RESTRICTION OF SIEGEL MODULAR FORMS TO MODULAR CURVES

Cris Poor and David S. Yuen

Abstract

We study homomorphisms from the ring of Siegel modular forms of a given degree to the ring of elliptic modular forms for a congruence subgroup. These homomorphisms essentially arise from the restriction of Siegel modular forms to modular curves. These homomorphisms give rise to linear relations among the Fourier coefficients of a Siegel modular form. We use this technique to prove that $\operatorname{dim} S_{4}^{10}=1$.

1. Intronuction

A Siegel modular cusp form of degree n has a Fourier series $f(\Omega)=\sum_{t} a(t) e(\operatorname{tr}(\Omega t))$ where t runs over \mathcal{X}_{n}, the set of positive definite semi-integral $n \times n$ forms. If we restrict attention to cusp forms of even weight then the Fourier coefficients are class functions of t. The vector space S_{n}^{k} of cusp forms of weight k is finite dimensional and so there exist finite subsets $\mathcal{S} \subset$ classes $\left(\mathcal{X}_{n}\right)$ such that the projection map $\mathrm{FS}_{\mathcal{S}}: S_{n}^{k} \rightarrow \mathbb{C}^{\mathcal{S}}$ given by $f \mapsto \prod_{[t] \in \mathcal{S}} a(t)$ is injective. The following Theorem [13, p. 218] gives one such \mathcal{S} that is readily computable from n and k. Instead of ordering semi-integral forms t by their determinant det (t) we order them by their dyadic trace $w(t)$. Denote by $\mathcal{P}_{n}(\mathbb{F})$ the positive definite $n \times n$ symmetric matrices with coefficients in $\mathbb{F} \subseteq \mathbb{R}$. The dyadic trace $w: \mathcal{P}_{n}(\mathbb{R}) \rightarrow \mathbb{R}^{+}$is a class function and only a finite number of classes from \mathcal{X}_{n} will have a dyadic trace below any fixed bound, see [13].

Theorem 1.1. Let $n, k \in \mathbb{Z}^{+}$. Let

$$
\mathcal{S}=\left\{[t]: t \in \mathcal{X}_{n} \text { and } w(t) \leqslant n \frac{2}{\sqrt{3}} \frac{k}{4 \pi}\right\} .
$$

The $\operatorname{map} \mathrm{FS}_{\mathcal{S}}: S_{n}^{k} \rightarrow \mathbb{C}^{\mathcal{S}}$ is injective.
This Theorem allows one to deduce equality in S_{n}^{k} from equality on the Fourier coefficients for \mathcal{S}. There are two obvious avenues for improvement. First, as is evident from Table 1 , the bound $\operatorname{dim} S_{n}^{k} \leqslant \operatorname{card}(\mathcal{S})$ is tractable but crude and we would like to trim down the set \mathcal{S} to make card (\mathcal{S}) closer to $\operatorname{dim} S_{n}^{k}$. Second, the image $\mathrm{FS}_{\mathcal{S}}(f)$ determines f and one would like to compute some Fourier coefficients outside of \mathcal{S}

[^0]directly from the Fourier coefficients in \mathcal{S}. This paper realises both improvements. We give a method for producing linear relations on the Fourier coefficients of the elements in S_{n}^{k}. Table 1 gives $\operatorname{dim} S_{4}^{k}, \operatorname{card}(\mathcal{S})$ and examples of linear relations for even $k \leqslant 12$. These are the only even weights for which $\operatorname{dim} S_{4}^{k}$ is known and the result $\operatorname{dim} S_{4}^{10}=1$ is a new one.

