RESTRICTION OF SIEGEL MODULAR FORMS TO MODULAR CURVES

CRIS POOR AND DAVID S. YUEN

We study homomorphisms from the ring of Siegel modular forms of a given degree to the ring of elliptic modular forms for a congruence subgroup. These homomorphisms essentially arise from the restriction of Siegel modular forms to modular curves. These homomorphisms give rise to linear relations among the Fourier coefficients of a Siegel modular form. We use this technique to prove that dim $S_4^{10} = 1$.

1. INTRODUCTION

A Siegel modular cusp form of degree n has a Fourier series $f(\Omega) = \sum_{t} a(t)e(\operatorname{tr}(\Omega t))$ where t runs over \mathcal{X}_n , the set of positive definite semi-integral $n \times n$ forms. If we restrict attention to cusp forms of even weight then the Fourier coefficients are class functions of t. The vector space S_n^k of cusp forms of weight k is finite dimensional and so there exist finite subsets $S \subset \operatorname{classes}(\mathcal{X}_n)$ such that the projection map $\operatorname{FS}_S : S_n^k \to \mathbb{C}^S$ given by $f \mapsto \prod_{\substack{[t] \in S}} a(t)$ is injective. The following Theorem [13, p. 218] gives one such S that is readily computable from n and k. Instead of ordering semi-integral forms

t by their determinant det (t) we order them by their dyadic trace w(t). Denote by $\mathcal{P}_n(\mathbb{F})$ the positive definite $n \times n$ symmetric matrices with coefficients in $\mathbb{F} \subseteq \mathbb{R}$. The dyadic trace $w : \mathcal{P}_n(\mathbb{R}) \to \mathbb{R}^+$ is a class function and only a finite number of classes from \mathcal{X}_n will have a dyadic trace below any fixed bound, see [13].

THEOREM 1.1. Let $n, k \in \mathbb{Z}^+$. Let

$$S = \left\{ [t] : t \in \mathcal{X}_n \text{ and } w(t) \leq n \frac{2}{\sqrt{3}} \frac{k}{4\pi} \right\}.$$

The map $FS_{\mathcal{S}}: S_n^k \to \mathbb{C}^{\mathcal{S}}$ is injective.

This Theorem allows one to deduce equality in S_n^k from equality on the Fourier coefficients for S. There are two obvious avenues for improvement. First, as is evident from Table 1, the bound dim $S_n^k \leq \text{card}(S)$ is tractable but crude and we would like to trim down the set S to make card (S) closer to dim S_n^k . Second, the image FS_S (f) determines f and one would like to compute some Fourier coefficients outside of S

Received 13th August, 2001

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.

directly from the Fourier coefficients in S. This paper realises both improvements. We give a method for producing linear relations on the Fourier coefficients of the elements in S_n^k . Table 1 gives dim S_4^k , card (S) and examples of linear relations for even $k \leq 12$. These are the only even weights for which dim S_4^k is known and the result dim $S_4^{10} = 1$ is a new one.

	Table 1.										
k	$\dim S_4^k$	$\operatorname{card}\left(\mathcal{S} ight)$	linear relations								
2	0	0									
4	0	0									
6	0	1	$a\bigl(\tfrac{1}{2}D_4\bigr)=0$								
8	1	2	$a\bigl(\tfrac{1}{2}D_4\bigr) + a\bigl(\tfrac{1}{2}A_4\bigr) = 0$								
10	1	10	see equations (3.3)								
12	2	23	21 uncomputed relations								

For $k \leq 4$ we have $S = \emptyset$ and so Theorem 1.1 by itself proves $S_4^k = 0$, results due to Christian [2] and Eichler [4, 5]. For k = 6 we have $S = \{[D_4/2]\}$ and the method in this paper provides the linear relation $a(D_4/2) = 0$ so that we conclude dim $S_4^6 = 0$. For k = 8 we have $S = \{[D_4/2], [A_4/2]\}$ and the method provides the linear relation $a(D_4/2) + a(A_4/2) = 0$ showing that dim $S_4^8 \leq 1$. The Schottky form J is in S_4^8 [9] so we have dim $S_4^8 = 1$, see [14, 11, 3] for these results. For k = 10 the S consists of the ten classes in Table 3 and the method provides the nine linearly independent relations given in equation 3.3. We know the cusp form G_{10} is in S_4^{10} , see [13, p. 232], so that we have dim $S_4^{10} = 1$, a result that has been beyond the reach of other methods [12, 3]. By the work of Erokhin dim $S_4^{12} = 2$ is already known, see [6, 7, 11]. Linear relations among Fourier coefficients for semi-integral forms not solely in S allow the computation of Fourier coefficients outside of S.

The method of producing linear relations on Fourier coefficients from S_n^k relies on the homomorphisms $\phi_s^* : S_n^k \to S_1^{nk}(\Gamma_0(\ell))$ which exist for any $s \in \mathcal{P}_n(\mathbb{Z})$ and any $\ell \in \mathbb{Z}^+$ with ℓs^{-1} integral. We write elements of $\Gamma_1 = \operatorname{Sp}_1(\mathbb{Z})$ as $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and define the subgroup $\Gamma_0(\ell)$ by $\ell \mid c$ and the subgroup Δ_1 by c = 0. We define $\phi_s(\tau) = s\tau$ so that for $f \in M_n^k$ we have $(\phi_s^* f)(\tau) = f(s\tau)$. There are three important points about these homomorphisms:

- (1) The image ring $M_1(\Gamma_0(\ell))$ is amenable to computation.
- (2) The Fourier coefficients of $\phi_s^* f$ at each cusp are linear combinations of the Fourier coefficients of f, see Proposition 2.3.
- (3) There are lots of $n \times n$ integral forms s.

