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RESTRICTION OF SIEGEL MODULAR FORMS
TO MODULAR CURVES

CRIS POOR AND DAVID S. YUEN

We study homomorphisms from the ring of Siegel modular forms of a given degree
to the ring of elliptic modular forms for a congruence subgroup. These homomor-
phisms essentially arise from the restriction of Siegel modular forms to modular
curves. These homomorphisms give rise to linear relations among the Fourier coef-
ficients of a Siegel modular form. We use this technique to prove that dim S\° = 1.

1. INTRODUCTION

A Siegel modular cusp form of degree n has a Fourier series /(fi) = J^t o,(t)e[tv (fit))
where t runs over Xn, the set of positive definite semi-integral nxn forms. If we restrict
attention to cusp forms of even weight then the Fourier coefficients are class functions
of t. The vector space S* of cusp forms of weight k is finite dimensional and so there
exist finite subsets 5 C classes (Xn) such that the projection map FSs : S* -4 C 5

given by / i-4 Y\ a ( 0 *s injective. The following Theorem [13, p. 218] gives one such
Mes

<S that is readily computable from n and k. Instead of ordering semi-integral forms
t by their determinant det (t) we order them by their dyadic trace w(t). Denote by
•pn(F) the positive definite nxn symmetric matrices with coefficients in F C R. The
dyadic trace w : Vn (K) -> K+ is a class function and only a finite number of classes
from Xn will have a dyadic trace below any fixed bound, see [13].

THEOREM 1 . 1 . Let n, k e Z+. Let

2 fc( 2 fc i
S = \ [t] : t € Xn and w{t) < n—=— \.

y v 3 4?r >

The map FSs : S£ ->• C 5 is injective.

This Theorem allows one to deduce equality in 5* from equality on the Fourier
coefficients for S. There are two obvious avenues for improvement. First, as is evident
from Table 1, the bound dim S£ ^ card (5) is tractable but crude and we would like
to trim down the set S to make card (<S) closer to dim S*. Second, the image FS5 (/)
determines / and one would like to compute some Fourier coefficients outside of S
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240 C. Poor and David S. Yuen [2]

directly from the Fourier coefficients in S. This paper realises both improvements. We

give a method for producing linear relations on the Fourier coefficients of the elements

in S*. Table 1 gives dim 5*, card (S) and examples of linear relations for even k < 12.

These are the only even weights for which dim 5* is known and the result dim S40 = 1

is a new one.

Table 1.

k

2

4

6

8

10

12

dim 5^

0

0

0

1

1

2

card (5)

0

0

1

2

10

23

linear relations

a ( i D 4 ) = 0

a(\DA) + a{\A4) =0

see equations (3.3)

21 uncomputed relations

For k ^ 4 we have S = 0 and so Theorem 1.1 by itself proves S4 = 0, results due
to Christian [2] and Eichler [4, 5]. For k = 6 we have 5 = {[£>4/2]} and the method
in this paper provides the linear relation a(D4/2) = 0 so that we conclude dimS4 = 0.
For k = 8 we have S = {[Z)4/2], [J44/2]} and the method provides the linear relation
a(D4/2) + a(A4/2) = 0 showing that dimSf ^ 1. The Schottky form J is in Sf [9]
so we have dim Sf = 1, see [14, 11, 3] for these results. For k = 10 the S consists
of the ten classes in Table 3 and the method provides the nine linearly independent
relations given in equation 3.3. We know the cusp form G10 is in S4°, see [13, p. 232],
so that we have dim S4° = 1, a result that has been beyond the reach of other methods
[12, 3]. By the work of Erokhin dimS]2 = 2 is already known, see [6, 7, 11]. Linear
relations among Fourier coefficients for semi-integral forms not solely in S allow the
computation of Fourier coefficients outside of S.

The method of producing linear relations on Fourier coefficients from S* relies on

the homomorphisms <f>*a : 5* —> 5"fc(r0(^)) which exist for any s € Pn(Z) and any

£ 6 Z + with £s~1 integral. We write elements of Fi = Spj (Z) as ( I and define
\c d)

the subgroup ro(^) by I \ c and the subgroup Ai by c = 0. We define 4>S{T) — sr so
that for / G M* we have {4>*af){T) = f(sr). There are three important points about
these homomorphisms:

(1) The image ring Mi(Fo(^)) is amenable to computation.

