Proceedings of the Edinburgh Mathematical Society (2006) **49**, 257–266 © DOI:10.1017/S0013091505000143 Printed in the United Kingdom

THE \aleph_1 -PRODUCT OF DG-INJECTIVE COMPLEXES

EDGAR E. ENOCHS AND ALINA IACOB

Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA (enochs@ms.uky.edu; iacob@ms.uky.edu)

(Received 10 February 2005)

Abstract Given a left Noetherian ring R, we give a necessary and sufficient condition in order that a complex of R-modules be DG-injective. Using this result we prove that if $(K_i)_{i \in I}$ is a family of DG-injective complexes of left R-modules and K is the \aleph_1 -product of $(K_i)_{i \in I}$ (i.e. $K \subset \prod_{i \in I} K_i$ is such that, for each $n, K^n \subset \prod_{i \in I} K_i^n$ consists of all $(x_i)_{i \in I}$ such that $\{i \mid x_i \neq 0\}$ is at most countable), then K is DG-injective.

Keywords: DG-injective complexes; &-products; exact precover

2000 Mathematics subject classification: Primary 18G35; 03E10

1. Introduction

A ring R is left Noetherian if and only if the direct sum of any family of injective left R-modules is injective. This result of Bass [2] led to a series of similar closure questions concerning classes of modules and complexes of modules.

Perhaps surprisingly, we were able to prove that over a left Noetherian ring R it is not true that the direct sum of DG-injective complexes is DG-injective [7]. This means that the class of DG-injective complexes is not closed under \aleph_0 -products.

In this paper we prove that over such a left Noetherian ring R the class of DG-injective complexes is closed under \aleph_1 -products.

We start by giving necessary and sufficient conditions for a complex to be DG-injective. We prove first (Proposition 2.10) that over any ring R a complex K is DG-injective if and only if $\text{Ext}^1(M, K) = 0$ for every bounded-above exact complex M.

We use this result to show (Proposition 2.11) that if R is a left Noetherian ring, then a complex K is DG-injective if and only if $\text{Ext}^1(M, K) = 0$ for any bounded-above exact complex M with each module M_n finitely generated.

Using the previous result we show that, if R is a left Noetherian ring, $(K_i)_{i \in I}$ is a family of DG-injective complexes of left R-modules and K is the \aleph_1 -product of $(K_i)_{i \in I}$, then K is DG-injective.

E. E. Enochs and A. Iacob

2. Preliminaries

Let R be any ring. A (chain) complex C of R-modules is a sequence

 $C = \dots \to C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} C_{-1} \xrightarrow{\partial_{-1}} C_{-2} \to \dots$

of *R*-modules and *R*-homomorphisms such that $\partial_{n-1} \circ \partial_n = 0$ for all $n \in \mathbb{Z}$.

A chain complex of the form

$$C = \cdots C^{-2} \xrightarrow{\partial^{-2}} C^{-1} \xrightarrow{\partial^{-1}} C^0 \xrightarrow{\partial^0} C^1 \xrightarrow{\partial^1} C^2 \to \cdots$$

is called a cochain complex. In this case, $\partial^{n+1} \circ \partial^n = 0$ for all $n \in \mathbb{Z}$. We note that a cochain complex is simply a chain complex with C^i replaced by C_{-i} and ∂^i by ∂_{-i} . So, for example, it is more convenient to write a complex

$$0 \to C_0 \to C_{-1} \to C_{-2} \to \cdots$$

as

$$0 \to C^0 \to C^1 \to C^2 \to \cdots$$

Throughout the paper we use both the subscript notation for complexes and the superscript notation.

When we use superscripts for a complex we will use subscripts to distinguish complexes: for example, if $(K_i)_{i \in I}$ is a family of complexes, then K_i^n denotes the degree-*n* term of the complex K_i .

If X and Y are both complexes of left R-modules, then $\mathcal{H}om(X, Y)$ denotes the complex with

$$\mathcal{H}om(X,Y)_n = \prod_{q=p+n} \operatorname{Hom}_R(X_p,Y_q)$$

and with differential given by $\partial(f) = \partial \circ f - (-1)^n f \circ \partial$, for $f \in \mathcal{H}om(X, Y)_n$.

We use the terminology of [1] and say that a complex I is DG-injective if each I^n is injective and if $\mathcal{H}om(E, I)$ is exact for any exact complex E.