The first point allows us to work out the linear relations among the Fourier coefficients at all cusps of elements in $S_1^{nk}(\Gamma_0(\ell))$. The second point induces linear relations on the Fourier coefficients of elements in S_n^k from the linear relations on $S_1^{nk}(\Gamma_0(\ell))$. The third point allows us to continue producing linear relations if more are desired.

We illustrate the technique in weights 6 and 8 when the number of Fourier coefficients remains small. Let $f \in S_4^k$ have the Fourier expansion $f(\Omega) = \sum_t a(t)e(\langle \Omega, t \rangle)$ where $\langle \Omega, t \rangle = \operatorname{tr}(\Omega t)$. Let D_4 represent the 4×4 form of this root lattice $(D_4 = 2B_0 \text{ from Table 3})$. We compute the Fourier expansion of $\phi_{D_4}^* f$ in powers of $q = e(\tau)$. For any $s \in \mathcal{P}_n(\mathbb{Q})$ we expand $\phi_s^* f$ into a Fourier series as

$$(\phi_s^*f)(\tau) = \sum_{j \in \mathbf{Q}^+} \left(\sum_{t: \langle s, t \rangle = j} a(t) \right) q^j.$$

For simplicity we shall henceforth assume that k is even. If we introduce the notation $\mathcal{V}(j, s, t) = \operatorname{card} \{ v \in \mathcal{X}_n : [v] = [t], \langle v, s \rangle = j \}$ then we can write

(1.2)
$$(\phi_s^*f)(\tau) = \sum_{j \in \mathbf{Q}^+} \left(\sum_{[t]} \mathcal{V}(j,s,t) a(t) \right) q^j.$$

Table 2 is a table of the representation numbers $\mathcal{V}(j, D_4, t)$ for $j \leq 7$, omitted entries are zero. See Table 3 for the list of B_0, B_1, \ldots, B_9 .

Table 2. $\mathcal{V}(j, D_4, t)$.												
j	B_0	B_1	B_2	B_3	B_4	B_5	B ₆	B7	B ₈	B 9 ⁻		
4	1											
5	16	48										
6	144 [.]	288	216	48	12							
7	384	1488	864	288	144	432	240	288	48	16		

Thus we have the following expansion:

$$\begin{aligned} (\phi_{D_4}^*f)(\tau) &= a(B_0)q^4 + (16a(B_0) + 48a(B_1))q^5 \\ &+ (144a(B_0) + 288a(B_1) + 216a(B_2) + 48a(B_3) + 12a(B_4))q^6 \\ &+ (384a(B_0) + 1488a(B_1) + 864a(B_2) + 288a(B_3) + 144a(B_4) + 432a(B_5) \\ (1.3) &+ 240a(B_6) + 288a(B_7) + 48a(B_8) + 16a(B_9))q^7 + \cdots . \end{aligned}$$

The function $\phi_{D_4}^* f \in S_1^{4k}(\Gamma_0(2))$ is invariant under the Fricke operator because D_4^{-1} is equivalent to $D_4/2$, see Proposition 2.2. The ring $M_1(\Gamma_0(2))$ is generated by $E_{2,2}^- \in M_1^2(\Gamma_0(2))$ and $E_{4,2}^- \in M_1^4(\Gamma_0(2))$ and the ring of cusp forms is principally generated

[4]

by $C_{8,2}^+ \in S_1^8(\Gamma_0(2))$. The \pm superscript indicates an eigenvalue of ± 1 under the Fricke operator. In general we define $E_{k,d}^{\pm}(\tau) = (E_k(\tau) \pm d^{k/2}E_k(d\tau))/(1 \pm d^{k/2})$ where the $E_k(\tau) = 1 - (2k/B_k) \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n$ are the Eisenstein series and the B_k are given by $t/(e^t - 1) = \sum_{k=0}^{\infty} B_k t^k/k!$. We have $E_{k,d}^{\pm} \in M_1^k(\Gamma_0(d))$ except in the case of $E_{2,d}^+$. The Fourier expansions of these generators are given by

$$E_{2,2}^{-}(\tau) = 1 + 24 \sum_{n=1}^{\infty} (\sigma_1(n) - 2\sigma_1(n/2))q^n = 1 + 24q + 24q^2 + 96q^3 + 24q^4 + 144q^5 + \dots$$

$$E_{4,2}^{-}(\tau) = 1 - 80 \sum_{n=1}^{\infty} (\sigma_3(n) - 4\sigma_3(n/2))q^n = 1 - 80q - 400q^2 - 2240q^3 - 2960q^4 - \dots$$

$$C_{8,2}^{+}(z) = \frac{1}{256} (E_{2,2}^{-}(\tau)^4 - E_{4,2}^{-}(\tau)^2) = q - 8q^2 + 12q^3 + 64q^4 - 210q^5 - 96q^6 - \dots$$