Table 1.

k	$\operatorname{dim} S_{4}^{k}$	$\operatorname{card}(\mathcal{S})$	linear relations
2	0	0	
4	0	0	
6	0	1	$a\left(\frac{1}{2} D_{4}\right)=0$
8	1	2	$a\left(\frac{1}{2} D_{4}\right)+a\left(\frac{1}{2} A_{4}\right)=0$
10	1	10	see equations (3.3)
12	2	23	21 uncomputed relations

For $k \leqslant 4$ we have $\mathcal{S}=\emptyset$ and so Theorem 1.1 by itself proves $S_{4}^{k}=0$, results due to Christian [2] and Eichler [4, 5]. For $k=6$ we have $\mathcal{S}=\left\{\left[D_{4} / 2\right]\right\}$ and the method in this paper provides the linear relation $a\left(D_{4} / 2\right)=0$ so that we conclude $\operatorname{dim} S_{4}^{6}=0$. For $k=8$ we have $\mathcal{S}=\left\{\left[D_{4} / 2\right],\left[A_{4} / 2\right]\right\}$ and the method provides the linear relation $a\left(D_{4} / 2\right)+a\left(A_{4} / 2\right)=0$ showing that $\operatorname{dim} S_{4}^{8} \leqslant 1$. The Schottky form J is in S_{4}^{8} [9] so we have $\operatorname{dim} S_{4}^{8}=1$, see $[14,11,3]$ for these results. For $k=10$ the \mathcal{S} consists of the ten classes in Table 3 and the method provides the nine linearly independent relations given in equation 3.3. We know the cusp form G_{10} is in S_{4}^{10}, see [13, p. 232], so that we have $\operatorname{dim} S_{4}^{10}=1$, a result that has been beyond the reach of other methods [12, 3]. By the work of Erokhin $\operatorname{dim} S_{4}^{12}=2$ is already known, see [6, 7, 11]. Linear relations among Fourier coefficients for semi-integral forms not solely in \mathcal{S} allow the computation of Fourier coefficients outside of \mathcal{S}.

The method of producing linear relations on Fourier coefficients from S_{n}^{k} relies on the homomorphisms $\phi_{s}^{*}: S_{n}^{k} \rightarrow S_{1}^{n k}\left(\Gamma_{0}(\ell)\right)$ which exist for any $s \in \mathcal{P}_{n}(\mathbb{Z})$ and any $\ell \in \mathbb{Z}^{+}$with ℓs^{-1} integral. We write elements of $\Gamma_{1}=\operatorname{Sp}_{1}(\mathbb{Z})$ as $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and define the subgroup $\Gamma_{0}(\ell)$ by $\ell \mid c$ and the subgroup Δ_{1} by $c=0$. We define $\phi_{s}(\tau)=s \tau$ so that for $f \in M_{n}^{k}$ we have $\left(\phi_{s}^{*} f\right)(\tau)=f(s \tau)$. There are three important points about these homomorphisms:
(1) The image ring $M_{1}\left(\Gamma_{0}(\ell)\right)$ is amenable to computation.
(2) The Fourier coefficients of $\phi_{s}^{*} f$ at each cusp are linear combinations of the Fourier coefficients of f, see Proposition 2.3.
(3) There are lots of $n \times n$ integral forms s.

The first point allows us to work out the linear relations among the Fourier coefficients at all cusps of elements in $S_{1}^{n k}\left(\Gamma_{0}(\ell)\right)$. The second point induces linear relations on the Fourier coefficients of elements in S_{n}^{k} from the linear relations on $S_{1}^{n k}\left(\Gamma_{0}(\ell)\right)$. The third point allows us to continue producing linear relations if more are desired.

We illustrate the technique in weights 6 and 8 when the number of Fourier coefficients remains small. Let $f \in S_{4}^{k}$ have the Fourier expansion $f(\Omega)=\sum_{t} a(t) e(\langle\Omega, t\rangle)$ where $\langle\Omega, t\rangle=\operatorname{tr}(\Omega t)$. Let D_{4} represent the 4×4 form of this root lattice $\left(D_{4}=2 B_{0}\right.$ from Table 3). We compute the Fourier expansion of $\phi_{D_{4}}^{*} f$ in powers of $q=e(\tau)$. For any $s \in \mathcal{P}_{n}(\mathbb{Q})$ we expand $\phi_{s}^{*} f$ into a Fourier series as

$$
\left(\phi_{s}^{*} f\right)(\tau)=\sum_{j \in \mathbb{Q}^{+}}\left(\sum_{t:(s, t\rangle=j} a(t)\right) q^{j}
$$

For simplicity we shall henceforth assume that k is even. If we introduce the notation $\mathcal{V}(j, s, t)=\operatorname{card}\left\{v \in \mathcal{X}_{n}:[v]=[t],\langle v, s\rangle=j\right\}$ then we can write

$$
\begin{equation*}
\left(\phi_{s}^{*} f\right)(\tau)=\sum_{j \in \mathbf{Q}^{+}}\left(\sum_{[t]} \mathcal{V}(j, s, t) a(t)\right) q^{j} \tag{1.2}
\end{equation*}
$$

Table 2 is a table of the representation numbers $\mathcal{V}\left(j, D_{4}, t\right)$ for $j \leqslant 7$, omitted entries are zero. See Table 3 for the list of $B_{0}, B_{1}, \ldots, B_{9}$.

