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Abstract Given a left Noetherian ring R, we give a necessary and sufficient condition in order that a
complex of R-modules be DG-injective. Using this result we prove that if (Ki)i∈I is a family of DG-
injective complexes of left R-modules and K is the ℵ1-product of (Ki)i∈I (i.e. K ⊂

∏
i∈I Ki is such

that, for each n, Kn ⊂
∏

i∈I Kn
i consists of all (xi)i∈I such that {i | xi �= 0} is at most countable), then

K is DG-injective.
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1. Introduction

A ring R is left Noetherian if and only if the direct sum of any family of injective left
R-modules is injective. This result of Bass [2] led to a series of similar closure questions
concerning classes of modules and complexes of modules.

Perhaps surprisingly, we were able to prove that over a left Noetherian ring R it is not
true that the direct sum of DG-injective complexes is DG-injective [7]. This means that
the class of DG-injective complexes is not closed under ℵ0-products.

In this paper we prove that over such a left Noetherian ring R the class of DG-injective
complexes is closed under ℵ1-products.

We start by giving necessary and sufficient conditions for a complex to be DG-injective.
We prove first (Proposition 2.10) that over any ring R a complex K is DG-injective if
and only if Ext1(M, K) = 0 for every bounded-above exact complex M .

We use this result to show (Proposition 2.11) that if R is a left Noetherian ring, then
a complex K is DG-injective if and only if Ext1(M, K) = 0 for any bounded-above exact
complex M with each module Mn finitely generated.

Using the previous result we show that, if R is a left Noetherian ring, (Ki)i∈I is a
family of DG-injective complexes of left R-modules and K is the ℵ1-product of (Ki)i∈I ,
then K is DG-injective.
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2. Preliminaries

Let R be any ring. A (chain) complex C of R-modules is a sequence

C = · · · → C2
∂2−→ C1

∂1−→ C0
∂0−→ C−1

∂−1−−→ C−2 → · · ·

of R-modules and R-homomorphisms such that ∂n−1 ◦ ∂n = 0 for all n ∈ Z.
A chain complex of the form

C = · · ·C−2 ∂−2

−−→ C−1 ∂−1

−−→ C0 ∂0

−→ C1 ∂1

−→ C2 → · · ·

is called a cochain complex. In this case, ∂n+1 ◦ ∂n = 0 for all n ∈ Z. We note that a
cochain complex is simply a chain complex with Ci replaced by C−i and ∂i by ∂−i. So,
for example, it is more convenient to write a complex

0 → C0 → C−1 → C−2 → · · ·

as

0 → C0 → C1 → C2 → · · · .

Throughout the paper we use both the subscript notation for complexes and the super-
script notation.

When we use superscripts for a complex we will use subscripts to distinguish complexes:
for example, if (Ki)i∈I is a family of complexes, then Kn

i denotes the degree-n term of
the complex Ki.

If X and Y are both complexes of left R-modules, then Hom(X, Y ) denotes the complex
with

Hom(X, Y )n =
∏

q=p+n

HomR(Xp, Yq)

and with differential given by ∂(f) = ∂ ◦ f − (−1)nf ◦ ∂, for f ∈ Hom(X, Y )n.
We use the terminology of [1] and say that a complex I is DG-injective if each In is

injective and if Hom(E, I) is exact for any exact complex E.
Throughout the paper, Hom(X, Y ) denotes the set of morphisms from X to Y in the

category of complexes, and the Exti(X, Y ) are the right-derived functors of Hom.

Proposition 2.1 (see Proposition 3.4 in [5]). A complex I is DG-injective if and
only if Ext1(E, I) = 0 for any exact complex E.

Definition 2.2 (see p. 35 in [5]). A DG-injective complex

I = · · · → In−1 gn−1−−−→ In gn−→ In+1 → · · ·

is said to be minimal DG-injective if, for each n, Ker gn is essential in In.

Proposition 2.3 (see Proposition 3.16 in [5]). A DG-injective complex is the
direct sum of an injective complex and a minimal DG-injective complex. This direct sum
decomposition is unique up to isomorphism.
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Definition 2.4 (see [5]). A morphism of complexes Φ : E → X is an exact precover
of X if E is exact and if Hom(F, E) → Hom(F, X) is surjective for any exact complex F .