The vanishing order of $\phi_{D_4}^* f$ at the cusp [I] is at least 4 and because $\phi_{D_4}^* f$ is an eigenfunction of the Fricke operator the vanishing order at the cusp [J] is the same. Thus we have $(C_{8,2}^+)^4 | \phi_{D_4}^* f$ in $M_1(\Gamma_0(2))$. For k = 6 this means $\phi_{D_4}^* f = 0$ and so every coefficient in equation 1.3 gives a homogeneous linear relation; in particular we must have $a(B_0) = 0$ (or $a(D_4/2) = 0$) and hence by Theorem 1.1 we have $S_4^6 = 0$. For k = 8 there is a parameter $c \in \mathbb{C}$ such that

$$\phi_{D_4}^* f = c \left(C_{8,2}^+ \right)^4 = c \left(q^4 - 32q^5 + 432q^6 - 2944q^7 + 7192q^8 + 39744q^9 - \ldots \right).$$

Elimination of the parameter c provides the following 3 linear relations for any $f \in S_4^8$.

$$a(B_0) + a(B_1) = 0;$$

$$-24a(B_0) + 24a(B_1) + 18a(B_2) + 4a(B_3) + a(B_4) = 0;$$

(1.4)
$$208a(B_0) + 93a(B_1) + 54a(B_2) + 18a(B_3) + 9a(B_4) + 27a(B_5)$$

$$+15a(B_6) + 18a(B_7) + 3a(B_8) + a(B_9) = 0.$$

As mentioned, the first relation alone, $a(D_4/2) + a(A_4/2) = 0$ (note $B_1 = A_4/2$), implies that dim $S_4^8 \leq 1$.

For k = 10 there are parameters $\alpha, \beta \in \mathbb{C}$ such that $\phi_{D_4}^* f = (C_{8,2}^+)^4 (\alpha(E_{2,2}^-)^4 + \beta C_{8,2}^+)$. The element $(E_{2,2}^-)^2 E_{4,2}^-$ cannot occur in this representation because it has eigenvalue -1 under the Fricke operator. Elimination of the parameters α and β provides two linear relations:

$$224a(B_0) = 184a(B_1) + 18a(B_2) + 4a(B_3) + a(B_4);$$

$$21376a(B_1) = -16110a(B_2) - 3916a(B_3) - 1231a(B_4) - 1512a(B_5) - 840a(B_6)$$

$$(1.5) - 1008a(B_7) - 168a(B_8) - 56a(B_9).$$

In conjunction with Theorem 1.1 these two relations imply dim $S_4^{10} \leq 8$ but it will require another homomorphism $\phi_H^*: S_4^{10} \to S_1^{40}(\Gamma_0(6))$ and a more extensive computation to prove that dim $S_4^{10} \leq 1$.

2. PROPOSITIONS

We let $\Gamma_n = \operatorname{Sp}_n(\mathbb{Z})$. We write elements of $\operatorname{Sp}_n(\mathbb{R})$ as $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$. The group $\operatorname{Sp}_n(\mathbb{R})$ acts on functions from the right via $\begin{pmatrix} f \mid \begin{pmatrix} A & B \\ C & D \end{pmatrix} \end{pmatrix} (\Omega) = \det (C\Omega + D)^{-k} f ((A\Omega + B)(C\Omega + D)^{-1}).$

PROPOSITION 2.1. Let $n, \ell \in \mathbb{Z}^+$. Let $s, \ell s^{-1} \in \mathcal{P}_n(\mathbb{Z})$. The map $\phi_s^* : M_n^k \to M_1^{nk}(\Gamma_0(\ell))$ is a graded ring homomorphism.

PROOF: For
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Sp}_1(\mathbb{R})$$
 we have
 $\begin{pmatrix} \phi_s^* f \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{pmatrix}(\tau) = (c\tau + d)^{-nk} f\left(\frac{a\tau + b}{c\tau + ds}s\right)$
 $= (c\tau + d)^{-nk} f\left((a\tau s + bs)(cs^{-1}\tau s + dI)^{-1}\right)$
 $= (c\tau + d)^{-nk} f\left(\begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix} \cdot \tau s\right)$
 $= (c\tau + d)^{-nk} \det (cs^{-1}\tau s + dI)^k \left(f \mid \begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix}\right)(\tau s)$
 $= \begin{pmatrix} f \mid \begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix} \end{pmatrix}(\tau s).$

If we now assume that $\sigma \in \Gamma_0(\ell)$ then cs^{-1} is integral and so $\begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix} \in \operatorname{Sp}_n(\mathbb{Z})$.

Therefore we have $\begin{pmatrix} f | \begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix} \end{pmatrix} (\tau s) = f(\tau s) = \phi_s^* f(\tau)$. It is straightforward to see that $\phi_s^* f$ is holomorphic on \mathcal{H}_1 and that it is bounded on domains of type $\{\tau \in \mathcal{H}_1 : \operatorname{Im} \tau > y_0\}$. Thus we have $\phi_s^* : M_n^k \to M_1^{nk}(\Gamma_0(\ell))$.

For $\ell \in \mathbb{Z}^+$ let $W_{\ell} = \begin{pmatrix} 0 & -1 \\ \ell & 0 \end{pmatrix} / \sqrt{\ell}$ denote the Fricke involution.

PROPOSITION 2.2. Let $n, \ell \in \mathbb{Z}^+$. Let $s, \ell s^{-1} \in \mathcal{P}_n(\mathbb{Z})$. Let $f \in M_n^k$. Assume that s is $\operatorname{GL}_n(\mathbb{Z})$ -equivalent to ℓs^{-1} . Then $\phi_s^* f \in M_1^{nk}(\Gamma_0(\ell))$ is an eigenfunction of the Fricke operator W_ℓ . The eigenvalue is +1 unless s is improperly equivalent to ℓs^{-1} and k is odd in which case $\phi_s^* f$ has eigenvalue -1 under W_ℓ .