Throughout the paper, $\operatorname{Hom}(X, Y)$ denotes the set of morphisms from X to Y in the category of complexes, and the $\operatorname{Ext}^{i}(X, Y)$ are the right-derived functors of Hom.

Proposition 2.1 (see Proposition 3.4 in [5]). A complex *I* is DG-injective if and only if $\text{Ext}^1(E, I) = 0$ for any exact complex *E*.

Definition 2.2 (see p. 35 in [5]). A DG-injective complex

$$I = \dots \to I^{n-1} \xrightarrow{g_{n-1}} I^n \xrightarrow{g_n} I^{n+1} \to \dots$$

is said to be minimal DG-injective if, for each n, Ker g_n is essential in I^n .

Proposition 2.3 (see Proposition 3.16 in [5]). A DG-injective complex is the direct sum of an injective complex and a minimal DG-injective complex. This direct sum decomposition is unique up to isomorphism.

Definition 2.4 (see [5]). A morphism of complexes $\Phi : E \to X$ is an exact precover of X if E is exact and if $\operatorname{Hom}(F, E) \to \operatorname{Hom}(F, X)$ is surjective for any exact complex F. If, moreover, any $f : E \to E$ such that $\Phi = \Phi \circ f$ is an automorphism of E, then

 $\Phi: E \to X$ is called an exact cover of X.

Theorem 2.5 (see Theorem 3.18 in [5]). Every complex X has an exact cover $E \to X$. A morphism $E \to X$ of complexes is an exact cover of X if and only if E is exact, $E \to X$ is surjective and $\text{Ker}(E \to X)$ is a minimal DG-injective complex. If $E \to X$ is an exact cover, E is injective if and only if X is DG-injective.

We recall that, for any n and for any complex X, X[n] denotes the complex such that $X[n]^m = X^{n+m}$ and whose boundary operators are $(-1)^n \partial^{n+m}$.

If $f: X \to Y$ is a morphism of complexes, then there is an exact sequence $0 \to Y \to M(f) \to X[1] \to 0$ with M(f) the associated mapping cone $(M(f)^n = X^{n+1} \oplus Y^n)$ and $\partial(x, y) = (-\partial x, f(x) + \partial y)$ for $(x, y) \in X^{n+1} \oplus Y^n$.

Lemma 2.6 (see Lemma 3.21 in [5]). Let I be a DG-injective complex and let $\mathrm{Id}: I \to I$ give the exact sequence $0 \to I \to M(\mathrm{Id}) \to I[1] \to 0$. Then $M(\mathrm{Id})$ is injective and $M(\mathrm{Id}) \to I[1]$ is an exact precover. If I is minimal, then $I \to M(\mathrm{Id})$ is an injective envelope and $M(\mathrm{Id}) \to I[1]$ is an exact cover.

Lemma 2.7. If $(K_i)_{i \in I}$ is a family of DG-injective complexes, then $\prod_{i \in I} K_i$ is DG-injective.

Proof. Let M be an exact complex.

Each K_i is DG-injective, so by Proposition 2.1 we have $\text{Ext}^1(M, K_i) = 0$ for any $i \in I$. Since

$$\operatorname{Ext}^{1}\left(M,\prod_{i\in I}K_{i}\right)\simeq\prod_{i\in I}\operatorname{Ext}^{1}(M,K_{i})=0$$

for any exact complex M, it follows (by Proposition 2.1) that $\prod_{i \in I} K_i$ is DG-injective. \Box

Definition 2.8. Given an ordinal number λ and a family $(M_{\alpha})_{\alpha < \lambda}$ of subcomplexes of a complex M, we say that the family is a continuous chain of subcomplexes if $M_{\alpha} \subset M_{\beta}$ whenever $\alpha \leq \beta < \lambda$ and if $M_{\beta} = \bigcup_{\alpha < \beta} M_{\alpha}$ whenever $\beta < \lambda$ is a limit ordinal. A family $(M_{\alpha})_{\alpha \leq \lambda}$ is called a continuous chain if $(M_{\alpha})_{\alpha < \lambda+1}$ is one such.

A similar argument to that in the proof of Theorem 7.3.4 in [4] gives the following useful result.

Theorem 2.9. Let M and N be complexes of left R-modules and suppose that M is the union of a continuous chain of complexes $(M_{\alpha})_{\alpha < \lambda}$. Then, if $\text{Ext}^1(M_0, N) = 0$ and $\text{Ext}^1(M_{\alpha+1}/M_{\alpha}, N) = 0$ whenever $\alpha + 1 < \lambda$, then $\text{Ext}^1(M, N) = 0$.