If, moreover, any f : E → E such that Φ = Φ ◦ f is an automorphism of E, then
Φ : E → X is called an exact cover of X.

Theorem 2.5 (see Theorem 3.18 in [5]). Every complex X has an exact cover
E → X. A morphism E → X of complexes is an exact cover of X if and only if E

is exact, E → X is surjective and Ker(E → X) is a minimal DG-injective complex. If
E → X is an exact cover, E is injective if and only if X is DG-injective.

We recall that, for any n and for any complex X, X[n] denotes the complex such that
X[n]m = Xn+m and whose boundary operators are (−1)n∂n+m.

If f : X → Y is a morphism of complexes, then there is an exact sequence 0 → Y →
M(f) → X[1] → 0 with M(f) the associated mapping cone (M(f)n = Xn+1 ⊕ Y n and
∂(x, y) = (−∂x, f(x) + ∂y) for (x, y) ∈ Xn+1 ⊕ Y n).

Lemma 2.6 (see Lemma 3.21 in [5]). Let I be a DG-injective complex and let
Id : I → I give the exact sequence 0 → I → M(Id) → I[1] → 0. Then M(Id) is injective
and M(Id) → I[1] is an exact precover. If I is minimal, then I → M(Id) is an injective
envelope and M(Id) → I[1] is an exact cover.

Lemma 2.7. If (Ki)i∈I is a family of DG-injective complexes, then
∏

i∈I Ki is DG-
injective.

Proof. Let M be an exact complex.
Each Ki is DG-injective, so by Proposition 2.1 we have Ext1(M, Ki) = 0 for any i ∈ I.
Since

Ext1
(

M,
∏
i∈I

Ki

)
�

∏
i∈I

Ext1(M, Ki) = 0

for any exact complex M , it follows (by Proposition 2.1) that
∏

i∈I Ki is DG-injective. �

Definition 2.8. Given an ordinal number λ and a family (Mα)α<λ of subcomplexes of
a complex M , we say that the family is a continuous chain of subcomplexes if Mα ⊂ Mβ

whenever α � β < λ and if Mβ =
⋃

α<β Mα whenever β < λ is a limit ordinal. A family
(Mα)α�λ is called a continuous chain if (Mα)α<λ+1 is one such.

A similar argument to that in the proof of Theorem 7.3.4 in [4] gives the following
useful result.

Theorem 2.9. Let M and N be complexes of left R-modules and suppose that M is
the union of a continuous chain of complexes (Mα)α<λ. Then, if Ext1(M0, N) = 0 and
Ext1(Mα+1/Mα, N) = 0 whenever α + 1 < λ, then Ext1(M, N) = 0.

Our first result is the following proposition.

Proposition 2.10. For any ring R, a complex K is DG-injective if and only if
Ext1(F, K) = 0 for every exact complex F = · · · → F2 → F1 → F0 → 0.
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Proof. (⇐.) Let

F = · · · → F2
h2−→ F1

h1−→ F0
h0−→ F 1 λ1−→ F 2 λ2−→ · · ·

be any exact complex. For any n � 0 let

F̄n = · · · → F1
h1−→ F0

h0−→ · · · → Fn λn−−→ Mn → 0,

where Mn = Ker λn+1.
We have F̄n ⊂ F̄n+1, and

F̄n+1/F̄n � 0 → Mn+1
Id−→ Mn+1 → 0, for any n � 0.

F is the union of the continuous chain of complexes (F̄n)n�0.
By hypothesis, Ext1(F̄0, K) = 0 and Ext1(F̄n+1/F̄n, K) = 0 for any n � 0. By Theo-

rem 2.9, we have that Ext1(F, K) = 0.
Since Ext1(F, K) = 0 for any exact complex F , it follows that K is DG-injective

(Proposition 2.1).

(⇒.) Since K is DG-injective, we have Ext1(F, K) = 0 for any exact complex F . �

Using this result we can prove the following.

Proposition 2.11. Let R be a left Noetherian ring. A complex K is DG-injective if
and only if Ext1(M, K) = 0 for any exact complex

M = · · · → M2
f2−→ M1

f1−→ M0 → 0,

with each Mn finitely generated.