PROOF: When s is equivalent to ℓs^{-1} we have $UsU' = \ell s^{-1}$ for some $U \in GL_n(\mathbb{Z})$. We shall show that $(\phi_s^* f) | W_\ell = \det(U)^k \phi_s^* f$. The factor $\det(U)^k$ is one

except in the case noted. We first check that $\phi_s \circ W_\ell = \begin{pmatrix} 0 & U^* \\ -U & 0 \end{pmatrix} \circ \phi_s$. For every $\tau \in \mathcal{H}_1$ we have

$$(\phi_s \circ W_\ell)(\tau) = \phi_s \left(-\frac{1}{\ell\tau}\right) = -\frac{1}{\ell} s \tau^{-1} = -U^* s^{-1} U^{-1} \tau^{-1} = U^* \left(-U s \tau\right)^{-1}$$
$$= \begin{pmatrix} 0 & U^* \\ -U & 0 \end{pmatrix} \left(s\tau\right) = \left(\begin{pmatrix} 0 & U^* \\ -U & 0 \end{pmatrix} \circ \phi_s\right)(\tau).$$

Noting that $\begin{pmatrix} 0 & U^* \\ -U & 0 \end{pmatrix} \in \Gamma_n$ we compute

$$\begin{bmatrix} (\phi_s^* f) & | & W_\ell \end{bmatrix}(\tau) = \left(\sqrt{\ell}\tau\right)^{-nk} (\phi_s^* f) \left(W_\ell(\tau)\right)$$
$$= \left(\sqrt{\ell}\tau\right)^{-nk} \left(f \circ \phi_s \circ W_\ell\right)(\tau)$$
$$= \left(\sqrt{\ell}\tau\right)^{-nk} \left(f \circ \begin{pmatrix} 0 & U^* \\ -U & 0 \end{pmatrix} \circ \phi_s\right)(\tau)$$
$$= \left(\sqrt{\ell}\tau\right)^{-nk} \det \left(-Us\tau\right)^k f(\phi_s(\tau)\right)$$
$$= \left(-\sqrt{\ell}\right)^{-nk} \det \left(U\right)^k \det \left(s\right)^k \left(\phi_s^* f\right)(\tau)$$
$$= \det \left(U\right)^k \left(\phi_s^* f\right)(\tau).$$

In the last line above we have used the fact that $det(s)^2 = \ell^n$ and that when nk is odd we must have f identically zero.

The next Proposition shows how to develop the Fourier expansion of $\phi_s^* f$ at any cusp.

PROPOSITION 2.3. Let $n \in \mathbb{Z}^+$. Let $s \in \mathcal{P}_n(\mathbb{Q})$. Let $f \in S_n^k$ have the Fourier expansion $f(\Omega) = \sum_t a(t)e(\langle \Omega, t \rangle)$. Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_1$. There exist $\mathcal{A}, \mathcal{B} \in \mathbb{Q}^{n \times n}$ such that $\begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix} \in \Gamma_n \begin{pmatrix} \mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^* \end{pmatrix}$ and for any such \mathcal{A}, \mathcal{B} we have $\begin{pmatrix} \phi_s^* f \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{pmatrix}(\tau) = (\det \mathcal{A})^k f(\tau \mathcal{A}s\mathcal{A}' + \mathcal{B}\mathcal{A}')$ $= (\det \mathcal{A})^k \sum_{j \in \mathbb{Q}^+} \left(\sum_{t: \langle \mathcal{A}s\mathcal{A}', t \rangle = j} a(t)e(\langle t, \mathcal{B}\mathcal{A}' \rangle) \right) q^j$

PROOF: We now wish to study $\begin{pmatrix} \phi_s^* f | \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{pmatrix}$ for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Sp}_1(\mathbb{Z})$. Then as in the proof of Proposition 2.1 we have

$$\left(\phi_{s}^{*}f \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right)(\tau) = \left(f \mid \begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix}\right)(\tau s).$$

Now, we can always decompose any matrix in $\operatorname{Sp}_n(\mathbb{Q})$ as something in $\operatorname{Sp}_n(\mathbb{Z})$ times something in $\operatorname{Sp}_n(\mathbb{Q})$ with C = 0 [8, p. 125]. So let $\begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix} \in \Gamma_n \begin{pmatrix} \mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^* \end{pmatrix}$. Since f is automorphic with respect to Γ_n we have

$$\begin{pmatrix} \phi_s^* f \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{pmatrix} (\tau) = \begin{pmatrix} f \mid \begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix} \end{pmatrix} (\tau s)$$
$$= \begin{pmatrix} f \mid \begin{pmatrix} \mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^* \end{pmatrix} \end{pmatrix} (\tau s)$$
$$= (\det \mathcal{A})^k f(\tau \mathcal{A} s \mathcal{A}' + \mathcal{B} \mathcal{A}').$$

The Fourier expansion for $\left(\phi_s^* f | \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right)(\tau)$ follows from the Fourier expansion for f under the substitution $\Omega = \tau \mathcal{A} s \mathcal{A}' + \mathcal{B} \mathcal{A}'$.