(2) The Fourier coefficients of <f>*f at each cusp are linear combinations of

the Fourier coefficients of / , see Proposition 2.3.

(3) There are lots o f n x n integral forms s.
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[3] Restriction of Siegel modular forms 241

The first point allows us to work out the linear relations among the Fourier coefficients

at all cusps of elements in 5"fc(ro(^)). The second point induces linear relations on

the Fourier coefficients of elements in 5* from the linear relations on S"fc(Fo(^)) • The

third point allows us to continue producing linear relations if more are desired.

We illustrate the technique in weights 6 and 8 when the number of Fourier coeffi-

cients remains small. Let / € S* have the Fourier expansion /(fi) = J2t aWe((^>*))

where (fi, t) — tr (fit). Let D4 represent the 4 x 4 form of this root lattice (D4 = 2B0

from Table 3). We compute the Fourier expansion of <j>*D f in powers of q = e(r). For

any s £ Vn(Q) we expand $*/ into a Fourier series as

For simplicity we shall henceforth assume that k is even. If we introduce the notation

V(j, s,t) = card{t> € Xn : [v] = [t], (v, s) — j} then we can write

(1.2)

Table 2 is a table of the representation numbers V(j, Ditt) for j ^7, omitted entries

are zero. See Table 3 for the list of Bo, B\,... , Bg.

Table 2. V(j,D4,t).

j

4

5

6

7

Bo

1

16

144

384

£1

48

288

1488

B2

216

864

B3

48

288

B4

12

144

B5

432

B6

240

B7

288

Bs

48

B9

16

Thus we have the following expansion:

(<t>hj)(r) = a(B0)q
4 + (l6o(B0) + 48a(B1))c?

5

+ (I44a(5o) + 288a(5x) + 216a(B2) + 48a(£3) + 12a(B4))9
6

+ (384a(B0) + 1488o(5i) + 864a(52) + 288a(£3) + 144a(B4) + 432a(S5)

(1.3) + 240a(jB6) + 288a(B7) + 48a(58) + 16o(S9))9
7 + • • • .

The function <j>*D f e Sik(To(2)) is invariant under the Fricke operator because D^1

is equivalent to D4/2, see Proposition 2.2. The ring Mi(ro(2)) is generated by E^2 €

Mj (Fo(2)) and E^2 e M\(FQ(2)) and the ring of cusp forms is principally generated
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by Cg2 £ &i (r*o(2)) • The ± superscript indicates an eigenvalue of ±1 under the Fricke
operator. In general we define E^Jj) = (Ek(r) ± dk/2Ek(dr))/(l ± dkl2) where the

oo

Ek(r) = 1 — (2k/Bit) 5Z<r*-i(n)9n a r e the Eisenstein series and the Bk are given by

t/(e* - 1) = E Bkt
kjk\. We have -E^d € Mx

fc(r0(d)) except in the case of £+ d . The
fc=O

Fourier expansions of these generators are given by
oo

£2~2(r) = 1 + 24 53(ffi(n) - 2<T1(n/2))g
n = 1 + 24g + 24q2 + 96q3 + 24q4 + 144q5 + ..,

n=l
oo

EZI2(T) = 1 - 80 Y^ M n ) - 4<x3(n/2))q
n = 1 - 80q - 400q2 - 2240g3 - 2960g4 - ...

n = l

=q-8q2 + 12q3 + 64qi - 210q5 - 96q6 - . . . .

The vanishing order of <f>*Di f at the cusp [/] is at least 4 and because <f>*D f is an
eigenfunction of the Fricke operator the vanishing order at the cusp [J] is the same.
Thus we have (Cg2) I 0z>4/ in -^1(^0(2)). For A; = 6 this means 4>*DJ = 0 and so
every coefficient in equation 1.3 gives a homogeneous linear relation; in particular we
must have a(B0) = 0 (or a(D4/2) = 0) and hence by Theorem 1.1 we have Sf = 0.
For A; = 8 there is a parameter c € C such that

<t>*DJ = c(C^2)4 = c (g4 - 32g5 + 432g6 - 29449
7 + 7192g8 + 39744g9 - . . . ) .