Proof. (⇐.) Let

M = · · · → M2
f2−→ M1

f1−→ M0 → 0

be any exact complex. Let n � 0 and let x ∈ Mn. We can easily see that there is an
exact subcomplex S ⊂ M such that x ∈ Sn and such that Si is finitely generated for each
i � 0. For let Sn = Rx and let Sn−1 = fn(Rx) if n � 1 and of course Sn−1 = S−1 = 0
if n = 0. Then let Si = 0 for i � n − 2. Then choose Sn+1 ⊂ Mn+1 finitely generated
and such that fn+1(Sn+1) = Ker fn ∩ Sn. Then, in a similar manner, let Sn+2 ⊂ Mn+2

be finitely generated and such that fn+2(Sn+2) = Ker fn+1 ∩ Sn+1. Proceeding in this
manner we get the desired exact subcomplex S = · · · → S2 → S1 → S0 → 0.

Now let y ∈ Mm for some m � 0. Consider the quotient complex M/S (which is also
exact) and the element y + Sm ∈ (M/S)m = Mm/Sm. By the argument above there
is an exact subcomplex T/S ⊂ M/S with y + Sm ∈ (T/S)m = Tm/Sm and such that
each (T/S)i is finitely generated. But then each Ti is also finitely generated. So we have
S ⊂ T with both S and T bounded-above exact complexes of finitely generated modules
and such that x ∈ Tn, y ∈ Tm.

Using this procedure we see that we can write M as the union of a continuous chain
(Mα)α<λ of complexes for some ordinal λ such that each of M0 and Mα+1/Mα for
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α+1 < λ is a bounded-above exact complex of finitely generated modules. By hypothesis,
Ext1(M0, K) = 0 and Ext1(Mα+1/Mα, K) = 0 whenever α + 1 < λ. By Theorem 2.9, we
have that Ext1(M, K) = 0.

Since Ext1(M, K) = 0 for any bounded-above exact complex M , it follows that K is
DG-injective (Proposition 2.10).

(⇒.) Since K is DG-injective, we have Ext1(M, K) = 0 for any exact complex M . �

3. The ℵ1-product of a family of DG-injective complexes over a
left Noetherian ring is DG-injective

Let (Ki)i∈I be a family of complexes of R-modules (R any ring). The ℵ1-product of
(Ki)i∈I is the complex K such that, for each n, Kn ⊂

∏
i∈I Kn

i consists of all (xi)i∈I

such that Card{i | xi �= 0} < ℵ1, that is, {i | xi �= 0} is at most countable. We will
denote this product by

∏
ℵ1

Ki.
We use the following result to prove that the ℵ1-product of a family of DG-injective

complexes is still DG-injective.

Lemma 3.1. If M is a finitely generated left R-module, then Hom(M,
∏

ℵ1
Ki) �∏

ℵ1
Hom(M, Ki) for any family (Ki)i∈I of left R-modules.

Proof. Let

T : Hom
(

M,
∏
ℵ1

Ki

)
→

∏
i∈I

Hom(M, Ki).

T (α) = (αi)i∈I with αi = pi ◦ α, where pj :
∏

i∈I Ki → Kj , pj((xi)i) = xj .
Let {x1, . . . , xn} be a set of generators of M . Let α(xl) = (xl

i)i∈I .
Since {j | xl

j �= 0} is at most countable for each l ∈ {1, 2, . . . , n}, it follows that

n⋃
l=1

{j | xl
j �= 0}

is at most countable. This implies that {j | αj �= 0} is at most countable.
So T (α) = (αi)i ∈

∏
ℵ1

Hom(M, Ki).

(i) If T (α) = 0, then αi = 0 for any i ∈ I, so α = 0. Hence T is injective.

(ii) Let (αi)i∈I ∈
∏

ℵ1
Hom(M, Ki) and let α = (αi)i∈I .

Since {i | αi �= 0} is at most countable, we have that α(x) = (αi(x))i ∈
∏

ℵ1
Ki, for any

x ∈ M .
So α ∈ Hom(M,

∏
ℵ1

Ki) and T (α) = (αi)i∈I . Hence T is surjective.

(iii) Since

T (α + β) = (pi ◦ (α + β))i = (pi ◦ α)i + (pi ◦ β)i = T (α) + T (β),

for any α, β ∈ Hom(M,
∏

ℵ1
Ki), it follows that T is a homomorphism.