The above Proposition provides for the computation of the Fourier expansion of $\phi_s^* f | \sigma$ in general. When ℓ is squarefree however the computation of the character $e(\langle t, \mathcal{BA'} \rangle)$ may be finessed. We introduce a new notation: Notice that \mathcal{A} in Proposition 2.3 is determined up to $u\mathcal{A}$ with $u \in \operatorname{GL}_n(\mathbb{Z})$. Thus $\mathcal{AsA'}$ is determined up to equivalence class. We define

$$s\Box\begin{pmatrix}a&b\\c&d\end{pmatrix}=\mathcal{A}s\mathcal{A}'$$

with the understanding that this is well-defined only up to equivalence class. Since f is automorphic with respect to $\begin{pmatrix} u & 0 \\ 0 & u^* \end{pmatrix}$, we have $f(usu'\tau) = f(s\tau)$ and it makes sense to talk about $f\left(\left(s\Box\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right)\tau\right)$ and $\phi_{s\Box\begin{pmatrix} a & b \\ c & d \end{pmatrix}}^*f$.

PROPOSITION 2.4. Let $s \in \mathcal{P}_n(\mathbb{Z})$. Let $\ell \in \mathbb{Z}^+$ such that ℓs^{-1} is integral and primitive. Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_1$. Suppose $gcd(c, (\ell/c)) = 1$. Let $\widehat{c} \in \mathbb{Z}$ such that $\widehat{c}c \equiv 1$ mod ℓ/c . For any \mathcal{A} with $\begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix} \in \Gamma_n \begin{pmatrix} \mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^* \end{pmatrix}$ we have

$$\left(\phi_s^* f \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right)(\tau) = \left(\det \mathcal{A}\right)^k \phi_{s \Box \begin{pmatrix} a & b \\ c & d \end{pmatrix}}^* f(\tau + d\widehat{c}).$$

PROOF: We have $\begin{pmatrix} \mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^* \end{pmatrix} \begin{pmatrix} aI & bs \\ cs^{-1} & dI \end{pmatrix}^{-1} \in \operatorname{Sp}_n(\mathbb{Z})$. Thus we have

(2.5)
$$\begin{pmatrix} \mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^* \end{pmatrix} \begin{pmatrix} dI & -bs \\ -cs^{-1} & aI \end{pmatrix} = \begin{pmatrix} d\mathcal{A} - c\mathcal{B}s^{-1} & -b\mathcal{A}s + a\mathcal{B} \\ -c\mathcal{A}^*s^{-1} & a\mathcal{A}^* \end{pmatrix} \in \operatorname{Sp}_n(\mathbb{Z}).$$

Note that each of the four blocks must be in $\mathbb{Z}^{n \times n}$. Multiplying $d\mathcal{A} - c\mathcal{B}s^{-1}$ by the integral s implies $d\mathcal{A}s - c\mathcal{B}$ is integral. Both $\mathcal{A}s$ and \mathcal{B} are integral because we have

$$\mathcal{A}s = a(d\mathcal{A}s - c\mathcal{B}) + c(-b\mathcal{A}s + a\mathcal{B}),$$

 $\mathcal{B} = b(d\mathcal{A}s - c\mathcal{B}) + d(-b\mathcal{A}s + a\mathcal{B}).$

Since $c\mathcal{B}s^{-1} = (c/\ell)\mathcal{B}\ell s^{-1}$ and $\ell s^{-1} \in \mathbb{Z}^{n \times n}$, we have $c\mathcal{B}s^{-1} \in (c/\ell)\mathbb{Z}^{n \times n}$. This combined with $d\mathcal{A} - c\mathcal{B}s^{-1} \in \mathbb{Z}^{n \times n}$ implies $d\mathcal{A} \in (c/\ell)\mathbb{Z}^{n \times n}$. Also we have $\mathcal{A} = (1/\ell)(\mathcal{A}s)\ell s^{-1} \in (1/\ell)\mathbb{Z}^{n \times n}$ and consequently $\mathcal{A} = a(d\mathcal{A}) - b(c\mathcal{A}) \in (c/\ell)\mathbb{Z}^{n \times n}$. Since $\mathcal{A}s$ is integral, its transpose $s\mathcal{A}'$ is also integral. Then multiplying $d\mathcal{A} - c\mathcal{B}s^{-1}$ by the integral $\hat{c}s\mathcal{A}'$ implies that $d\hat{c}\mathcal{A}s\mathcal{A}'$ and $\hat{c}c\mathcal{B}\mathcal{A}'$ differ by an integer matrix. But $\hat{c}c \equiv 1 \mod (\ell/c)$ and $\mathcal{B}\mathcal{A}' \in (c/\ell)\mathbb{Z}^{n \times n}$ imply that $\hat{c}c\mathcal{B}\mathcal{A}'$ and $\mathcal{B}\mathcal{A}'$ differ by an integer matrix. Hence $d\hat{c}\mathcal{A}s\mathcal{A}'$ and $\mathcal{B}\mathcal{A}'$ differ by an integer matrix. Since $\mathcal{A}s$ have

$$(\det \mathcal{A})^{-k} \left(\phi_s^* f | \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) (\tau) = f(\tau \mathcal{A}s\mathcal{A}' + \mathcal{B}\mathcal{A}')$$
$$= f(\tau \mathcal{A}s\mathcal{A}' + d\widehat{c}\mathcal{A}s\mathcal{A}')$$
$$= f(\mathcal{A}s\mathcal{A}'(\tau + d\widehat{c}))$$
$$= \phi_{s\Box}^* \begin{pmatrix} a & b \\ c & d \end{pmatrix} f(\tau + d\widehat{c}).$$

3. The space S_4^{10}

We shall apply the technique of the Introduction to S_4^{10} . Theorem 1.1 says a form in S_4^{10} is determined by its coefficients a(t) with $w(t) \leq 3.5$. Table 3 gives the list of these 10 quadratic forms, see [10, 13]. For uniformity of notation we shall refer to these as B_0, \ldots, B_9 . Here the number under ℓ for B_i is the smallest positive integer such that $\ell(2B_i)^{-1}$ is integral.

