D.C. Backer<br>Radio Astronomy Laboratory, Berkeley<br>R.A. Sramek<br>National Radio Astronomy Observatory, Socorro

The $35-\mathrm{km}$ interferometer at NRAO was used at 2.7 GHz during 1974-1979 to determine pulsar proper motions. Observations from each epoch were reduced to pseudo-position vector offsets which include both unknown, and constant, absolute position errors for the pulsars and their reference sources, as well as the time-varying proper motion of the pulsars. The coordinate system for which the errors in the offset components are independent is chosen. Proper motions resulting from a linear fit to the offsets for five pulsars are given in Table 1 .

The agreement between our measurements and those of Anderson, Lyne and Peckham (1975) -- $0329+54$ and $1133+16$-- is excellent. Our determination of the motion of $0950+08$ disagrees with that of Helfand et al. (1980); we find a transverse motion of only $20 \mathrm{~km} / \mathrm{s}$. The motion of $1929+10$ in Table 1 agrees with the value in Helfand et al. (1980), but not with Gullahorn and Rankin's (1978) value. Our proper motion for $2021+51$ is consistent with the motion proposed by Morris et al. (1979) based on an association with supernova remnant HB21, although our errors are large.

The phase stability of the instrument is sufficient to yield absolute positions with an accuracy of $\sim 0!!2$ (Table 2). These measurements agree with determinations based on pulse timing with $0329+54$ excepted.

## REFERENCES

Anderson, B., Lyne, A.G., and Peckham, R.J.: 1975, Nature 258, pp . 215-217.
Gullahorn, G.E. and Rankin, J.M.: 1978, Astrophys. J. 225, pp. 963-969.
Helfand, D.J., Taylor, J.H., Backus, P.R., and Cordes, J.M.: 1980, Astrophys. J. 237, pp. 206-215.
Morris, D., Graham, D.A., Seiradakis, J.H., Sieber, W., Thomasson, P., and Jones, B.B.: 1979, Astron. Astrophys. 73, pp. 46-53.

Copyright © 1981 by the IAU .

TABLE 1

## PULSAR PROPER MOTIONS

| PSR | $\mathrm{d}(\mathrm{pc})$ | $\mu_{X}(\underline{\prime} / \mathrm{yr})$ | $\varepsilon_{\mathrm{X}}(\mathrm{l} / \mathrm{yr})$ | $\mu_{Y}(" / y r)$ | $\varepsilon_{Y}(" / y r)$ | $\mathrm{PA}_{Y}(\mathrm{deg}){ }^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0329+54 | 1300 | 0.030 | 0.020 | 0.0008 | 0.0005 | 18.8 |
| 0950+08 | 100 | $\{0.018$ | 0.008 | 0.023 | 0.004 | 38.0 |
| 0950+08 | 100 | -. 040 | 0.030 | 0.047 | 0.005 | -1.3 |
| 1133+16 | 100 | -. 170 | 0.030 | 0.345 | 0.020 | 15.5 |
| 1929+10 | 100 | 0.001 | 0.030 | 0.070 | 0.002 | 40.7 |
| $2021+51$ | 800 | -. 007 | 0.040 | 0.011 | 0.003 | 5.6 |

* Position angle of $y$-axis

TABLE 2

PULSAR INTERFEROMETER POSITIONS

| PSR | RA* (1950.0) |  | DEC* $(1950.0)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | h m | S |  | 1 |  |
| $0329+54$ | 0329 | 11.073 | 54 | 29 | 37.55 |
| 0355+54 | 0355 | 00.449 |  | 04 | 42.6 |
| 0950+08 | 0950 | 30.560 | 08 | 09 | 44.70 |
| $1133+16$ | 1133 | 27.434 | 16 | 07 | 36.67 |
| $1929+10$ | 1929 | 51.900 | 10 | 53 | 03.50 |
| $2020+28$ | 2020 | 33.279 | 28 | 44 | 43.43 |
| $2021+51$ | 2021 | 25.290 | 51 | 45 | 07.30 |

* Epoch 1975.4.