Table 2. $\mathcal{V}\left(j, D_{4}, t\right)$.

j	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B_{9}
4	1									
5	16	48								
6	144	288	216	48	12					
7	384	1488	864	288	144	432	240	288	48	16

Thus we have the following expansion:

$$
\begin{align*}
\left(\phi_{D_{4}}^{*} f\right)(\tau)= & a\left(B_{0}\right) q^{4}+\left(16 a\left(B_{0}\right)+48 a\left(B_{1}\right)\right) q^{5} \\
& +\left(144 a\left(B_{0}\right)+288 a\left(B_{1}\right)+216 a\left(B_{2}\right)+48 a\left(B_{3}\right)+12 a\left(B_{4}\right)\right) q^{6} \\
& +\left(384 a\left(B_{0}\right)+1488 a\left(B_{1}\right)+864 a\left(B_{2}\right)+288 a\left(B_{3}\right)+144 a\left(B_{4}\right)+432 a\left(B_{5}\right)\right. \\
& \left.+240 a\left(B_{6}\right)+288 a\left(B_{7}\right)+48 a\left(B_{8}\right)+16 a\left(B_{9}\right)\right) q^{7}+\cdots . \tag{1.3}
\end{align*}
$$

The function $\phi_{D_{4}}^{*} f \in S_{1}^{4 k}\left(\Gamma_{0}(2)\right)$ is invariant under the Fricke operator because D_{4}^{-1} is equivalent to $D_{4} / 2$, see Proposition 2.2. The ring $M_{1}\left(\Gamma_{0}(2)\right)$ is generated by $E_{2,2}^{-} \in$ $M_{1}^{2}\left(\Gamma_{0}(2)\right)$ and $E_{4,2}^{-} \in M_{1}^{4}\left(\Gamma_{0}(2)\right)$ and the ring of cusp forms is principally generated
by $C_{8,2}^{+} \in S_{1}^{8}\left(\Gamma_{0}(2)\right)$. The \pm superscript indicates an eigenvalue of ± 1 under the Fricke operator. In general we define $E_{k, d}^{ \pm}(\tau)=\left(E_{k}(\tau) \pm d^{k / 2} E_{k}(d \tau)\right) /\left(1 \pm d^{k / 2}\right)$ where the $E_{k}(\tau)=1-\left(2 k / B_{k}\right) \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}$ are the Eisenstein series and the B_{k} are given by $t /\left(e^{t}-1\right)=\sum_{k=0}^{\infty} B_{k} t^{k} / k!$. We have $E_{k, d}^{ \pm} \in M_{1}^{k}\left(\Gamma_{0}(d)\right)$ except in the case of $E_{2, d}^{+}$. The Fourier expansions of these generators are given by

$$
\begin{aligned}
& E_{2,2}^{-}(\tau)=1+24 \sum_{n=1}^{\infty}\left(\sigma_{1}(n)-2 \sigma_{1}(n / 2)\right) q^{n}=1+24 q+24 q^{2}+96 q^{3}+24 q^{4}+144 q^{5}+\ldots \\
& E_{4,2}^{-}(\tau)=1-80 \sum_{n=1}^{\infty}\left(\sigma_{3}(n)-4 \sigma_{3}(n / 2)\right) q^{n}=1-80 q-400 q^{2}-2240 q^{3}-2960 q^{4}-\ldots \\
& C_{8,2}^{+}(z)=\frac{1}{256}\left(E_{2,2}^{-}(\tau)^{4}-E_{4,2}^{-}(\tau)^{2}\right)=q-8 q^{2}+12 q^{3}+64 q^{4}-210 q^{5}-96 q^{6}-\ldots
\end{aligned}
$$

