce p-adic exponent data effective for every prime p without
exception, the same bound holds for all primitive characters χ modulo pn also in the case p ∈ {2,
3, 5, 7} for n > n0, with different values of r and n0 (and so also with the same values of r and
n0 by adjusting the implied constant). Further, a bound of the same form holds for all values of
n by adjusting the value of r. Finally, if χ is induced from a primitive character χ1 modulo pn1 ,
0 6 n1 6 n, then L(s, χ) = L(s, χ1) if n1 > 1 and L(s, χ) = (1 − p−s)L(s, χ1) if n1 = 0, and so
the statement follows also for non-primitive characters. This proves Theorem 1 for all Dirichlet
characters to any prime power modulus with θ = 27

164 .
Since 27

164 ≈ 0.1646 < 1
6 , the estimate (60) breaks the Weyl exponent barrier for n > n′0. As

another benefit of our explicit calculations of full exponent data (including the values of n0 and r),
we can see that (60) improves on the Weyl exponent for all n for which 7

41 + 27
164n <

1
6n; this will

be the case for all n > 85.
Note that no further improvement is obtained in (60) by taking a larger value of κ, and,

equivalently, no harm is suffered by taking a smaller value of κ. This is in marked contrast to the
works such as [FGM76, Hea78] in which the Weyl exponent is obtained, which essentially rely
on a choice κ > n/3 + O(1). In our language, this ensures that, in appropriate ranges, fχ,h(t)
of Lemma 12 is essentially a quadratic polynomial; this in turn allows for a sharper treatment
of one special instance of the A-process but precludes iteration. It is essential for this iterative
method to adopt the exactly opposite paradigm that n is sufficiently large compared with κ,
so that f(t)/pn behaves like a p-adic analytic function, rather than sufficiently small compared
with κ (which presents simplifications in special cases but can obstruct the view of the analogy).
It is quite possible that better (possibly substantially better) values of r and n0 (but not θ)
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in (61) can be obtained by fixing the value of κ in a range relative to n so that, by the time the

iteration of A- and B-processes reaches the final application of Weyl differencing, we do have

κ > n/3 + O(1) and can obtain a sharper estimate. This would be a welcome development, but

we felt that it would distract from the main thrust of this paper.

The above proof, relying on Theorem 6, applies verbatim to any p-adic exponent pair (k, `)

and shows that the bound (61) holds with

θ =
k + `

2
− 1

4
.

This brings to the fore the question of finding p-adic exponent pairs with k + ` as small as

possible. It is immediate from Theorem 2 that the set of p-adic exponent pairs we can construct

from (0, 1) coincides with the set of (Archimedean) exponent pairs obtainable from (0, 1) by the

classical A- and B-processes, for which we refer to [GK91]. For example, a further specific pair

which improves on (60) is Phillips’s exponent pair ABA3BA2BA2B(0, 1) = ( 97
696 ,

480
696) [Phi33],

which gives θ = 229
1392 ≈ 0.1645.

The question of finding a value of θ as small as it is possible to obtain from the A- and B-

processes was considered and solved by Rankin [Ran55]. Rankin proved that there is a θ0 ≈ 0.1645

such that θ > θ0 for every pair obtainable by A- and B-processes, and, conversely, for every

θ1 > θ0, there is an exponent pair obtainable from (0, 1) by A- and B-processes which yields

θ ∈ (θ0, θ1). Our Theorem 2 shows that the corresponding p-adic processes will yield a p-adic

exponent pair with the same value of θ; using Theorem 6 with this pair, we obtain a proof of

Theorem 1 for any θ > θ0 ≈ 0.1645.
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