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RESTRICTION OF SIEGEL MODULAR FORMS
TO MODULAR CURVES

CRrIs POOR AND DaAvVID S. YUEN

We study homomorphisms from the ring of Siegel modular forms of a given degree
to the ring of elliptic modular forms for a congruence subgroup. These homomor-
phisms essentially arise from the restriction of Siegel modular forms to modular
curves. These homomorphisms give rise to linear relations among the Fourier coef-
ficients of a Siegel modular form. We use this technique to prove that dim S1° =

1. INTRODUCTION

A Siegel modular cusp form of degree n has a Fourier series f(Q) = 3, a(t)e(tr (Q¢))
where t runs over X, , the set of positive definite semi-integral nxn forms. If we restrict
attention to cusp forms of even weight then the Fourier coefficients are class functions
of t. The vector space S¥ of cusp forms of weight k is finite dimensional and so there
exist finite subsets S C classes (X,) such that the projection map FSs : S¥ - CS

given by f— [] a(t) is injective. The following Theorem [13, p. 218] gives one such
itles
S that is readily computable from n and k. Instead of ordering semi-integral forms

t by their determinant det (t) we order them by their dyadic trace w(t). Denote by
P.(F) the positive definite n x n symmetric matrices with coefficients in F C R. The
dyadic trace w : P,(R) — R* is a class function and only a finite number of classes
from X,, will have a dyadic trace below any fixed bound, see [13].

THEOREM 1.1. Let n,k€ Z*. Let

§={lt):t € X and w(t) < n-\j.—g%}

The map FSs : S¥ — CS is injective.

This Theorem allows one to deduce equality in S* from equality on the Fourier
coefficients for §. There are two obvious avenues for improvement. First, as is evident
from Table 1, the bound dim S¥ < card (S) is tractable but crude and we would like

to trim down the set S to make card (S) closer to dim S¥. Second, the image FSs (f)
determines f and one would like to compute some Fourier coefficients outside of S
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directly from the Fourier coefficients in &. This paper realises both improvements. We
give a method for producing linear relations on the Fourier coefficients of the elements
in Sk. Table 1 gives dim S¥, card (S) and examples of linear relations for even k < 12.
These are the only even weights for which dim S¥ is known and the result dim S;° =1

is a new one.

Table 1.
k { dim S¥ | card (S) linear relations
2 0 0
4 0 0
6 0 1 a(3Ds) =0
8 1 2 a(3Ds) +a(i44) =0
10 1 10 see equations (3.3)
12 2 23 21 uncomputed relations

For k < 4 we have S = ) and so Theorem 1.1 by itself proves S§¥ = 0, results due
to Christian [2) and Eichler [4, 5]. For k =6 we have S = {[D4/2]} and the method
in this paper provides the linear relation a(D4/2) = 0 so that we conclude dim S§ = 0.
For k = 8 we have S = {[D4/2],[A4/2]} and the method provides the linear relation
a(D4/2) + a(A4/2) = 0 showing that dimS§ < 1. The Schottky form J is in S5 [9)
so we have dim S5 = 1, see {14, 11, 3] for these results. For £ = 10 the S consists
of the ten classes in Table 3 and the method provides the nine linearly independent
relations given in equation 3.3. We know the cusp form G is in S}°, see [13, p. 232],
so that we have dim S}° = 1, a result that has been beyond the reach of other methods
[12, 3]. By the work of Erokhin dim S}2 = 2 is already known, see [6, 7, 11]. Linear
relations among Fourier coefficients for semi-integral forms not solely in S allow the
computation of Fourier coefficients outside of S.

The method of producing linear relations on Fourier coefficients from S¥ relies on
the homomorphisms ¢} : S¥ — SP*(Tg(£)) which exist for any s € P,(Z) and any

Z) and define

the subgroup I'g{f) by £ | ¢ and the subgroup A; by ¢ = 0. We define ¢,(7) = s7 so
that for f € M* we have (¢%f)(r) = f(s7). There are three important points about
these homomorphisms:
(1) The image ring M;(To(£)) is amenable to computation.
(2) The Fourier coefficients of ¢,f at each cusp are linear combinations of
the Fourier coefficients of f, see Proposition 2.3.
(3) There are lots of n x n integral forms s.