Our first result is the following proposition.

Proposition 2.10. For any ring R, a complex K is DG-injective if and only if $\operatorname{Ext}^1(F, K) = 0$ for every exact complex $F = \cdots \to F_2 \to F_1 \to F_0 \to 0$.

E. E. Enochs and A. Iacob

Proof. (\Leftarrow .) Let

 $F = \cdots \to F_2 \xrightarrow{h_2} F_1 \xrightarrow{h_1} F_0 \xrightarrow{h_0} F^1 \xrightarrow{\lambda_1} F^2 \xrightarrow{\lambda_2} \cdots$

be any exact complex. For any $n \ge 0$ let

$$\bar{F}_n = \dots \to F_1 \xrightarrow{h_1} F_0 \xrightarrow{h_0} \dots \to F^n \xrightarrow{\lambda_n} M_n \to 0,$$

where $M_n = \operatorname{Ker} \lambda_{n+1}$.

We have $\bar{F}_n \subset \bar{F}_{n+1}$, and

$$\bar{F}_{n+1}/\bar{F}_n \simeq 0 \to M_{n+1} \xrightarrow{\text{Id}} M_{n+1} \to 0, \text{ for any } n \ge 0.$$

F is the union of the continuous chain of complexes $(\bar{F}_n)_{n \ge 0}$.

By hypothesis, $\operatorname{Ext}^1(\overline{F}_0, K) = 0$ and $\operatorname{Ext}^1(\overline{F}_{n+1}/\overline{F}_n, K) = 0$ for any $n \ge 0$. By Theorem 2.9, we have that $\operatorname{Ext}^1(F, K) = 0$.

Since $\text{Ext}^1(F, K) = 0$ for any exact complex F, it follows that K is DG-injective (Proposition 2.1).

 (\Rightarrow) . Since K is DG-injective, we have $\text{Ext}^1(F, K) = 0$ for any exact complex F. \Box

Using this result we can prove the following.

Proposition 2.11. Let R be a left Noetherian ring. A complex K is DG-injective if and only if $\text{Ext}^1(M, K) = 0$ for any exact complex

$$M = \dots \to M_2 \xrightarrow{f_2} M_1 \xrightarrow{f_1} M_0 \to 0,$$

with each M_n finitely generated.

Proof. (\Leftarrow) Let

$$M = \dots \to M_2 \xrightarrow{f_2} M_1 \xrightarrow{f_1} M_0 \to 0$$

be any exact complex. Let $n \ge 0$ and let $x \in M_n$. We can easily see that there is an exact subcomplex $S \subset M$ such that $x \in S_n$ and such that S_i is finitely generated for each $i \ge 0$. For let $S_n = Rx$ and let $S_{n-1} = f_n(Rx)$ if $n \ge 1$ and of course $S_{n-1} = S_{-1} = 0$ if n = 0. Then let $S_i = 0$ for $i \le n-2$. Then choose $S_{n+1} \subset M_{n+1}$ finitely generated and such that $f_{n+1}(S_{n+1}) = \operatorname{Ker} f_n \cap S_n$. Then, in a similar manner, let $S_{n+2} \subset M_{n+2}$ be finitely generated and such that $f_{n+2}(S_{n+2}) = \operatorname{Ker} f_{n+1} \cap S_{n+1}$. Proceeding in this manner we get the desired exact subcomplex $S = \cdots \to S_2 \to S_1 \to S_0 \to 0$.

Now let $y \in M_m$ for some $m \ge 0$. Consider the quotient complex M/S (which is also exact) and the element $y + S_m \in (M/S)_m = M_m/S_m$. By the argument above there is an exact subcomplex $T/S \subset M/S$ with $y + S_m \in (T/S)_m = T_m/S_m$ and such that each $(T/S)_i$ is finitely generated. But then each T_i is also finitely generated. So we have $S \subset T$ with both S and T bounded-above exact complexes of finitely generated modules and such that $x \in T_n, y \in T_m$.