The vanishing order of $\phi_{D_{4}}^{*} f$ at the cusp [I] is at least 4 and because $\phi_{D_{4}}^{*} f$ is an eigenfunction of the Fricke operator the vanishing order at the cusp [J] is the same. Thus we have $\left(C_{8,2}^{+}\right)^{4} \mid \phi_{D_{4}}^{*} f$ in $M_{1}\left(\Gamma_{0}(2)\right)$. For $k=6$ this means $\phi_{D_{4}}^{*} f=0$ and so every coefficient in equation 1.3 gives a homogeneous linear relation; in particular we must have $a\left(B_{0}\right)=0$ (or $a\left(D_{4} / 2\right)=0$) and hence by Theorem 1.1 we have $S_{4}^{6}=0$. For $k=8$ there is a parameter $c \in \mathbb{C}$ such that

$$
\phi_{D_{4}}^{*} f=c\left(C_{8,2}^{+}\right)^{4}=c\left(q^{4}-32 q^{5}+432 q^{6}-2944 q^{7}+7192 q^{8}+39744 q^{9}-\ldots\right)
$$

Elimination of the parameter c provides the following 3 linear relations for any $f \in S_{4}^{8}$.

$$
\begin{gather*}
a\left(B_{0}\right)+a\left(B_{1}\right)=0 \\
-24 a\left(B_{0}\right)+24 a\left(B_{1}\right)+18 a\left(B_{2}\right)+4 a\left(B_{3}\right)+a\left(B_{4}\right)=0 \\
208 a\left(B_{0}\right)+93 a\left(B_{1}\right)+54 a\left(B_{2}\right)+18 a\left(B_{3}\right)+9 a\left(B_{4}\right)+27 a\left(B_{5}\right) \tag{1.4}\\
+15 a\left(B_{6}\right)+18 a\left(B_{7}\right)+3 a\left(B_{8}\right)+a\left(B_{9}\right)=0
\end{gather*}
$$

As mentioned, the first relation alone, $a\left(D_{4} / 2\right)+a\left(A_{4} / 2\right)=0$ (note $B_{1}=A_{4} / 2$), implies that $\operatorname{dim} S_{4}^{8} \leqslant 1$.

For $k=10$ there are parameters $\alpha, \beta \in \mathbb{C}$ such that $\phi_{D_{4}}^{*} f=\left(C_{8,2}^{+}\right)^{4}\left(\alpha\left(E_{2,2}^{-}\right)^{4}+\right.$ $\beta C_{8,2}^{+}$). The element $\left(E_{2,2}^{-}\right)^{2} E_{4,2}^{-}$cannot occur in this representation because it has eigenvalue -1 under the Fricke operator. Elimination of the parameters α and β provides two linear relations:

$$
\begin{align*}
& 224 a\left(B_{0}\right)=184 a\left(B_{1}\right)+18 a\left(B_{2}\right)+4 a\left(B_{3}\right)+a\left(B_{4}\right) ; \\
& 21376 a\left(B_{1}\right)=-16110 a\left(B_{2}\right)-3916 a\left(B_{3}\right)- 1231 a\left(B_{4}\right)-1512 a\left(B_{5}\right)-840 a\left(B_{6}\right) \\
&5) \quad-1008 a\left(B_{7}\right)-168 a\left(B_{8}\right)-56 a\left(B_{9}\right) . \tag{1.5}
\end{align*}
$$

In conjunction with Theorem 1.1 these two relations imply $\operatorname{dim} S_{4}^{10} \leqslant 8$ but it will require another homomorphism $\phi_{H}^{*}: S_{4}^{10} \rightarrow S_{1}^{40}\left(\Gamma_{0}(6)\right)$ and a more extensive computation to prove that $\operatorname{dim} S_{4}^{10} \leqslant 1$.

2. Propositions

We let $\Gamma_{n}=\operatorname{Sp}_{n}(\mathbb{Z})$. We write elements of $\operatorname{Sp}_{n}(\mathbb{R})$ as $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$. The group $\operatorname{Sp}_{n}(\mathbb{R})$ acts on functions from the right via $\left(\left.f\right|_{k}\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)\right)(\Omega)=\operatorname{det}(C \Omega+D)^{-k} f$ $\left((A \Omega+B)(C \Omega+D)^{-1}\right)$.