2 € Z* with £s7! integral. We write elements of I'; = Sp, (Z) as (Z
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The first point allows us to work out the linear relations among the Fourier coefficients
at all cusps of elements in SP*(Tg(£)). The second point induces linear relations on
the Fourier coefficients of elements in S* from the linear relations on SP*(T'g(€)). The
third point allows us to continue producing linear relations if more are desired.

We illustrate the technique in weights 6 and 8 when the number of Fourier coefhi-
cients remains small. Let f € S§¥ have the Fourier expansion f(Q) = 3", a(t)e((Q,t))
where (€,t) = tr (Q¢). Let Dy represent the 4 x 4 form of this root lattice (D4 = 2Bo
from Table 3). We compute the Fourier expansion of ¢, f in powers of ¢ = e(7). For
any s € Pn(Q) we expand ¢} f into a Fourier series as

@1)(r) = Z( ) a(t))qf.
jEQt “t:(st)=j

For simplicity we shall henceforth assume that k is even. If we introduce the notation
V(j,s,t) = card{v € X, : [v] = [t], (v,8) = j} then we can write

(12) @00 = 2 (Vs

jeQt [t

Table 2 is a table of the representation numbers V(j, D4, t) for j < 7, omitted entries
are zero. See Table 3 for the list of By, By,..., Bg.

Table 2. V(j,D,,t).

Bo Bl B2 B3 B4 B5 Bs B7 Bs Bg-
1
16 | 48

144 288 (216 48 | 12
38411488 | 864 | 288 | 1441432 | 240|288 | 48 | 16

N O U b |

Thus we have the following expansion:

(6D, F)(r) = a(Bo)g* + (16a(By) + 48a(B1))q°

+ (144a(Bo) + 288a(B1) + 216a(B2) + 48a(Bs) + 12a(By4))¢°

+ (384a(Bo) + 1488a(B1) + 864a(B;) + 288a(B3) + 144a(By) + 432a(Bs)
(1.3) + 240a(Bg) + 288a(By7) + 48a(Bs) + 16a(Bg))q” + - - - .

The function ¢}, f € S¥(o(2)) is invariant under the Fricke operator because D
is equivalent to Dy/2, see Proposition 2.2. The ring M;(T'o(2)) is generated by E;, €
M?(To(2)) and E;, € M{(T'0(2)) and the ring of cusp forms is principally generated
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by Cg‘: , €53 (Fo(2)). The =+ superscript indicates an eigenvalue of +1 under the Fricke
operator. In general we define EZ (1) = (Ex(7) + d*/?Ey(dr))/(1 + d*/%) where the

o0
Ex(1) = 1 — (2k/Bg) 3_ 0k—-1(n)q™ are the Eisenstein series and the By are given by
o] n=1
t/(et — 1) = Y Byit*/k!. We have Ef,d € M} (To(d)) except in the case of EF ;. The
k=0

Fourier expansions of these generators are given by

oo
E;,(1)=1+24) (01(n) - 201(n/2))q" = 1+ 24q + 24¢* + 96¢° + 24¢* + 144¢° + ...

n=1

oo
E;,(r)=1-280 2(03(11) — 403(n/2))q" = 1 — 80q — 400¢® — 2240¢° — 2960¢* — ...
n=1
1
E(E{'z(’r)‘i — E;,(1)?) = q - 8¢% + 12¢° + 64¢* — 210¢° — 96¢° — ... .
The vanishing order of ¢}, f at the cusp [I] is at least 4 and because ¢}, ,J s an
eigenfunction of the Fricke operator the vanishing order at the cusp [J] is the same.
Thus we have (0;2)4 | ¢p,f in M1(To(2)). For k = 6 this means ¢}, f = 0 and so
every coefficient in equation 1.3 gives a homogeneous linear relation; in particular we
must have a(By) = 0 (or a(D4/2) = 0) and hence by Theorem 1.1 we have S§ = 0.
For k = _8 there is a parameter ¢ € C such that

Cg:z(z) =

$p.f = c(c,',fz)4 = c(g* — 32¢° + 432¢° — 29449 + 7192¢® + 39744¢° — .. ).
Elimination of the parameter ¢ provides the following 3 linear relations for any f € S§.