Using this procedure we see that we can write M as the union of a continuous chain $(M^{\alpha})_{\alpha < \lambda}$ of complexes for some ordinal λ such that each of M^0 and $M^{\alpha+1}/M^{\alpha}$ for

https://doi.org/10.1017/S0013091505000143 Published online by Cambridge University Press

 $\alpha + 1 < \lambda$ is a bounded-above exact complex of finitely generated modules. By hypothesis, $\operatorname{Ext}^{1}(M^{0}, K) = 0$ and $\operatorname{Ext}^{1}(M^{\alpha+1}/M^{\alpha}, K) = 0$ whenever $\alpha + 1 < \lambda$. By Theorem 2.9, we have that $\operatorname{Ext}^{1}(M, K) = 0$.

Since $\text{Ext}^1(M, K) = 0$ for any bounded-above exact complex M, it follows that K is DG-injective (Proposition 2.10).

 (\Rightarrow) . Since K is DG-injective, we have $\text{Ext}^1(M, K) = 0$ for any exact complex M. \Box

3. The \aleph_1 -product of a family of DG-injective complexes over a left Noetherian ring is DG-injective

Let $(K_i)_{i\in I}$ be a family of complexes of *R*-modules (*R* any ring). The \aleph_1 -product of $(K_i)_{i\in I}$ is the complex *K* such that, for each $n, K^n \subset \prod_{i\in I} K_i^n$ consists of all $(x_i)_{i\in I}$ such that Card $\{i \mid x_i \neq 0\} < \aleph_1$, that is, $\{i \mid x_i \neq 0\}$ is at most countable. We will denote this product by $\prod_{\aleph_1} K_i$.

We use the following result to prove that the \aleph_1 -product of a family of DG-injective complexes is still DG-injective.

Lemma 3.1. If M is a finitely generated left R-module, then $\operatorname{Hom}(M, \prod_{\aleph_1} K_i) \simeq \prod_{\aleph_1} \operatorname{Hom}(M, K_i)$ for any family $(K_i)_{i \in I}$ of left R-modules.

Proof. Let

$$T: \operatorname{Hom}\left(M, \prod_{\aleph_1} K_i\right) \to \prod_{i \in I} \operatorname{Hom}(M, K_i).$$

 $T(\alpha) = (\alpha_i)_{i \in I}$ with $\alpha_i = p_i \circ \alpha$, where $p_j : \prod_{i \in I} K_i \to K_j$, $p_j((x_i)_i) = x_j$. Let $\{x^1, \ldots, x^n\}$ be a set of generators of M. Let $\alpha(x^l) = (x_i^l)_{i \in I}$.

Since $\{j \mid x_j^l \neq 0\}$ is at most countable for each $l \in \{1, 2, \ldots, n\}$, it follows that

$$\bigcup_{l=1}^{n} \{j \mid x_j^l \neq 0\}$$

is at most countable. This implies that $\{j \mid \alpha_j \neq 0\}$ is at most countable.

So $T(\alpha) = (\alpha_i)_i \in \prod_{\aleph_1} \operatorname{Hom}(M, K_i).$

(i) If $T(\alpha) = 0$, then $\alpha_i = 0$ for any $i \in I$, so $\alpha = 0$. Hence T is injective.

(ii) Let $(\alpha_i)_{i \in I} \in \prod_{\aleph_1} \operatorname{Hom}(M, K_i)$ and let $\alpha = (\alpha_i)_{i \in I}$.

Since $\{i \mid \alpha_i \neq 0\}$ is at most countable, we have that $\alpha(x) = (\alpha_i(x))_i \in \prod_{\aleph_1} K_i$, for any $x \in M$.

So $\alpha \in \text{Hom}(M, \prod_{\aleph_1} K_i)$ and $T(\alpha) = (\alpha_i)_{i \in I}$. Hence T is surjective.

(iii) Since

$$T(\alpha + \beta) = (p_i \circ (\alpha + \beta))_i = (p_i \circ \alpha)_i + (p_i \circ \beta)_i = T(\alpha) + T(\beta),$$

for any $\alpha, \beta \in \text{Hom}(M, \prod_{\aleph_1} K_i)$, it follows that T is a homomorphism.

So Hom $(M, \prod_{\aleph_1} K_i) \simeq \prod_{\aleph_1} \text{Hom}(M, K_i).$

Proposition 3.2. Let $M = \cdots \to M_2 \to M_1 \to M_0 \to 0$ be an exact complex with each M_n a finitely generated left *R*-module.