Proposition 2.1. Let $n, \ell \in \mathbb{Z}^{+}$. Let s, $\ell s^{-1} \in \mathcal{P}_{n}(\mathbb{Z})$. The map ϕ_{s}^{*} : $M_{n}^{k} \rightarrow M_{1}^{n k}\left(\Gamma_{0}(\ell)\right)$ is a graded ring homomorphism.

Proof: For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{Sp}_{1}(\mathbb{R})$ we have

$$
\begin{aligned}
\left(\left.\phi_{s}^{*} f\right|_{n k}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)(\tau) & =(c \tau+d)^{-n k} f\left(\frac{a \tau+b}{c \tau+d} s\right) \\
& =(c \tau+d)^{-n k} f\left((a \tau s+b s)\left(c s^{-1} \tau s+d I\right)^{-1}\right) \\
& =(c \tau+d)^{-n k} f\left(\left(\begin{array}{cc}
a I & b s \\
c s^{-1} & d I
\end{array}\right) \cdot \tau s\right) \\
& =(c \tau+d)^{-n k} \operatorname{det}\left(c s^{-1} \tau s+d I\right)^{k}\left(\left.f\right|_{k}\left(\begin{array}{cc}
a I & b s \\
c s^{-1} & d I
\end{array}\right)\right)(\tau s) \\
& =\left(f \left\lvert\,\left(\begin{array}{cc}
a I & b s \\
c s^{-1} & d I
\end{array}\right)\right.\right)(\tau s) .
\end{aligned}
$$

If we now assume that $\sigma \in \Gamma_{0}(\ell)$ then $c s^{-1}$ is integral and so $\left(\begin{array}{cc}a I & b s \\ c s^{-1} & d I\end{array}\right) \in \operatorname{Sp}_{n}(\mathbb{Z})$. Therefore we have $\left(f \left\lvert\,\left(\begin{array}{cc}a I & b s \\ c s^{-1} & d I\end{array}\right)\right.\right)(\tau s)=f(\tau s)=\phi_{s}^{*} f(\tau)$. It is straightforward to see that $\phi_{s}^{*} f$ is holomorphic on \mathcal{H}_{1} and that it is bounded on domains of type $\left\{\tau \in \mathcal{H}_{1}: \operatorname{Im} \tau>y_{0}\right\}$. Thus we have $\phi_{s}^{*}: M_{n}^{k} \rightarrow M_{1}^{n k}\left(\Gamma_{0}(\ell)\right)$.

For $\ell \in \mathbb{Z}^{+}$let $W_{\ell}=\left(\begin{array}{cc}0 & -1 \\ \ell & 0\end{array}\right) / \sqrt{\ell}$ denote the Fricke involution.
Proposition 2.2. Let $n, \ell \in \mathbb{Z}^{+}$. Let $s, \ell s^{-1} \in \mathcal{P}_{n}(\mathbb{Z})$. Let $f \in M_{n}^{k}$. Assume that s is $\mathrm{GL}_{n}(\mathbb{Z})$-equivalent to ℓs^{-1}. Then $\phi_{s}^{*} f \in M_{1}^{n k}\left(\Gamma_{0}(\ell)\right)$ is an eigenfunction of the Fricke operator W_{ℓ}. The eigenvalue is +1 unless s is improperly equivalent to ℓs^{-1} and k is odd in which case $\phi_{s}^{*} f$ has eigenvalue -1 under W_{ℓ}.

Proof: When s is equivalent to ℓs^{-1} we have $U s U^{\prime}=\ell s^{-1}$ for some $U \in$ $\mathrm{GL}_{n}(\mathbb{Z})$. We shall show that $\left(\phi_{s}^{*} f\right) \mid W_{\ell}=\operatorname{det}(U)^{k} \phi_{s}^{*} f$. The factor $\operatorname{det}(U)^{k}$ is one
except in the case noted. We first check that $\phi_{s} \circ W_{\ell}=\left(\begin{array}{cc}0 & U^{*} \\ -U & 0\end{array}\right) \circ \phi_{s}$. For every $\tau \in \mathcal{H}_{1}$ we have