Elimination of the parameter c provides the following 3 linear relations for any / e Sf.

a(B0) + a(Bi) = 0;

-24a(£0) + 24a(J3x) + 18a(B2) + 4a(B3) + a(BA) = 0;

(1.4) 208a(S0) + 93a(£i) + 54a(B2) + 18a(fl3) + 9a(B4) + 27a{B5)

+15a(B6) + 18o(J37) + 3o(B8) + a(Bg) = 0.

As mentioned, the first relation alone, a(D4/2) + a(Ai/2) = 0 (note Bi = A4/2),
implies that dim 5 | < 1.

For A: = 10 there are parameters a , /3eC such that <j>*D f = (Cg"2) (a(E22) +
PC%2) • The element (E22) E\~2 cannot occur in this representation because it has
eigenvalue —1 under the Fricke operator. Elimination of the parameters a and 0
provides two linear relations:

224o(50) = 184a(J9!) + 18a(£3) + 4a(B3) + a(B4);

21376a(B!) = -16110a(B2) - 39160(^3) - 1231o(fl4) - 1512a(55) - 840a(56)

(1.5) - 1008a(57) - 168a(B8) - 56a(59).
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In conjunction with Theorem 1.1 these two relations imply dimS^0 ^ 8 but it will

require another homomorphism <f>*H : Sl° —>• 5f°(ro(6)) and a more extensive compu-

tation to prove that dim 5]° < 1.

2. PROPOSITIONS

We let Tn = Spn (Z). We write elements of Spn (K) as ( ) . The group
\ G D)

Spn (R) acts on functions from the right via ( f\ ( ) ) (Q) = det (Cfi + D)~k f
\ k\C D)}

{(AQ + B)(CQ + D)-1).

P R O P O S I T I O N 2 . 1 . Let n, £ e z+ . Let s, is'1 e Vn{Z). The map <̂>* :
—¥ M"k(To(£)) is a graded ring homomorphism.

PROOF: For ( ° ] € Sp, (R) we have
\c dj

[CT + d)~nkf((ars + bs)(cs-1TS +

) • » )

If we now assume that a e To(£) then cs x is integral and so ( , I € Sp_(Z).
\cs al J

Therefore we have I f\ I , ) )(TS) = f(rs) = C / ( r ) . It is straightforward
V \cs dl))

to see that <f>*3f is holomorphic on Hi and that it is bounded on domains of type
{T G HI : Imr > y0}. Thus we have (/>* : M* -> M1

nfc(r0(^)). D

For £eZ+ let We= ( ~ J / \ /^ denote the Fricke involution.

PROPOSITION 2 . 2 . Let n, C €Z+. Let s, Is'1 €Vn(Z). Let f € M*. As-
sume that s is GLn (Z) -equivalent to £s~l. Then (f>*af e M"k(To(£)) is an eigenfunc-
tion of the Fricke operator We. The eigenvalue is +1 unless s is improperly equivalent
to £s~1 and k is odd in which case <j>*sf has eigenvalue - 1 under W(.

PROOF: When s is equivalent to £s~1 we have UsU' — £s~l for some U G
GLB(Z). We shall show that {fif)\We = det (U)k<t>*sf. The factor det(f/)fc is one
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( 0 U*\
except in the case noted. We first check that cj>a o Wi = I I o (j>s. For every

\ ~U 0 /
r e ~H\ we have

(</>. o Wi) (r) = 4>.(-j-) = -jar-1 = -U'S^U-'T-1 = U* (-Usr)-1

Noting that ( I G F n we compute

]
nfc

-nfc

det (U)k det (s)fc ( ^ / ) (r)

= det([/)fc(«A:/)(r).

In the last line above we have used the fact that det (s)2 = £n and that when nk is
odd we must have / identically zero. D

The next Proposition shows how to develop the Fourier expansion of <f>*f at any
cusp.