We shall apply the technique to $H = 2B_4$ for which $6H^{-1}$ is integral. By Proposition 1.1 we have $\operatorname{Im} \phi_H^* f \subset M_1(\Gamma_0(6))$ and our calculations will occur inside this ring. The ring $M_1(\Gamma_0(6))$ is generated by three forms A, B, C of weight 2. There is one relation $C^2 = 9B^2 - 8A^2$. The ring of cusp forms is principally generated by a form of weight 4, $D = (A^2 - B^2)/4$. There are 4 cusps in $\Gamma_0(6) \setminus \Gamma_1/\Delta_1$, represented by I, $\sigma_2 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$ and J with respective widths 1, 3, 2 and 6. We now give the Fourier expansions of the generators at all four cusps. The definition of $E_{2,2}^-$ has already been given, similarly define

$$E_{2,3}^{-}(\tau) = 1 + 12 \sum_{n=1}^{\infty} (\sigma_1(n) - 3\sigma_1(n/3)) q^n = 1 + 12(q + 3q^2 + q^3 + 7q^4 + 6q^5 + \cdots).$$

Define the following elements in $M_1(\Gamma_0(6))$:

$$A(\tau) = (3/4)E_{2,2}^{-}(3\tau) + (1/4)E_{2,2}^{-}(\tau) = 1 + 6q + 6q^{2} + 42q^{3} + \cdots,$$

$$B(\tau) = (2/3)E_{2,3}^{-}(2\tau) + (1/3)E_{2,3}^{-}(\tau) = 1 + 4q + 20q^{2} + 4q^{3} + \cdots,$$

$$C(\tau) = (3/2)E_{2,2}^{-}(3\tau) - (1/2)E_{2,2}^{-}(\tau) = 1 - 12q - 12q^{2} - 12q^{3} + \cdots.$$

Table 3. Semi-integral quaternary forms with dyadic trace $\leqslant 3.5$.

Name	Form	Dyadic trace	16 Determinant	l
B ₀	$\frac{1}{2} \left(\begin{array}{rrrr} 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{array} \right)$	2	4	2
<i>B</i> ₁	$\frac{1}{2} \begin{pmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 1 & 0 & 1 & 2 \end{pmatrix}$	2.5	5	5
<i>B</i> ₂	$\frac{1}{2} \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{pmatrix}$	3	8	4
B ₃	$\frac{1}{2} \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$	3	9	3
<i>B</i> ₄	$\frac{1}{2} \left(\begin{array}{rrrr} 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 4 \end{array} \right)$	3	12	6
B_5	$\frac{1}{2} \left(\begin{array}{cccc} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{array} \right)$	3.5	12	6
B_6	$\frac{1}{2} \begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 4 \end{pmatrix}$	3.5	13	13
B ₇	$\frac{1}{2} \begin{pmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 1 & 0 & 1 & 4 \end{pmatrix}$	3.5	17	17
B ₈	$\frac{1}{2} \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 1 & 4 \end{pmatrix}$	3.5	20	10
B ₉	$\frac{1}{2} \left(\begin{array}{rrrr} 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 4 & 2 \\ 1 & 1 & 2 & 4 \end{array} \right)$	3.5	25	5

The elliptic modular forms A, B, C transform nicely as

$$(A \mid J)(\tau) = -\frac{1}{6}A(\tau/6), \quad (A \mid \sigma_2)(\tau) = +\frac{1}{3}A((\tau-1)/3),$$

$$(A \mid \sigma_3)(\tau) = -\frac{1}{2}A((\tau-1)/2)$$

$$(B \mid J)(\tau) = -\frac{1}{6}B(\tau/6), \quad (B \mid \sigma_2)(\tau) = -\frac{1}{3}B((\tau-1)/3)$$

$$(B \mid \sigma_3)(\tau) = +\frac{1}{2}B((\tau-1)/2)$$

$$(C \mid J)(\tau) = +\frac{1}{6}C(\tau/6), \quad (C \mid \sigma_2)(\tau) = -\frac{1}{3}C((\tau-1)/3)$$

$$(C \mid \sigma_3)(\tau) = -\frac{1}{2}C((\tau-1)/2)$$

[10]

We use Propositions 2.3 and 2.4 to work out the Fourier expansion of $\phi_H^* f \mid \sigma$ for $\sigma = I$, σ_2 , σ_3 , J. We implement the algorithms from [8, pp. 125, 322–328] to produce a factorisation $\begin{pmatrix} aI & bH \\ cH^{-1} & dI \end{pmatrix} \in \Gamma_n \begin{pmatrix} \mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^* \end{pmatrix}$ and obtain det (\mathcal{A}) and $H \Box \sigma = \mathcal{A} H \mathcal{A}'$. We display $H \Box \sigma_2$, $H \Box \sigma_3$, $H \Box J$ and mention that the associated $|\det(\mathcal{A})|$ equals 3, 4, 12, respectively:

$$H\Box\sigma_{2} = \frac{1}{3} \begin{pmatrix} 4 & 2 & 1 & -1 \\ 2 & 4 & -1 & 1 \\ 1 & -1 & 4 & -1 \\ -1 & 1 & -1 & 4 \end{pmatrix};$$
$$H\Box\sigma_{3} = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 1 & 3 \end{pmatrix};$$
$$H\Box J = \frac{1}{6} \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 5 & -1 & 2 \\ 1 & -1 & 5 & 2 \\ 1 & 2 & 2 & 5 \end{pmatrix}.$$