$$
\begin{aligned}
\left(\phi_{s} \circ W_{\ell}\right)(\tau) & =\phi_{s}\left(-\frac{1}{\ell \tau}\right)=-\frac{1}{\ell} s \tau^{-1}=-U^{*} s^{-1} U^{-1} \tau^{-1}=U^{*}(-U s \tau)^{-1} \\
& =\left(\begin{array}{cc}
0 & U^{*} \\
-U & 0
\end{array}\right)(s \tau)=\left(\left(\begin{array}{cc}
0 & U^{*} \\
-U & 0
\end{array}\right) \circ \phi_{s}\right)(\tau)
\end{aligned}
$$

Noting that $\left(\begin{array}{cc}0 & U^{*} \\ -U & 0\end{array}\right) \in \Gamma_{n}$ we compute

$$
\begin{aligned}
{\left[\left(\phi_{s}^{*} f\right) \mid W_{\ell k}\right](\tau) } & =(\sqrt{\ell} \tau)^{-n k}\left(\phi_{s}^{*} f\right)\left(W_{\ell}(\tau)\right) \\
& =(\sqrt{\ell} \tau)^{-n k}\left(f \circ \phi_{s} \circ W_{\ell}\right)(\tau) \\
& =(\sqrt{\ell} \tau)^{-n k}\left(f \circ\left(\begin{array}{cc}
0 & U^{*} \\
-U & 0
\end{array}\right) \circ \phi_{s}\right)(\tau) \\
& =(\sqrt{\ell} \tau)^{-n k} \operatorname{det}(-U s \tau)^{k} f\left(\phi_{s}(\tau)\right) \\
& =(-\sqrt{\ell})^{-n k} \operatorname{det}(U)^{k} \operatorname{det}(s)^{k}\left(\phi_{s}^{*} f\right)(\tau) \\
& =\operatorname{det}(U)^{k}\left(\phi_{s}^{*} f\right)(\tau)
\end{aligned}
$$

In the last line above we have used the fact that $\operatorname{det}(s)^{2}=\ell^{n}$ and that when $n k$ is odd we must have f identically zero.

The next Proposition shows how to develop the Fourier expansion of $\phi_{s}^{*} f$ at any cusp.

Proposition 2.3. Let $n \in \mathbb{Z}^{+}$. Let $s \in \mathcal{P}_{n}(\mathbb{Q})$. Let $f \in S_{n}^{k}$ have the Fourier expansion $f(\Omega)=\sum_{t} a(t) e(\langle\Omega, t\rangle)$. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{1}$. There exist $\mathcal{A}, \mathcal{B} \in \mathbb{Q}^{n \times n}$ such that $\left(\begin{array}{cc}a I & b s \\ c s^{-1} & d I\end{array}\right) \in \Gamma_{n}\left(\begin{array}{cc}\mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^{*}\end{array}\right)$ and for any such \mathcal{A}, \mathcal{B} we have

$$
\begin{aligned}
\left(\left.\phi_{s}^{*} f\right|_{n k}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)(\tau) & =(\operatorname{det} \mathcal{A})^{k} f\left(\tau \mathcal{A} s \mathcal{A}^{\prime}+\mathcal{B} \mathcal{A}^{\prime}\right) \\
& =(\operatorname{det} \mathcal{A})^{k} \sum_{j \in \mathbb{Q}^{+}}\left(\sum_{t:\left\langle\mathcal{A} s \mathcal{A}^{\prime}, t\right\rangle=j} a(t) e\left(\left\langle t, \mathcal{B} \mathcal{A}^{\prime}\right\rangle\right)\right) q^{j}
\end{aligned}
$$

Proof: We now wish to study $\left(\phi_{s}^{*} f \left\lvert\,\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right.\right)$ for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{Sp}_{1}(\mathbb{Z})$. Then as in the proof of Proposition 2.1 we have

$$
\left.\left(\phi_{s}^{*} f \left\lvert\, \begin{array}{ll}
a & b \\
c & d
\end{array}\right.\right)\right)(\tau)=\left(\left.f\right|_{k}\left(\begin{array}{cc}
a I & b s \\
c s^{-1} & d I
\end{array}\right)\right)(\tau s)
$$