So Hom(M,
∏

ℵ1
Ki) �

∏
ℵ1

Hom(M, Ki). �
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Proposition 3.2. Let M = · · · → M2 → M1 → M0 → 0 be an exact complex with
each Mn a finitely generated left R-module.

We have Hom(M,
∏

ℵ1
Ki) �

∏
ℵ1

Hom(M, Ki) for any family (Ki)i∈I of complexes of
left R-modules.

Proof. Let pi :
∏

ℵ1
Kj → Ki, pn

i ((xj)j) = xi, ∀(xj)j ∈
∏

ℵ1
(Kn

j ). Let T :
Hom(M,

∏
ℵ1

Ki) →
∏

i∈I Hom(M, Ki) be defined by T (α) = (αi)i with αi = pi ◦ α,
for each i ∈ I. Then αn

i = pn
i ◦ αn for any i ∈ I and and n � 0:

M = · · · ��

α

��

M2 ��

α2

��

M1 ��

α1

��

M0 ��

α0

��

0

��∏
ℵ1

Kj = · · · ��

pi

��

∏
ℵ1

K2
j

��

p2
i

��

∏
ℵ1

K1
j

��

p1
i

��

∏
ℵ1

K0
j

��

p0
i

��

∏
ℵ1

K−1
j

��

p−1
i

��

· · ·

Ki = · · · �� K2
i

�� K1
i

�� K0
i

�� K−1
i

�� · · ·

Since each Mn is finitely generated, we have

Hom
(

Mn,
∏
ℵ1

Kn
i

)
�

∏
ℵ1

Hom(Mn, Kn
i ) (by Lemma 3.1).

So for each n � 0 we have that the set {i | αn
i �= 0} is at most countable.

Then, since αi = (αn
i )n, we have that

{i | αi �= 0} =
⋃
n�0

{i | αn
i �= 0}.

Since a countable union of countable sets is still countable, it follows that {i | αi �= 0} is
at most countable.

Hence (αi)i ∈
∏

ℵ1
Hom(M, Ki).

Thus T : Hom(M,
∏

ℵ1
Ki) →

∏
ℵ1

Hom(M, Ki).

(i) If (αi)i ∈
∏

ℵ1
Hom(M, Ki), then α = (αi)i ∈ Hom(M,

∏
ℵ1

Ki) and T (α) = (αi)i.

(ii) T (α) = 0 ⇔ αi = 0, ∀i ∈ I ⇔ α = 0.

(iii) T (α + β) = (pi ◦ (α + β))i = (pi ◦ α)i + (pi ◦ β)i = T (α) + T (β) for any α, β ∈
Hom(M,

∏
ℵ1

Ki).

So T is an isomorphism. �

Lemma 3.3. If
0 → Ai

hi−→ Bi
li−→ Ci → 0

is an exact sequence of left R-modules for each i ∈ I, then the sequence

0 →
∏
ℵ1

Ai
h−→

∏
ℵ1

Bi
l−→

∏
ℵ1

Ci → 0

is exact (with h =
∏

i∈I hi|∏ℵ1
Ai

and l =
∏

i∈I li|∏ℵ1
Bi

).
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Proof. (i) Since l◦h((xi)i) = (li(hi(xi)))i = 0 for any x = (xi)i∈I ∈
∏

ℵ1
Ai, it follows

that Im h ⊂ Ker l.

(ii) Let x = (xi)i∈I ∈ Ker l ⊂
∏

ℵ1
Bi. For each i ∈ I we have xi ∈ Ker li = Im hi, so

xi = hi(yi) for some yi ∈ Ai. Since yi �= 0 implies xi �= 0 (because hi is an injection) and
{i | xi �= 0} is at most countable, it follows that {i | yi �= 0} is at most countable. Thus
x = (hi(yi))i = h(y) with y = (yi)i ∈

∏
ℵ1

Ai. Hence Ker l ⊂ Im h ⊂ Ker l.

(iii) Since each hi is an injection, it follows that h is an injection.

(iv) Let y = (yi)i∈I ∈
∏

ℵ1
Ci. By hypothesis, for each i ∈ I there is xi ∈ Bi such that

yi = li(xi). Let z = (zi)i∈I ∈
∏

i∈I Bi with zi = xi if yi �= 0 and zi = 0 if yi = 0. Then
l(z) = y. Since {i | yi �= 0} is at most countable, we have that {i | zi �= 0} is at most
countable. So z ∈

∏
ℵ1

Bi and l(z) = y. Thus l is surjective. �

Corollary 3.4. If (Di)i∈I is a family of exact complexes of left R-modules, then∏
ℵ1

Di is an exact complex.