PROPOSITION 2 . 3 . Let n € Z + . Let s e Pn(Q). Let f e S£ have the Fourier

expansion f(Q) = J2t a(t)e((fl, t)). Let ( ° ) e Fj . There exist A, B e Qnxn such
\c ay

(al bs\ (A B\
that , , , ) € Tn I _ I and for any such A, B we have

\cs l dl j \ 0 A )

«/Jfc ( ° * ) ) (r) = (detA)kf(rAsA' + BA')

( E a{t)e((t,BA')))q1

PROOF: We now wish to study \4>*.f\ ( ° , ) ) for ( ° , ) 6 Spi(Z). Then as

in the proof of Proposition 2.1 we have
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Now, we can always decompose any matrix in Spn (Q) as something in Spn (Z) times

Since / is automorphic with respect to Tn we have

Now, we can always decompose any matrix in Spn (Q) as something in Spn

something in Spn (Q) with C = 0 [8, p. 125]. So let ( £_x M € Tn (

= (detA)kf(TAsA'-

The Fourier expansion for I 4>*.f\ I I I (T) follows from the Fourier expansion for
\ \ c dJ)

f under the substitution tt = TASA' + BA'. D

The above Proposition provides for the computation of the Fourier expansion of

0*/|cr in general. When I is squarefree however the computation of the character

e[(t, BA')) may be finessed. We introduce a new notation: Notice that A in Proposition

2.3 is determined up to uA with u G GLn(Z). Thus AsA' is determined up to

equivalence class. We define

with the understanding that this is well-defined only up to equivalence class. Since / is

automorphic with respect to I • t I, we have f(usu'r) = f(sr) and it makes sense
\ 0 u Ja fa b\\ \

SO[ j T a n d <t>* r a b \ f •

\c dj) J «n(cJ

PROPOSITION 2 . 4 . Let s e Vn(Z). Let i€ Z+ such that is'1 is integral and

primitive. Let I I e F j . Suppose gcd(c,(£/c)) = 1. Let c G Z such that cc = 1
, „, r, . L ( aI b s \ r, (A B \

mod t/c. For any A with . , I e r n „ _ ] we have
\cs al J \ 0 4̂ /

P R O O F : We have ( ) ( °_x
 S ) € Spn (Z). Thus we have

A B\( dl -bs\ fdA-cBs-1 -bAs + aB
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Note that each of the four blocks must be in Z n x n . Multiplying dA - cBs~l by the

integral s implies dAs — cB is integral. Both As and B are integral because we have

As — a(dAs — cB) + c(—bAs + aB),

B = b(dAs - cB) + d{-bAs + aB).

Since cBs'1 = [c/tjBts-1 and &."1 € Z" x n , we have cBs'1 € {c/l)Znxn. This
combined with dA-cBs-1 € Z n x " implies dA € (c/£)Znxn. Also we have A =

(l/e)(As)£s-1 € (l/£)Znxn and consequently A = a{dA) - b{cA) 6 {c/£)1nxn. Since
As is integral, its transpose sA' is also integral. Then multiplying dA — cBs~l by the
integral csA' implies that dcAsA' and ccBA' differ by an integer matrix. But cc = 1
mod (£/c) and BA' e (c/£)Znxn imply that ccBA' and BA' differ by an integer matrix.
Hence dcAsA' and BA' differ by an integer matrix. Finally, from Proposition 2.3 we
have

( ( ° * ) ) ) = f(rAsA' + BA')

= f(rAsA' + dcAsA')

= f(AsA'(T

3. T H E SPACE ]

We shall apply the technique of the Introduction to 5 ] ° . Theorem 1.1 says a form
in Sl° is determined by its coefficients a(t) with w(t) < 3.5. Table 3 gives the list
of these 10 quadratic forms, see [10, 13]. For uniformity of notation we shall refer to
these as BQ, . . . , B9. Here the number under I for Bi is the smallest positive integer
such that £{2Bi)~x is integral.

We shall apply the technique to H = 2B4 for which 6H-1 is integral. By Proposi-
tion 1.1 we have \m<j>*Hf c Mi(Fo(6)) and our calculations will occur inside this ring.
The ring Mi(Fo(6)) is generated by three forms A, B, C of weight 2. There is one
relation C 2 = 9B2 — 8A2. The ring of cusp forms is principally generated by a form
of weight 4, D = (A2 - B2)/4. There are 4 cusps in F 0 (6 ) \F i /A i , represented by / ,

°2 ~ ( 9 ) ' az '= ( -i i ) anC* ^ w i t ^ r e s P e c t i v e widths 1 , 3 , 2 and 6. We now

give the Fourier expansions of the generators at all four cusps. The definition of E^2

has already been given, similarly define

12 2 j (a i (n ) - 3<7i(n/3))g" = 1 + I2(q + 3q2 + q3 + 7q4 + 6q
n=l

5

https://doi.org/10.1017/S0004972700020281 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020281