Now, we can always decompose any matrix in $\mathrm{Sp}_{n}(\mathbb{Q})$ as something in $\mathrm{Sp}_{\boldsymbol{n}}(\mathbb{Z})$ times something in $\operatorname{Sp}_{n}(\mathbb{Q})$ with $C=0\left[8\right.$, p. 125]. So let $\left(\begin{array}{cc}a I & b s \\ c s^{-1} & d I\end{array}\right) \in \Gamma_{n}\left(\begin{array}{cc}\mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^{*}\end{array}\right)$. Since f is automorphic with respect to Γ_{n} we have

$$
\begin{aligned}
\left(\left.\phi_{s}^{*} f\right|_{n k}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)(\tau) & =\left(\left.f\right|_{k}\left(\begin{array}{cc}
a I & b s \\
c s^{-1} & d I
\end{array}\right)\right)(\tau s) \\
& =\left(\left.f\right|_{k}\left(\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
0 & \mathcal{A}^{*}
\end{array}\right)\right)(\tau s) \\
& =(\operatorname{det} \mathcal{A})^{k} f\left(\tau \mathcal{A} s \mathcal{A}^{\prime}+\mathcal{B} \mathcal{A}^{\prime}\right)
\end{aligned}
$$

The Fourier expansion for $\left(\phi_{s}^{*} f \left\lvert\,\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right.\right)(\tau)$ follows from the Fourier expansion for f under the substitution $\Omega=\tau \mathcal{A} s \mathcal{A}^{\prime}+\mathcal{B} \mathcal{A}^{\prime}$.

The above Proposition provides for the computation of the Fourier expansion of $\phi_{s}^{*} f \mid \sigma$ in general. When ℓ is squarefree however the computation of the character $e\left(\left\langle t, \mathcal{B \mathcal { A } ^ { \prime }}\right\rangle\right)$ may be finessed. We introduce a new notation: Notice that \mathcal{A} in Proposition 2.3 is determined up to $u \mathcal{A}$ with $u \in \mathrm{GL}_{n}(\mathbb{Z})$. Thus $\mathcal{A} s \mathcal{A}^{\prime}$ is determined up to equivalence class. We define

$$
s \square\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\mathcal{A} s \mathcal{A}^{\prime}
$$

with the understanding that this is well-defined only up to equivalence class. Since f is automorphic with respect to $\left(\begin{array}{cc}u & 0 \\ 0 & u^{*}\end{array}\right)$, we have $f\left(u s u^{\prime} \tau\right)=f(s \tau)$ and it makes sense to talk about $f\left(\left(s \square\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right) \tau\right)$ and $\phi_{s \square\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)} f$.

Proposition 2.4. Let $s \in \mathcal{P}_{n}(\mathbb{Z})$. Let $\ell \in \mathbb{Z}^{+}$such that ℓs^{-1} is integral and primitive. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{1}$. Suppose $\operatorname{gcd}(c,(\ell / c))=1$. Let $\widehat{c} \in \mathbb{Z}$ such that $\widehat{c} c \equiv 1$ $\bmod \ell / c$. For any \mathcal{A} with $\left(\begin{array}{cc}a I & b s \\ c s^{-1} & d I\end{array}\right) \in \Gamma_{n}\left(\begin{array}{cc}\mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^{*}\end{array}\right)$ we have

$$
\left(\phi_{s}^{*} f \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right.\right)(\tau)=(\operatorname{det} \mathcal{A})^{k} \phi_{s \square\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)} f(\tau+d \widehat{c}) .
$$

Proof: We have $\left(\begin{array}{cc}\mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^{*}\end{array}\right)\left(\begin{array}{cc}a I & b s \\ c s^{-1} & d I\end{array}\right)^{-1} \in \operatorname{Sp}_{n}(\mathbb{Z})$. Thus we have

$$
\left(\begin{array}{cc}
\mathcal{A} & \mathcal{B} \tag{2.5}\\
0 & \mathcal{A}^{*}
\end{array}\right)\left(\begin{array}{cc}
d I & -b s \\
-c s^{-1} & a I
\end{array}\right)=\left(\begin{array}{cc}
d \mathcal{A}-c \mathcal{B} s^{-1} & -b \mathcal{A} s+a \mathcal{B} \\
-c \mathcal{A}^{*} s^{-1} & a \mathcal{A}^{*}
\end{array}\right) \in \operatorname{Sp}_{n}(\mathbb{Z})
$$