Corollary 3.5. Let R be a left Noetherian ring. If (Ei)i∈I is a family of injective left
R-modules, then

∏
ℵ1

Ei is an injective left R-module.

Proof. Let J be a left ideal of R. The sequence 0 → J → R → R/J → 0 is exact and
each Ei is injective, so the sequence

0 → Hom(R/J, Ei) → Hom(R, Ei) → Hom(J, Ei) → 0

is exact for any i ∈ I. By Lemma 3.3, the sequence

0 →
∏
ℵ1

Hom(R/J, Ei) →
∏
ℵ1

Hom(R, Ei) →
∏
ℵ1

Hom(J, Ei) → 0

is exact. Since R is left Noetherian, both J and R/J are finitely generated left R-modules.
Then by Lemma 3.1 we have that

∏
ℵ1

Hom(R/J, Ei) � Hom
(

R/J,
∏
ℵ1

Ei

)
,

∏
ℵ1

Hom(R, Ei) � Hom
(

R,
∏
ℵ1

Ei

)
,

∏
ℵ1

Hom(J, Ei) � Hom
(

J,
∏
ℵ1

Ei

)
.

Hence the sequence

0 → Hom
(

R/J,
∏
ℵ1

Ei

)
→ Hom

(
R,

∏
ℵ1

Ei

)
→ Hom

(
J,

∏
ℵ1

Ei

)
→ 0

is exact for any left ideal J of R. By [4, Theorem 3.1.3], the module
∏

ℵ1
Ei is injective.

�

We can now prove that over a left Noetherian ring R an ℵ1-product of DG-injective
complexes is still DG-injective.
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Proposition 3.6. If R is a left Noetherian ring, (Ki)i∈I is a family of DG-injective
complexes and K =

∏
ℵ1

Ki, then K is a DG-injective complex.

Proof. Since Ki is DG-injective, there is an exact sequence 0 → Di → Ei → Ki → 0
with Ei injective, Di DG-injective and such that Hom(M, −) leaves the sequence exact
for any exact complex M (Lemma 2.6).

By Proposition 2.11, it suffices to show that Ext1(M, K) = 0 for a bounded-above
exact complex of finitely generated modules M = · · · → M1 → M0 → 0.

Let M be such an exact complex.
By Lemma 2.6, the sequence 0 → Hom(M, Di) → Hom(M, Ei) → Hom(M, Ki) → 0 is

exact for each i ∈ I. By Lemma 3.3, we have an exact sequence:

0 →
∏
ℵ1

Hom(M, Di) →
∏
ℵ1

Hom(M, Ei) →
∏
ℵ1

Hom(M, Ki) → 0.

Since each Mn is finitely generated (n � 0) we have

∏
ℵ1

Hom(M, Ti) � Hom
(

M,
∏
ℵ1

Ti

)

for any family of complexes (Ti)i∈I (by Proposition 3.2).
Thus we have an exact sequence

0 → Hom
(

M,
∏
ℵ1

Di

)
→ Hom

(
M,

∏
ℵ1

Ei

)
→ Hom

(
M,

∏
ℵ1

Ki

)
→ 0. (3.1)

But the fact that 0 → Di → Ei → Ki → 0 is exact for each i ∈ I implies that

0 →
∏
ℵ1

Di →
∏
ℵ1

Ei →
∏
ℵ1

Ki → 0

is an exact sequence (Lemma 3.3). Consequently, we have an exact sequence

0 → Hom
(

M,
∏
ℵ1

Di

)
→ Hom

(
M,

∏
ℵ1

Ei

)
→ Hom

(
M,

∏
ℵ1

Ki

)

→ Ext1
(

M,
∏
ℵ1

Di

)
→ Ext1

(
M,

∏
ℵ1

Ei

)
= 0, (3.2)

since
∏

ℵ1
Ei is injective (see Corollaries 3.4 and 3.5 and Theorem 3.1.3 in [6]).