a(Bo) + a(B,) = 0;
—24a(By) + 24a(B,) + 18a(B;) + 4a(B3) + a(By) = 0;
(1.4) 208a(Bo) + 93a(B1) + 54a(Bz) + 18a(B3) + 9a(By) + 27a(Bs)
+15a(Bs) + 18a(B7) + 3a(Bs) + a(Bg) = 0.
As mentioned, the first relation alone, a(Ds/2) + a(A4/2) = 0 (note By = A4/2),
implies that dim S§ < 1.
For k = 10 there are parameters a, 8 € C such that ¢}, f = (0;2)4(a(E{,2)4 +

N2 S . .
ﬁCg’: 2)- The element (Ez’z) E, , cannot occur in this representation because it has
eigenvalue —1 under the Fricke operator. Elimination of the parameters a and S
provides two linear relations:

224a(By) = 184a(B,) + 18a(B;) + 4a(B3) + a(By);
21376a(B;) = —16110a(B>) — 3916a(B;) — 1231a(Bs) — 1512a(Bs) — 840a(Bs)
(1.5) : — 1008a(B7) — 168a(Bs) — 56a(Bs).
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In conjunction with Theorem 1.1 these two relations imply dim 510 < 8 but it will
require another homomorphism ¢}, : S;° — S1°(I'¢(6)) and a more extensive compu-
tation to prove that dim S} < 1.

2. PROPOSITIONS

A B
We let T, = Sp,, (Z). We write elements of Sp,, (R) as ( c D). The group

A B

Sp,, (R) acts on functions from the right via | f|
r\C D

))(9) = det (CQ+ D)™ *f
((AQ + B)(CQ + D)71).
PROPOSITION 2.1. Let n, £ € Z*. Let s, b5~ € P,(Z). The map ¢* :

s

MF — MP*(To(€)) is a graded ring homomorphism.

b
Proor: For (Z > € Sp; (R) we have

d

(671 (8 3)) 0 =terr s (E23s)

= (cr +d) ™ f ((ars + bs) (cs~ s + dI) ™)
= (e7 + d)‘"‘“f((ch1 2;) : Ts)

= (e + d)—"k det (cs™'rs+ dI)k (fllc (CZ{I bs ))('rs)

dl
-(1(ah a))eo

1

al bs

If we now assume that o € I'yg(£) then cs~! is integral and so (cs‘l dI) € Sp,, (Z).

I b
:_1 d;))(fs) = f(rs) = ¢5f(r). It is straightforward

to see that ¢}f is holomorphic on H; and that it is bounded on domains of type
{r € Hi:Im7 > yo}. Thus we have ¢} : M¥ — MP*(Ty(¢)). 1]
0
14

PROPOSITION 2.2. Letn, £€ Z%. Let s, €s7' € P,(Z). Let f € Mk. As-
sume that s is GLy, (Z)-equivalent to £s=!. Then ¢%f € M7*(T'o(¢)) is an eigenfunc-
tion of the Fricke operator W,. The eigenvalue is +1 unless s is improperly equivalent

Therefore we have ( fl (
¢

-1
For £ € ZT let W, = ( 0 ) / V'€ denote the Fricke involution.

to £s~! and k is odd in which case ¢%f has eigenvalue —1 under W,.

PROOF: When s is equivalent to £s~! we have UsU’' = f£s~! for some U €
GL, (Z). We shall show that (¢%f)|We = det (U)*¢:7. The factor det (U)* is one
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o U

except in the case noted. We first check that ¢, o W, = ( U 0

) o ¢,. For every

7 € H, we have

(¢s 0 W) (1) =¢s('—%) =—%8T ~“U*s~ iy~ = U* (- Usv')

(5 )= )

0o ur
Noting that (

U o ) € I',, we compute

[(#50) | Wel(r) = (VEr) ™ (63) (Wetr)
= (ver) T (F o by 0 W) (7)
= (ve) " (re( S, G ) e )
Z'r)

—nk &
det (=Ust)" f (¢s (T))

= (\f
. —-nk
= (—v2) " det (U)* det (s)* (631) ()
= det (U)" (¢3.f) (7)-
In the last line above we have used the fact that det (s)? = £* and that when nk is
odd we must have f identically zero. 0

The next Proposition shows how to develop the Fourier expansion of ¢%f at any
cusp.