We have $\operatorname{Hom}(M, \prod_{\aleph_1} K_i) \simeq \prod_{\aleph_1} \operatorname{Hom}(M, K_i)$ for any family $(K_i)_{i \in I}$ of complexes of left *R*-modules.

Proof. Let $p_i : \prod_{\aleph_1} K_j \to K_i$, $p_i^n((x_j)_j) = x_i$, $\forall (x_j)_j \in \prod_{\aleph_1} (K_j^n)$. Let $T : \text{Hom}(M, \prod_{\aleph_1} K_i) \to \prod_{i \in I} \text{Hom}(M, K_i)$ be defined by $T(\alpha) = (\alpha_i)_i$ with $\alpha_i = p_i \circ \alpha$, for each $i \in I$. Then $\alpha_i^n = p_i^n \circ \alpha^n$ for any $i \in I$ and and $n \ge 0$:

Since each M_n is finitely generated, we have

Hom
$$\left(M_n, \prod_{\aleph_1} K_i^n\right) \simeq \prod_{\aleph_1} \operatorname{Hom}(M_n, K_i^n)$$
 (by Lemma 3.1).

So for each $n \ge 0$ we have that the set $\{i \mid \alpha_i^n \ne 0\}$ is at most countable. Then, since $\alpha_i = (\alpha_i^n)_n$, we have that

$$\{i \mid \alpha_i \neq 0\} = \bigcup_{n \ge 0} \{i \mid \alpha_i^n \neq 0\}.$$

Since a countable union of countable sets is still countable, it follows that $\{i \mid \alpha_i \neq 0\}$ is at most countable.

Hence $(\alpha_i)_i \in \prod_{\aleph_1} \operatorname{Hom}(M, K_i)$. Thus $T : \operatorname{Hom}(M, \prod_{\aleph_1} K_i) \to \prod_{\aleph_1} \operatorname{Hom}(M, K_i)$.

- (i) If $(\alpha_i)_i \in \prod_{\aleph_1} \operatorname{Hom}(M, K_i)$, then $\alpha = (\alpha_i)_i \in \operatorname{Hom}(M, \prod_{\aleph_1} K_i)$ and $T(\alpha) = (\alpha_i)_i$.
- (ii) $T(\alpha) = 0 \Leftrightarrow \alpha_i = 0, \forall i \in I \Leftrightarrow \alpha = 0.$
- (iii) $T(\alpha + \beta) = (p_i \circ (\alpha + \beta))_i = (p_i \circ \alpha)_i + (p_i \circ \beta)_i = T(\alpha) + T(\beta)$ for any $\alpha, \beta \in Hom(M, \prod_{\aleph_i} K_i)$.

So T is an isomorphism.

Lemma 3.3. If

$$0 \to A_i \xrightarrow{h_i} B_i \xrightarrow{l_i} C_i \to 0$$

is an exact sequence of left R-modules for each $i \in I$, then the sequence

$$0 \to \prod_{\aleph_1} A_i \xrightarrow{h} \prod_{\aleph_1} B_i \xrightarrow{l} \prod_{\aleph_1} C_i \to 0$$

is exact (with $h = \prod_{i \in I} h_i |_{\prod_{\aleph_1} A_i}$ and $l = \prod_{i \in I} l_i |_{\prod_{\aleph_1} B_i}$).

Proof. (i) Since $l \circ h((x_i)_i) = (l_i(h_i(x_i)))_i = 0$ for any $x = (x_i)_{i \in I} \in \prod_{\aleph_1} A_i$, it follows that Im $h \subset \text{Ker } l$.

(ii) Let $x = (x_i)_{i \in I} \in \operatorname{Ker} l \subset \prod_{\aleph_1} B_i$. For each $i \in I$ we have $x_i \in \operatorname{Ker} l_i = \operatorname{Im} h_i$, so $x_i = h_i(y_i)$ for some $y_i \in A_i$. Since $y_i \neq 0$ implies $x_i \neq 0$ (because h_i is an injection) and $\{i \mid x_i \neq 0\}$ is at most countable, it follows that $\{i \mid y_i \neq 0\}$ is at most countable. Thus $x = (h_i(y_i))_i = h(y)$ with $y = (y_i)_i \in \prod_{\aleph_1} A_i$. Hence $\operatorname{Ker} l \subset \operatorname{Im} h \subset \operatorname{Ker} l$.

(iii) Since each h_i is an injection, it follows that h is an injection.