By (3.1) and (3.2), we have Ext1(M,
∏

ℵ1
Di) = 0 for any exact bounded-above complex

M with each Mn finitely generated. Consequently,
∏

ℵ1
Di is a DG-injective complex (by

Proposition 2.11). Since

0 →
∏
ℵ1

Di →
∏
ℵ1

Ei →
∏
ℵ1

Ki → 0

is exact and
∏

ℵ1
Di,

∏
ℵ1

Ei are DG-injective, it follows that
∏

ℵ1
Ki is DG-injective (see

the remark on p. 31 of [5]). �
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Corollary 3.7. Let R be a left Noetherian ring and let (Xi)i∈I be a family of
complexes of left R-modules. If Ei → Xi is an exact cover for each i ∈ I, then∏

ℵ1
Ei →

∏
ℵ1

Xi is an exact precover.

Proof. By Theorem 2.5, Ki = Ker(Ei → Xi) is a DG-injective complex for each i ∈ I.
Since 0 → Ki → Ei → Xi → 0 is exact for each i ∈ I, it follows that

0 →
∏
ℵ1

Ki →
∏
ℵ1

Ei →
∏
ℵ1

Xi → 0

is an exact sequence of complexes (Lemma 3.3).
By Corollary 3.4,

∏
ℵ1

Ei is an exact complex.
Let D be an exact complex. Since the sequence

0 →
∏
ℵ1

Ki →
∏
ℵ1

Ei →
∏
ℵ1

Xi → 0

is exact, we have an associated exact sequence

0 → Hom
(

D,
∏
ℵ1

Ki

)
→ Hom

(
D,

∏
ℵ1

Ei

)

→ Hom
(

D,
∏
ℵ1

Xi

)
→ Ext1

(
D,

∏
ℵ1

Ki

)
= 0

(since, by Proposition 3.6,
∏

ℵ1
Ki is DG-injective).

Thus
∏

ℵ1
Ei →

∏
ℵ1

Xi is an exact precover. �

Remark 3.8. With the hypotheses of Corollary 3.7,
∏

ℵ1
Ei →

∏
ℵ1

Xi is not neces-
sarily an exact cover.

For example, let R = Z and let

X = · · · → 0 →
0th
Z → 0 → · · · .

Since 0 → Z → Q → Q/Z → 0 is a minimal injective resolution of Z, it follows that
the complex

E = · · · 0 → 0 →
0th
Z → Q → Q/Z → 0 · · ·

with the map E → X, which is the identity on Z, is an exact cover of X (see the example
on p. 37 of [5]).

Let Xn = X for any n ∈ N and let En = E for any n ∈ N. Thus En → Xn is an exact
cover for any n ∈ N.

Suppose
∏

ℵ1
En →

∏
ℵ1

Xn is an exact cover, i.e.
∏∞

n=1 En →
∏∞

n=1 Xn is an exact
cover. Then Ker(

∏∞
n=1 En →

∏∞
n=1 Xn) is a minimal DG-injective complex, i.e. the com-

plex

0 →
∞∏

n=1

Qn →
∞∏

n=1

(Q/Z)n → 0
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is minimal DG-injective (with Qn = Q and (Q/Z)n = Q/Z for any n ∈ N). Consequently,

∞∏
n=1

Zn = Ker
( ∞∏

n=1

Qn →
∞∏

n=1

(Q/Z)n

)

is essential in
∏∞

n=1 Qn (with Zn = Z for any n ∈ N).
Let (xn)n = (1/pn)n, where pn is prime, pn �= pk for n �= k. Since (xn)n ∈

∏∞
n=1 Qn,

(xn)n �= 0 and
∏∞

n=1 Zn is essential in
∏∞

n=1 Qn, there exists r ∈ Z such that r(1/pn) ∈ Z

for any n � 1 [9, Exercise 3.25], which means that pn | r for any prime number pn. But
r ∈ Z is the product of a finite number of primes. Contradiction.

Remark 3.9. Using a few elementary facts about cardinal arithmetic it is not hard
to modify the arguments in this paper to prove that the ℵβ-product of DG-injective
complexes is DG-injective if β > 0 is not a limit ordinal (so β = α + 1 for some α) or if
β is a limit ordinal which is not cofinal with ω. For the sake of simplicity we restricted
ourselves to the ℵ1 case.

Remark 3.10. For other results about ℵ-products see [3] and [8].
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