PROPOSITION 2.3. Letn € Z*. Let s € P,(Q). Let f € S* have the Fourier
b
expansion f() =", a(t)e((R2,t)). Let ( d) € T'y. There exist A, B € Q**™ such

al bs A B
that (cs‘l dI) el', (0 A*) and for any such A, B we have

(¢; £l (‘c’ 3) ) () = (det A)* f(rAs A’ + BA')
=(det.A)kZ:( > a(t)e((t,BA’)))qj

FJEQtT “t:(AsA' t)=j

b b
PRrROOF: We now wish to study (¢;f| (Z' d)) for (Z' d) € Sp1(Z). Then as

in the proof of Proposition 2.1 we have
. a b al bs
(712 o= 8))e
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Now, we can always decompose any matrix in Sp,, () as something in Sp,, (Z) times

o . al bs A B
something in Sp, (Q) with C =0 [8, p. 125]. So let (cs‘l dI) €la ( 0 A') .

Since f is automorphic with respect to I',, we have

(611 (2 3))o=(n (2L 5))e
=(11(5 &)

= (det A)*f(rAsA’ + BA').

‘ b
The Fourier expansion for (d;; £l (z ))(r) follows from the Fourier expansion for

d
f under the substitution Q = rAs A’ + BA’'. 1]

The above Proposition provides for the computation of the Fourier expansion of
&% flo in general. When £ is squarefree however the computation of the character
e((t, BA’)) may be finessed. We introduce a new notation: Notice that 4 in Proposition
2.3 is determined up to uA with v € GL,(Z). Thus AsA’ is determined up to

equivalence class. We define
sO ( b) = AsA'

d
with the understanding that this is well-defined only up to equivalence class. Since f is

. u 0 .
automorphic with respect to ( 0 u ) , we have f(usu/tT) = f(s7) and it makes sense
u :

to talk about f((sD(Z Z»T) and ¢* o )f.
cd

PROPOSITION 2.4. Let s € Pn(Z). Let £ € Z*t such that ¢s~! is integral and
b
primitive. Let (a d) €Ty. Suppose ged(c, (¢/c)) = 1. Let € € Z such that cc= 1
c

. al bs A B
mod £/c. For any A with (cs‘l dI) erl, ( 0 A‘) we have

S71( % 7)) () = (et AYF¢*_ 0oy F(r + dO).
(51 (2 2)) et

A B al  bs\™*
Proor: We have (0 .A‘) (Cs_l dI) € Sp,, (Z). Thus we have

(2.5) (A B)( dl —b8)=<dA—ch-1 —bAs + aB

0 A* —cA*st aA* ) € 5pn (Z).

—cs™!  al
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Note that each of the four blocks must be in Z™*™. Multiplying dA — cBs~! by the
integral s implies d.As — cB is integral. Both As and B are integral because we have

As = a(dAs — cB) + ¢(—bAs + aB),
B =b(dAs — cB) + d(—bAs + aB).

Since cBs~! = (c/f)Bfs~! and ¢s571 € Z"*™, we have cBs~! € (c/€)Z"*™. This
combined with dA —cBs~! € Z™*™ implies dA € (c/£)Z"*". Also we have A =
(1/€)(As)es~! € (1/£)Z™*™ and consequently A = a(dA) — b(cA) € (c/€)Z™*™. Since
As is integral, its transpose s.A’ is also integral. Then multiplying dA — cBs~! by the
integral ¢sA’ implies that déAsA’ and ¢cBA’ differ by an integer matrix. But ¢c = 1
mod (£/c) and BA’ € (¢/¢)Z"*" imply that ccBA’ and BA’ differ by an integer matrix.
Hence déAsA' and BA’ differ by an integer matrix. Finally, from Proposition 2.3 we

have
(detA)"‘(¢>; i (‘z 3))(7) = f(rAsA' + BA)
= f(rAsA' + dcAsA)
= f(AsA'(T + do))
(e 0

3. THE sPACE S}°

We shall apply the technique of the Introduction to §}°. Theorem 1.1 says a form
in S} is determined by its coefficients a(t) with w(t) < 3.5. Table 3 gives the list
of these 10 quadratic forms, see [10, 13]. For uniformity of notation we shall refer to
these as By,...,Bg. Here the number under £ for B; is the smallest positive integer
such that £(2B;)”" is integral.