[9] Restriction of Siegel modular forms 247

Define the following elements in M i ( r o ( 6 ) ) :

A(T) = ( 3 / 4 ) E 2 ~ 2 ( 3 T ) + ( 1 / 4 ) E £ 2 ( T ) = 1 + 6q + 6q2 + 42q3 + ••• ,

B(T) = (2/3)JEj-3(2r) + ( 1 / 3 ) £ ? 2 - 3 ( T ) = 1 + 4q + 20q2 + 4q3 + • • • ,

C(T) = ( 3 / 2 ) £ £ 2 ( 3 r ) - ( l / 2 ) ^ 2 ( r ) = 1 - 12q - I2q2 - I2q3 + •••

Table 3. Semi-integral qua ternary forms with dyadic t race ^ 3.5.

Name

Bo

Bi

B2

Bz

B4

B5

Be

B7

B&

B<>

Form
/ 2 1 1 1 \

11 1 2 0 0 1
2 I 1 0 2 0 1

V 1 0 0 2 /
/ . 2 1 0 1

1 ( 1 2 0 0
2 I 0 0 2 1

V 1 0 1 2
/ 2 0 0 I

1 ( 0 2 0 1
2 1 0 0 2 0

\ 1 1 0 2
/ 2 1 0 0

1 ( 1 2 0 0
2 0 0 2 1

\ 0 0 1 2
/ 2 1 1 1

1 / 1 2 0 0
2 1 1 0 2 0

V 1 0 0 4
/ 2 0 0 1

1 ( 0 2 0 0
9 I 0 0 2 0

V 1 0 0 2
/ 2 1 1 0

1 ( 1 2 0 1
2 1 1 0 2 0

V 0 1 0 4
/ 2 1 0 1

1 ( 1 2 0 0
2 0 0 2 1

V 1 0 1 4
/ 2 0 0 1 \

1 ( 0 2 0 1 1
2 0 0 2 1

Vnv/ 2 1 1 1 \
1 ( 1 2 0 1 1
J 1 0 4 !

Dyadic trace

2

2.5

3

3

3

3.5

3.5

3.5

3.5

3.5

16-Determinant

4

5

8

9

12

12

13

17

20

25

2

5

4

3

6

6

13

17

10

5

The elliptic modular forms A, B, C transform nicely as

(A | J){T) = - \

(B | J)(T) = -\B(T/6),

(C | J){r) = +\

(A | <X2)(T) = +±

(B I *2){T) = ~

(C I a2)(r) = - i
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We use Propostions 2.3 and 2.4 to work out the Fourier expansion of <f>*Hf \ a for a — I,

&2, <73) J- We implement the algorithms from [8, pp. 125, 322-328] to produce a

factorisation f " x j r ) G r « ( n j . ) a n d o b t a m det(.4) and HOa - AHA'.

We display HOa-i, HOaz, HOJ and mention that the associated |det(^4)| equals 3 ,

4, 12, respectively:

Note that
Note that
c = — 1 so

all three
for c = 2

that cZ-

HOa2 = i

1
0-3 - 2

1

6

of the cases <r2,
, we can take c =

= 1 mod 2. Thus

/ 4 2
[2 4

1 - 1

V-i i
/ 2 0 0
1 0 2 0

0 0 2

V l 1 1
(2 1

1 5
1 -1

\ 1 2

1
- 1

4
- 1

1 \
1
1

3 /

1

-1

5
2

- 1 \

4 /

1

1 \

2
2

5 /

az, J satisfy the hypotheses of Proposition 2.4.
—1 so that

we have

cc =: 1 mod 3; for c = 3, we can take

(3-1) ( ^ / I J)(r) =

Hence the Fourier expansions may be computed from the numbers V(j, HOa, t) given
in Tables 4, 5, 6 and 7. Among the computations we perform, the computation of these
representation numbers is by far the most expensive.