(iv) Let $y = (y_i)_{i \in I} \in \prod_{\aleph_1} C_i$. By hypothesis, for each $i \in I$ there is $x_i \in B_i$ such that $y_i = l_i(x_i)$. Let $z = (z_i)_{i \in I} \in \prod_{i \in I} B_i$ with $z_i = x_i$ if $y_i \neq 0$ and $z_i = 0$ if $y_i = 0$. Then l(z) = y. Since $\{i \mid y_i \neq 0\}$ is at most countable, we have that $\{i \mid z_i \neq 0\}$ is at most countable. So $z \in \prod_{\aleph_1} B_i$ and l(z) = y. Thus l is surjective.

Corollary 3.4. If $(D_i)_{i \in I}$ is a family of exact complexes of left *R*-modules, then $\prod_{\aleph_1} D_i$ is an exact complex.

Corollary 3.5. Let R be a left Noetherian ring. If $(E_i)_{i \in I}$ is a family of injective left R-modules, then $\prod_{\aleph_1} E_i$ is an injective left R-module.

Proof. Let J be a left ideal of R. The sequence $0 \to J \to R \to R/J \to 0$ is exact and each E_i is injective, so the sequence

$$0 \to \operatorname{Hom}(R/J, E_i) \to \operatorname{Hom}(R, E_i) \to \operatorname{Hom}(J, E_i) \to 0$$

is exact for any $i \in I$. By Lemma 3.3, the sequence

$$0 \to \prod_{\aleph_1} \operatorname{Hom}(R/J, E_i) \to \prod_{\aleph_1} \operatorname{Hom}(R, E_i) \to \prod_{\aleph_1} \operatorname{Hom}(J, E_i) \to 0$$

is exact. Since R is left Noetherian, both J and R/J are finitely generated left R-modules. Then by Lemma 3.1 we have that

$$\begin{split} \prod_{\aleph_1} \operatorname{Hom}(R/J, E_i) &\simeq \operatorname{Hom}\left(R/J, \prod_{\aleph_1} E_i\right), \qquad \prod_{\aleph_1} \operatorname{Hom}(R, E_i) \simeq \operatorname{Hom}\left(R, \prod_{\aleph_1} E_i\right), \\ &\prod_{\aleph_1} \operatorname{Hom}(J, E_i) \simeq \operatorname{Hom}\left(J, \prod_{\aleph_1} E_i\right). \end{split}$$

Hence the sequence

$$0 \to \operatorname{Hom}\left(R/J, \prod_{\aleph_1} E_i\right) \to \operatorname{Hom}\left(R, \prod_{\aleph_1} E_i\right) \to \operatorname{Hom}\left(J, \prod_{\aleph_1} E_i\right) \to 0$$

is exact for any left ideal J of R. By [4, Theorem 3.1.3], the module $\prod_{\aleph_1} E_i$ is injective.

We can now prove that over a left Noetherian ring R an \aleph_1 -product of DG-injective complexes is still DG-injective.

Proposition 3.6. If R is a left Noetherian ring, $(K_i)_{i \in I}$ is a family of DG-injective complexes and $K = \prod_{\aleph_1} K_i$, then K is a DG-injective complex.

Proof. Since K_i is DG-injective, there is an exact sequence $0 \to D_i \to E_i \to K_i \to 0$ with E_i injective, D_i DG-injective and such that Hom(M, -) leaves the sequence exact for any exact complex M (Lemma 2.6).

By Proposition 2.11, it suffices to show that $\operatorname{Ext}^1(M, K) = 0$ for a bounded-above exact complex of finitely generated modules $M = \cdots \to M_1 \to M_0 \to 0$.

Let M be such an exact complex.

By Lemma 2.6, the sequence $0 \to \text{Hom}(M, D_i) \to \text{Hom}(M, E_i) \to \text{Hom}(M, K_i) \to 0$ is exact for each $i \in I$. By Lemma 3.3, we have an exact sequence:

$$0 \to \prod_{\aleph_1} \operatorname{Hom}(M, D_i) \to \prod_{\aleph_1} \operatorname{Hom}(M, E_i) \to \prod_{\aleph_1} \operatorname{Hom}(M, K_i) \to 0.$$

Since each M_n is finitely generated $(n \ge 0)$ we have

$$\prod_{\aleph_1} \operatorname{Hom}(M, T_i) \simeq \operatorname{Hom}\left(M, \prod_{\aleph_1} T_i\right)$$

for any family of complexes $(T_i)_{i \in I}$ (by Proposition 3.2).