We shall apply the technique to H = 2By for which 6 H~! is integral. By Proposi-
tion 1.1 we have Im ¢} f C M; (F 0(6)) and our calculations will occur inside this ring.
The ring M;(To(6)) is generated by three forms 4, B, C of weight 2. There is one
relation C% = 9B% — 8A2. The ring of cusp forms is principally generated by a form
of weight 4, D = (A% — B?)/4. There are 4 cusps in T'o(6)\I'1/A, represented by I,
oy = (; (1)), o3 = (; ?) and J with respective widths 1, 3, 2 and 6. We now
give the Fourier expansions of the generators at all four cusps. The definition of E;,
has already been given, similarly define

o ]
E;4(r) =1+ 12Z(al(n) —-301(n/3))q" =1+12(qg+3¢° + ¢* + 7¢* + 6¢° + - - ).

n=1
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Define the following elements in M (T'g(6)):
A(T) = (3/4)E5,(37) + (1/4)E5 5(T) = 1 +6q + 6¢° + 42¢> + - - -,
B(r) = (2/3)E55(27) + (1/3)E;5(r) = 14+ 4¢ + 20¢° + 4¢° + - - -,
C(r) = (3/2)E;,(37) — (1/2)Ez (1) =1 - 129 — 12¢° — 12¢° + - -

Table 3. Semi-integral quaternary forms with dyadic trace < 3.5.
Name Form Dyadic trace | 16- Determinant 14
2111
B [3(1888)] @ 4 2
100 2
2101
By |i(538 9) 2.5 5 5
1012
2001
B [3(8881)] o 8 4
1102
2100
By -;—(s 9 ?) 3 9 3
0012
2111
b [3(1888)] o 12 6
100 4
2001
By %(8 29 8) 3.5 12 6
1002
2110
Bg %‘}%86—7 3.5 13 13
010 4
2101
B, ﬂ},ggg) 3.5 17 17
101 4
2001
Bs %ﬁ%%%%) 35 20 10
1114
2111 .
By %‘ 133 ;j 3.5 25 5
112 4

The elliptic modular forms A, B, C transform nicely as
(A1 D)) = =3 Al/6), (Al oa)(r) = +3A((7 - 1)/3),
(A1 03)(r) = 3 A((r — 1)/2)
(B1))r) = ~5B(r/6), (Bloa)r) = ~3B((r ~1)/3)
(Bl os)r) = +3B((r - 1)/2)
(€ 1)(r) = +5C(r/6), (Cloa)(r) = ~3C((r ~ 1)/3)

(Cos)(r) = ~5C((r— 1)/2)
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We use Propostions 2.3 and 2.4 to work out the Fourier expansion of ¢} f | o for o = I,
02, 03, J. We implement the algorithms from [8, pp. 125, 322-328] to produce a

B
factorisation (c ;{_1 Z}II) er, ('3 A") and obtain det (4) and Ho = AHA'.

We display HOo,, HOo3, HOJ and mention that the associated 'det (A)I equals 3,
4, 12, respectively:

(421—1
2

1 4 -1 1
HOe:=3l 1 1 4 |
\—1 1 -1 4
/2 0 01
1{0 2 01
HOoa=310 0 2 1|’
\1 113
21 11
1{1 .5 -1 2
HOI=%11 1 5 2
\1 2 2 5
Note that all three of the cases o3, o3, J satisfy the hypotheses of Proposition 2.4.
Note that for ¢ = 2, we can take € = —1 so that ¢¢ =1 mod 3; for ¢ = 3, we can take
¢= —1 so that cc=1 mod 2. Thus we have

(Suf | I)(7) = ¢ f(7),
(85 f | 02)(7) = 370}, f(r - 1),
(S1f | 03)(r) = 47 % g, f(T - 1),
(3.1) (B3 f | )(7) = 127030, £ (7).
Hence the Fourier expansions may be computed from the numbers V(j, HOo,t) given

in Tables 4, 5, 6 and 7. Among the computations we perform, the computation of these
representation numbers is by far the most expensive.