Note that all three of the cases σ_2 , σ_3 , J satisfy the hypotheses of Proposition 2.4. Note that for c = 2, we can take $\hat{c} = -1$ so that $c\hat{c} = 1 \mod 3$; for c = 3, we can take $\hat{c} = -1$ so that $c\hat{c} = 1 \mod 2$. Thus we have

(
$$\phi_{H}^{*}f \mid I$$
)(τ) = $\phi_{H}^{*}f(\tau)$,
($\phi_{H}^{*}f \mid \sigma_{2}$)(τ) = $3^{-10}\phi_{H\square\sigma_{2}}^{*}f(\tau-1)$,
($\phi_{H}^{*}f \mid \sigma_{3}$)(τ) = $4^{-10}\phi_{H\square\sigma_{3}}^{*}f(\tau-1)$,
(3.1) ($\phi_{H}^{*}f \mid J$)(τ) = $12^{-10}\phi_{H\square J}^{*}f(\tau)$.

Hence the Fourier expansions may be computed from the numbers $\mathcal{V}(j, H \Box \sigma, t)$ given in Tables 4, 5, 6 and 7. Among the computations we perform, the computation of these representation numbers is by far the most expensive.

Table 4. $\mathcal{V}(j, H, t)$												
j	B_0	B_1	B_2	B_3	B_4	B_5	B_6	<i>B</i> ₇	B_8	B_9		
6	1											
7	12	36										
8	96	168	114	24	6							
9	196	760	384	108	60	168	108	96	12	4		

248

Table 5. $\mathcal{V}(j, H \Box \sigma_2, t)$													
j	B_0	B_1	B ₂	B ₃	<i>B</i> ₄	B_5	B ₆	B7	B ₈	B ₉			
10/3	1		[.										
11/3	4	12											
12/3	24	24	6			1		}					
13/3	12	96	24	12									
14/3	78	192	120	24	6	12				1			
15/3	144	312	192	24	28	84	48	36					
Table 6. $\mathcal{V}(j, H \Box \sigma_3, t)$													
j	B_0	B_1	B ₂	B ₃	B_4	B_5	B_6	B 7	B ₈	B ₉			
6/2	5	4											
7/2	24	72	12										
8/2	120	264	138	48	15	12	12						
			Tabl	e 7.	$\mathcal{V}(j, I)$	$H \Box J_{j}$, t)						
j	B_0	B_1	<i>B</i> ₂	B_3	B 4	B_5	B_6	B7	B ₈	B ₉			
10/6	1												
11/6		8											
12/6	24	12	6		1								
13/6	24	96	12				8						

From these expansions we see that $\phi_H^* f$ vanishes to order at least 6 at every cusp so that there are parameters $\alpha_0, \ldots, \alpha_8$ and $\beta_0, \ldots, \beta_7 \in \mathbb{C}$ such that

$$\phi_{H}^{*}f = (D)^{6} (\alpha_{0}A^{8} + \alpha_{1}A^{7}B + \dots + \alpha_{8}B^{8} + C(\beta_{0}A^{7} + \beta_{1}A^{6}B + \dots + \beta_{7}B^{7})).$$

Without introducing any new parameters we also have equalities for any $\sigma \in \Gamma_1$:

(3.2)
$$\phi_H^* f \mid \sigma = (D \mid \sigma)^6 \Big(\alpha_0 (A \mid \sigma)^8 + \ldots + \alpha_8 (B \mid \sigma)^8 + (C \mid \sigma) \big(\beta_0 (A \mid \sigma)^7 + \ldots + \beta_7 (B \mid \sigma)^7 \big) \Big).$$

For $\sigma = I, \sigma_2, \sigma_3, J$ the left side of equation 3.2 is computed from equation 3.1, equation 1.2 and Tables 4 through 7. The right side is computed from the expansions of the elliptic modular forms A, B and C. At the cusp [I] we equate the coefficients for

 $j = 6, \ldots, 9$; at the cusp $[\sigma_2]$ for $j = 6/3, \ldots, 15/3$; at the cusp $[\sigma_3]$ for $j = 6/2, \ldots, 8/2$ and at the cusp [J] for $j = 6/6, \ldots, 13/6$. Elimination of the 17 parameters α_i, β_i from the 4 + 10 + 3 + 8 = 25 linear equations results in 8 linearly independent equations:

$$\begin{aligned} a(B_2) &= -86/21a(B_0) - 188/21a(B_1) \\ a(B_3) &= 100/3a(B_0) + 58/3a(B_1) \\ a(B_4) &= -300/7a(B_0) + 24/7a(B_1) \\ a(B_5) &= -1892/21a(B_0) + 568/21a(B_1) \\ a(B_6) &= 288/7a(B_0) - 53/7a(B_1) \\ a(B_7) &= 2860/63a(B_0) - 8738/63a(B_1) \\ a(B_8) &= 656/7a(B_0) + 3872/7a(B_1) \\ a(B_9) &= 21016/21a(B_0) + 15532/21a(B_1) \end{aligned}$$