Thus we have an exact sequence

$$0 \to \operatorname{Hom}\left(M, \prod_{\aleph_1} D_i\right) \to \operatorname{Hom}\left(M, \prod_{\aleph_1} E_i\right) \to \operatorname{Hom}\left(M, \prod_{\aleph_1} K_i\right) \to 0.$$
(3.1)

But the fact that $0 \to D_i \to E_i \to K_i \to 0$ is exact for each $i \in I$ implies that

$$0 \to \prod_{\aleph_1} D_i \to \prod_{\aleph_1} E_i \to \prod_{\aleph_1} K_i \to 0$$

is an exact sequence (Lemma 3.3). Consequently, we have an exact sequence

$$0 \to \operatorname{Hom}\left(M, \prod_{\aleph_1} D_i\right) \to \operatorname{Hom}\left(M, \prod_{\aleph_1} E_i\right) \to \operatorname{Hom}\left(M, \prod_{\aleph_1} K_i\right)$$
$$\to \operatorname{Ext}^1\left(M, \prod_{\aleph_1} D_i\right) \to \operatorname{Ext}^1\left(M, \prod_{\aleph_1} E_i\right) = 0, \quad (3.2)$$

since $\prod_{\aleph_1} E_i$ is injective (see Corollaries 3.4 and 3.5 and Theorem 3.1.3 in [6]).

By (3.1) and (3.2), we have $\operatorname{Ext}^{1}(M, \prod_{\aleph_{1}} D_{i}) = 0$ for any exact bounded-above complex M with each M_{n} finitely generated. Consequently, $\prod_{\aleph_{1}} D_{i}$ is a DG-injective complex (by Proposition 2.11). Since

$$0 \to \prod_{\aleph_1} D_i \to \prod_{\aleph_1} E_i \to \prod_{\aleph_1} K_i \to 0$$

is exact and $\prod_{\aleph_1} D_i$, $\prod_{\aleph_1} E_i$ are DG-injective, it follows that $\prod_{\aleph_1} K_i$ is DG-injective (see the remark on p. 31 of [5]).

Corollary 3.7. Let R be a left Noetherian ring and let $(X_i)_{i \in I}$ be a family of complexes of left R-modules. If $E_i \to X_i$ is an exact cover for each $i \in I$, then $\prod_{\aleph_1} E_i \to \prod_{\aleph_1} X_i$ is an exact precover.

Proof. By Theorem 2.5, $K_i = \text{Ker}(E_i \to X_i)$ is a DG-injective complex for each $i \in I$. Since $0 \to K_i \to E_i \to X_i \to 0$ is exact for each $i \in I$, it follows that

$$0 \to \prod_{\aleph_1} K_i \to \prod_{\aleph_1} E_i \to \prod_{\aleph_1} X_i \to 0$$

is an exact sequence of complexes (Lemma 3.3).

By Corollary 3.4, $\prod_{\aleph_1} E_i$ is an exact complex.

Let D be an exact complex. Since the sequence

$$0 \to \prod_{\aleph_1} K_i \to \prod_{\aleph_1} E_i \to \prod_{\aleph_1} X_i \to 0$$

is exact, we have an associated exact sequence

$$\begin{split} 0 \to \operatorname{Hom}\left(D, \prod_{\aleph_1} K_i\right) \to \operatorname{Hom}\left(D, \prod_{\aleph_1} E_i\right) \\ \to \operatorname{Hom}\left(D, \prod_{\aleph_1} X_i\right) \to \operatorname{Ext}^1\left(D, \prod_{\aleph_1} K_i\right) = 0 \end{split}$$

(since, by Proposition 3.6, $\prod_{\aleph_1} K_i$ is DG-injective).

Thus $\prod_{\aleph_1} E_i \to \prod_{\aleph_1} X_i$ is an exact precover.

Remark 3.8. With the hypotheses of Corollary 3.7, $\prod_{\aleph_1} E_i \to \prod_{\aleph_1} X_i$ is not necessarily an exact cover.

For example, let $R = \mathbb{Z}$ and let

$$X = \dots \to 0 \to \overset{\text{0th}}{\mathbb{Z}} \to 0 \to \dots$$

Since $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$ is a minimal injective resolution of \mathbb{Z} , it follows that the complex

$$E = \cdots 0 \to 0 \to \overset{\text{oth}}{\mathbb{Z}} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0 \cdots$$

with the map $E \to X$, which is the identity on \mathbb{Z} , is an exact cover of X (see the example on p. 37 of [5]).