Table 4. V(j,H,t)

j

6

7

8

9

,B0

1

12

96

196

Bi

36

168

760

B2

114

384

Bz

24

108

BA

6

60

B5

168

B6

108

B7

96

Bs

12 4
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[11] Restriction of Siegel modular forms 249

j

10/3

11/3

12/3

13/3

14/3

15/3

Bo

1

4

24

12

78

144

r

Bi

12

24

96

192

312

rable

B2

6

24

120

192

5. V(j,HOo2

B3

12

24

24

B4

6

28

B5

12

84

t)

B6

48

B7

36

B8 B9

1

Table 6. V(j,ffDflr3,0

j

6/2

7/2

8/2

Bo

5

24

120

Bi

4

72

264

B2

12

138

B3

48

B4

15

B5

12

B6

12

B7 B8 B9

j

10/6

11/6

12/6

13/6

Bo

1

24

24

Bi

8

12

96

Table 7.

B2

6

12

Bz

V(j,HDJ

B4

1

B5

t)

B&

8

B7 B8 B9

From these expansions we see that <j>*Hf vanishes to order at least 6 at every cusp
so that there are pararmeters ao , . . . , as and /?o,. • •, Pi € C such that

4?Hf = { D ) 6 ( a 0 A 8 + a i A 7 B + • • • + a 8 B s + C(f30A
7 + 0 i A * B + •••

Without introducing any new parameters we also have equalities for any a €

(3.2) 4>*Hf | a = {D | a)6 (ao{A | of + ... +a8(B \ of

For a = I, <72,03, J the left side of equation 3.2 is computed from equation 3.1, equation
1.2 and Tables 4 through 7. The right side is computed from the expansions of the
elliptic modular forms A, B and C. At the cusp [/] we equate the coefficents for
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j - 6 , . . . , 9; at the cusp [<r2] for j = 6 /3 , . . . , 15/3; at the cusp [a3] for j - 6/2, . . . , 8/2
and at the cusp [J] for j = 6 /6 , . . . , 13/6. Elimination of the 17 parameters cti,(3i from
the 4 + 10 4-3 + 8 = 25 linear equations results in 8 linearly independent equations:

a{B2) = -86/21a{B0) - 188/21a(5i)

a(B3) = 100/3a(B0) + 58/3a(£i)

a(B4) = -30Q/7a{B0) + 2A/7a{Bi)

a(B5) = -1892/21a(B0) + 568/21a(Si)

a(B6) = 288/7a(B0) - 53/7a(Bi)

a(B7) = 2860/63a(£0) - 8738/63a(5x)

a(B8) = 656/7a(50) + 3872/7a(Bi)

a(B9) = 21016/21a(S0) 4-

When we combine these 8 linear relations with the 2 linear relations in equation 1.5
obtained by considering <j>*Di , we see that the rank is actually 9, so that we have a total
of 9 linearly independent relations in a(B0),... ,a(B9):

a(Bi) = 2a(B0)

a(B2) = -22a(B0)

a(B3) = 72a(B0)

a(B4) = -36a(£0)

a(B5) = -36a(50)

a(B6) = 26a(£0)

a(B7) = -232a(B0)

a(B8) = 1200a(5o)

(3.3) a(B9) = 2480a(50).

These relations and Theorem 1.1 imply that dimSj0 ^ 1. Since we can come up with
one nonzero cusp form G\Q in S\° we have a theorem.

THEOREM 3 . 4 . We have dim S\° = 1 and 5|° = CGio.

4. FINAL COMMENTS

The computations that have been performed for the form H are largely indepen-
dent of the weight k. Applied to the space 5 | we may extend the Fourier expansion
of the Schottky form J beyond that given in [1]. Table 8 gives the Fourier coefficients
a(Bi) for J /21 6 and G10/218345.
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f
J /2 1 6

G10/218345

Bo

1

1

Table 8. (Fourier Coefficients)

Bi

- 1

2

B2

2 .

- 2 2

B3

6

72

B4

-12

-36

B5

- 1 2

- 3 6

B6

11

26

B7

2

-232

B8

- 7 2

1200

B9

116

2480

Although the parameters a* arid & were simply eliminated in Section 3, their
values are also determined by this process. It may be of interest to present the images
of <p*f for s = D4,H and / = J,Gi0.

)<1((£2-2)4 + 48C+2)

<t>*HJ = 2l2D6(A + C)A

4>*HG10 = 214335D6(yl + C)4(25Ai-8A3B-7A3C-SA2BC-ABC2 + 4AC3-BC3-C4)

It is interesting to note that the image of Gio comes out to a multiple of the image of
J under both (j>*Di and (j>*H. As a final comment we note that linear relations among
Fourier coefficients can be viewed as linear relations among Poincare series.
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