When we combine these 8 linear relations with the 2 linear relations in equation 1.5 obtained by considering $\phi_{D_4}^*$, we see that the rank is actually 9, so that we have a total of 9 linearly independent relations in $a(B_0), \ldots, a(B_9)$:

$$a(B_1) = 2a(B_0)$$

$$a(B_2) = -22a(B_0)$$

$$a(B_3) = 72a(B_0)$$

$$a(B_4) = -36a(B_0)$$

$$a(B_5) = -36a(B_0)$$

$$a(B_6) = 26a(B_0)$$

$$a(B_7) = -232a(B_0)$$

$$a(B_8) = 1200a(B_0)$$

$$a(B_9) = 2480a(B_0).$$

These relations and Theorem 1.1 imply that dim $S_4^{10} \leq 1$. Since we can come up with one nonzero cusp form G_{10} in S_4^{10} we have a theorem.

THEOREM 3.4. We have dim $S_4^{10} = 1$ and $S_4^{10} = \mathbb{C}G_{10}$.

4. FINAL COMMENTS

The computations that have been performed for the form H are largely independent of the weight k. Applied to the space S_4^8 we may extend the Fourier expansion of the Schottky form J beyond that given in [1]. Table 8 gives the Fourier coefficients $a(B_i)$ for $J/2^{16}$ and $G_{10}/2^{18}3^45$.

f	B_0	B_1	B_2	B_3	B_4	B_5	B_6	<i>B</i> ₇	B ₈	B9
$J/2^{16}$	1	-1	2 .	6	-12	-12	11	2	-72	116
$G_{10}/2^{18}3^45$	1	2	-22	72	-36	-36	26	-232	1200	2480

Table 8. (Fourier Coefficients)

Although the parameters α_i and β_i were simply eliminated in Section 3, their values are also determined by this process. It may be of interest to present the images of $\phi_s^* f$ for $s = D_4$, H and $f = J, G_{10}$.

$$\begin{split} \phi_{D_4}^* J &= 2^{16} (C_{8,2}^+)^4 \\ \phi_{D_4}^* G_{10} &= 2^{18} 3^4 5 (C_{8,2}^+)^4 ((E_{2,2}^-)^4 + 48 C_{8,2}^+) \\ \phi_H^* J &= 2^{12} D^6 (A+C)^4 \\ \phi_H^* G_{10} &= 2^{14} 3^3 5 D^6 (A+C)^4 (25 A^4 - 8 A^3 B - 7 A^3 C - 8 A^2 B C - A B C^2 + 4 A C^3 - B C^3 - C^4) \end{split}$$

It is interesting to note that the image of G_{10} comes out to a multiple of the image of J under both $\phi_{D_4}^*$ and ϕ_H^* . As a final comment we note that linear relations among Fourier coefficients can be viewed as linear relations among Poincare series.

References

- B. Brinkman and L. Gerritzen, 'The lowest term of the Schottky modular form', Math. Annalen 292 (1992), 329-335.
- U. Christian, Selberg's Zeta-, L-, and Eisenstein series, Lecture Notes in Math. 1030 (Springer-Verlag, Berlin, Heidelberg, New York, 1983).
- [3] W. Duke and O. Imamoğlu, 'Siegel modular forms of small weight', Math. Ann. 308 (1997), 525-534.
- [4] M. Eichler, 'Über die Anzahl der linear unabhängigen Siegelschen Modulformen von gegebenem Gewicht', Math. Ann. 213 (1975), 281-291.
- [5] M. Eichler, 'Erratum: Über die Anzahl der linear unabhängigen Siegelschen Modulformen von gegebenem Gewicht', Math. Ann. 215 (1975), 195.
- [6] V.A. Erokhin, 'Theta series of even unimodular 24-dimensional lattices', Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 86 (1979), 82-93.
- [7] V.A. Erokhin, 'Theta series of even unimodular lattices', Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 112 (1981), 59-70.
- [8] E. Freitag, Siegelsche Modulfunktionen, Grundlehren der mathematische Wissenschaften 254 (Springer Verlag, Berlin, 1983).
- J.I. Igusa, 'Schottky's invariant and quadratic forms', in *Christoffel Symposium* (Birkhäuser Verlag, Basel, Boston, MA, 1981), pp. 352-362.
- [10] G. Nipp, Quaternary quadratic forms, computer generated tables (Springer-Verlag, New York, 1991).

- [11] C. Poor and D. Yuen, 'Dimensions of spaces of Siegel modular forms of low weight in degree four', Bull. Austral. Math. Soc. 54 (1996), 309-315.
- [12] C. Poor and D. Yuen, 'Dimensions of spaces of Siegel cusp forms and theta series with pluri-harmonics', Far East J. Math. Sci. (FJMS) 1 (1999), 849-863.
- [13] C. Poor and D. Yuen, 'Linear dependence among Siegel Modular Forms', Math. Ann. 318 (2000), 205-234.
- [14] R. Salvati Manni, 'Modular forms of the fourth degree (Remark on a paper of Harris and Morrison)', in *Classification of irregular varieties*, (Ballico, Catanese, Ciliberto, Editors), Lecture Notes in Math. 1515 (Springer, Berlin, 1992), pp. 106-111.

Department of Mathematics Fordham University Bronx, NY 10458 e-mail: poor@fordham.edu Math/CS Department Lake Forest College 555 N. Sheridan Rd. Lake Forest, IL 60045 e-mail: yuen@lfc.edu [14]