Let $X_n = X$ for any $n \in \mathbb{N}$ and let $E_n = E$ for any $n \in \mathbb{N}$. Thus $E_n \to X_n$ is an exact cover for any $n \in \mathbb{N}$.

Suppose $\prod_{\aleph_1} E_n \to \prod_{\aleph_1} X_n$ is an exact cover, i.e. $\prod_{n=1}^{\infty} E_n \to \prod_{n=1}^{\infty} X_n$ is an exact cover. Then $\operatorname{Ker}(\prod_{n=1}^{\infty} E_n \to \prod_{n=1}^{\infty} X_n)$ is a minimal DG-injective complex, i.e. the complex

$$0 \to \prod_{n=1}^{\infty} \mathbb{Q}_n \to \prod_{n=1}^{\infty} (\mathbb{Q}/\mathbb{Z})_n \to 0$$

E. E. Enochs and A. Iacob

is minimal DG-injective (with $\mathbb{Q}_n = \mathbb{Q}$ and $(\mathbb{Q}/\mathbb{Z})_n = \mathbb{Q}/\mathbb{Z}$ for any $n \in \mathbb{N}$). Consequently,

$$\prod_{n=1}^{\infty} \mathbb{Z}_n = \operatorname{Ker}\left(\prod_{n=1}^{\infty} \mathbb{Q}_n \to \prod_{n=1}^{\infty} (\mathbb{Q}/\mathbb{Z})_n\right)$$

is essential in $\prod_{n=1}^{\infty} \mathbb{Q}_n$ (with $\mathbb{Z}_n = \mathbb{Z}$ for any $n \in \mathbb{N}$).

Let $(x_n)_n = (1/p_n)_n$, where p_n is prime, $p_n \neq p_k$ for $n \neq k$. Since $(x_n)_n \in \prod_{n=1}^{\infty} \mathbb{Q}_n$, $(x_n)_n \neq 0$ and $\prod_{n=1}^{\infty} \mathbb{Z}_n$ is essential in $\prod_{n=1}^{\infty} \mathbb{Q}_n$, there exists $r \in \mathbb{Z}$ such that $r(1/p_n) \in \mathbb{Z}$ for any $n \ge 1$ [9, Exercise 3.25], which means that $p_n \mid r$ for any prime number p_n . But $r \in \mathbb{Z}$ is the product of a finite number of primes. Contradiction.

Remark 3.9. Using a few elementary facts about cardinal arithmetic it is not hard to modify the arguments in this paper to prove that the \aleph_{β} -product of DG-injective complexes is DG-injective if $\beta > 0$ is not a limit ordinal (so $\beta = \alpha + 1$ for some α) or if β is a limit ordinal which is not cofinal with ω . For the sake of simplicity we restricted ourselves to the \aleph_1 case.

Remark 3.10. For other results about \aleph -products see [3] and [8].

References

- L. AVRAMOV AND H.-B. FOXBY, Homological dimensions of unbounded complexes, J. Pure Appl. Alg. 71 (1991), 129–155.
- H. BASS, Injective dimensions in Noetherian rings, Trans. Am. Math. Soc. 102 (1962), 189–209.
- J. DAUNS AND L. FUCHS, ℵ-products of slender modules, Acta Sci. Math. 3(4) (1993), 205–213.
- 4. E. E. ENOCHS AND O. M. G. JENDA, *Relative homological algebra*, De Gruyter Expositions in Mathematics, vol. 30 (Walter de Gruyter, Berlin, 2000).
- E. E. ENOCHS, O. M. G. JENDA AND J. XU, Orthogonality in the category of complexes, Math. J. Okayama Univ. 38 (1996), 25–46.
- 6. J. R. GARCÍA ROZAS, Covers and evelopes in the category of complexes of modules (CRC Press, Boca Raton, FL, 1999).
- 7. A. IACOB, Direct sums of exact covers of complexes, Math. Scand., in press.
- 8. L. OYONARTE AND B. TORRECILLAS, ℵ-products of injective objects in Grothendieck categories, *Commun. Alg.* **25**(3) (1997), 923–934.
- 9. J. J. ROTMAN, An introduction to homological algebra (Academic, 1979).