Table 4. V(4, H,t)
il Bo|B1| B2 | B3| By| Bs | Bg | By | Bs | B
1
12 | 36
96 [16811143 24 | 6
196 760| 384|108 | 60 |168|108| 96 | 12 | 4

© 0o =N O
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Table 5. V(j, HOo,, t)

By

B,

B,

Bs

B,

By

Bg

Bq

Bg

By

10/3
11/3
12/3
13/3
14/3
15/3

24
12
78

144

12
24
96
192

312

6
24
120

192

12
24
24

6
28

12
84

48

36

Table 6. V(j, HOo

’t)

Bo

B,

B,

B;

B,

Bs

Bg

By

Bs

By

6/2
7/2

8/2

24
120

4
72
264

12
138

48

15

12

12

Table 7. V(j, HOJ

j

By

B,

B,

B;

B,

By

Bg

B,

Bg

By

10/6
11/6
12/6
13/6

24
24

8
12
96

6
12

8

249

From these expansions we see that ¢z, f vanishes to order at least 6 at every cusp

so that there are pararmeters aq,...,as and Bp,..., 87 € C such that
¢4 f = (D) (oA + c1A"B + - + agB® + C(BoA” + LA®B + - - + 3; B)).

Without introducing any new parameters we also have equalities for any o € I'y:

(32) ¢uflo=(D|0)*(co(4]0)®+...+as(B | 0)°
+(Clo)(Bo(A]0) +...+87(B] 0)")).

For o0 = I, 04,03, J the left side of equation 3.2 is computed from equation 3.1, equation
1.2 and Tables 4 through 7. The right side is computed from the expansions of the
elliptic modular forms A, B and C. At the cusp [I] we equate the coefficents for
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j=6,...,9; at the cusp [o2] for j = 6/3,...,15/3; at the cusp [o3] for j =6/2,...,8/2
and at the cusp [J] for j = 6/86,...,13/6. Elimination of the 17 parameters «;, §; from
the 4 + 10 + 3 + 8 = 25 linear equations results in 8 linearly independent equations:

a(B2) = —86/21a(By) — 188/21a(B,)
a(B3) = 100/3a(By) + 58/3a(By)

a(B4) = —300/7a(B,) + 24/7a(B))

a(Bs) = —1892/21a(Bo) + 568/21a(B1)
a(Bs) = 288/7a(Bq) — 53/7a(B1)

a(By) = 2860/63a(Bo) — 8738/63a(B;)
a(Bs) = 656/7a(By) + 3872/7a(B))
a(Bs) = 21016/21a(By) + 15532/21a(B,).

When we combine these 8 linear relations with the 2 linear relations in equation 1.5
obtained by considering ¢}, , we see that the rank is actually 9, so that we have a total
of 9 linearly independent relations in a(By),...,a(Bsg):

a(B1) = 2a(By)
a(Bz) = -22a(By)
a(Bs3) = T72a(By)
a(B4) = -36a(Bo)
a(Bs) = —36a(Bo)
a(Bg) = 26a(By)
a(B7) = -232a(By)
a(Bg) = 1200a(Bo)
(3.3) a(Byg) = 2480a(By).

These relations and Theorem 1.1 imply that dim §}° < 1. Since we can come up with
one nonzero cusp form Gig in S‘}O we have a theorem.

THEOREM 3.4. We have dimS}° =1 and S}° = CG,o.

4. FINAL COMMENTS

The computations that have been performed for the form H are largely indepen-
dent of the weight k. Applied to the space S§ we may extend the Fourier expansion
of the Schottky form J beyond that given in [1]. Table 8 gives the Fourier coefficients
a(B;) for J/2'% and G19/2'8345.
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Table 8. (Fourier Coefficients)

f By |B1| B2 {B3| By | Bs | Bg| By | Bs | By
J/218 1| -1 2| 6| -12]-12{11| 2 |-72|116
Gio/2'83%5 | 1 | 2 | —22{ 72| -36| 36|26 | —232 | 12002480

Although the parameters «; and §; were simply eliminated in Section 3, their
values are also determined by this process. It may be of interest to present the images
of ¢3f for s=Dy,H and f = J,Gyp.

S Jd = 2%(C,)*
$b,C0 = 2'%3'5(C3,) " ((Ez2)" + 48C3h)
¢yd =212D%(4 + O)*
¢3G1o = 213%5D5(A + C)*(25A4*~8A43 B-7A43C—-8A>BC—ABC? + 4AC*~ BC*-C*)

It is interesting to note that the image of G1p comes out to a multiple of the image of
J under both ¢}, and ¢} . As a final comment we note that linear relations among
Fourier coefficients can be viewed as linear relations among Poincare series.
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