Note that each of the four blocks must be in $\mathbb{Z}^{n \times n}$. Multiplying $d \mathcal{A}-c B s^{-1}$ by the integral s implies $d \mathcal{A} s-c \mathcal{B}$ is integral. Both $\mathcal{A} s$ and \mathcal{B} are integral because we have

$$
\begin{aligned}
\mathcal{A} s & =a(d \mathcal{A} s-c \mathcal{B})+c(-b \mathcal{A} s+a \mathcal{B}) \\
\mathcal{B} & =b(d \mathcal{A} s-c \mathcal{B})+d(-b \mathcal{A} s+a \mathcal{B})
\end{aligned}
$$

Since $c \mathcal{B} s^{-1}=(c / \ell) \mathcal{B} \ell s^{-1}$ and $\ell s^{-1} \in \mathbb{Z}^{n \times n}$, we have $c \mathcal{B} s^{-1} \in(c / \ell) \mathbb{Z}^{n \times n}$. This combined with $d \mathcal{A}-c \mathcal{B} s^{-1} \in \mathbb{Z}^{n \times n}$ implies $d \mathcal{A} \in(c / \ell) \mathbb{Z}^{n \times n}$. Also we have $\mathcal{A}=$ $(1 / \ell)(\mathcal{A} s) \ell s^{-1} \in(1 / \ell) \mathbb{Z}^{n \times n}$ and consequently $\mathcal{A}=a(d \mathcal{A})-b(c \mathcal{A}) \in(c / \ell) \mathbb{Z}^{n \times n}$. Since $\mathcal{A} s$ is integral, its transpose $s \mathcal{A}^{\prime}$ is also integral. Then multiplying $d \mathcal{A}-c \mathcal{B} s^{-1}$ by the integral $\widehat{c} s A^{\prime}$ implies that $d \widehat{c} \mathcal{A} s \mathcal{A}^{\prime}$ and $\widehat{c} c \mathcal{B} \mathcal{A}^{\prime}$ differ by an integer matrix. But $\widehat{c} c \equiv 1$ $\bmod (\ell / c)$ and $\mathcal{B \mathcal { A } ^ { \prime }} \in(c / \ell) \mathbb{Z}^{n \times n}$ imply that $\widehat{c} c \mathcal{B} \mathcal{A}^{\prime}$ and $\mathcal{B} \mathcal{A}^{\prime}$ differ by an integer matrix. Hence $d \hat{c} \mathcal{A} s \mathcal{A}^{\prime}$ and $\mathcal{B} \mathcal{A}^{\prime}$ differ by an integer matrix. Finally, from Proposition 2.3 we have

$$
\begin{aligned}
(\operatorname{det} \mathcal{A})^{-k}\left(\phi_{s}^{*} f \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right.\right)(\tau) & =f\left(\tau \mathcal{A} s \mathcal{A}^{\prime}+\mathcal{B} \mathcal{A}^{\prime}\right) \\
& =f\left(\tau \mathcal{A} s \mathcal{A}^{\prime}+d \widehat{c} \mathcal{A} s \mathcal{A}^{\prime}\right) \\
& =f\left(\mathcal{A} s \mathcal{A}^{\prime}(\tau+d \widehat{c})\right) \\
& =\phi_{s \square\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)}^{*} f(\tau+d \widehat{c})
\end{aligned}
$$

3. The space S_{4}^{10}

We shall apply the technique of the Introduction to S_{4}^{10}. Theorem 1.1 says a form in S_{4}^{10} is determined by its coefficients $a(t)$ with $w(t) \leqslant 3.5$. Table 3 gives the list of these 10 quadratic forms, see $[10,13]$. For uniformity of notation we shall refer to these as B_{0}, \ldots, B_{9}. Here the number under ℓ for B_{i} is the smallest positive integer such that $\ell\left(2 B_{i}\right)^{-1}$ is integral.

We shall apply the technique to $H=2 B_{4}$ for which $6 H^{-1}$ is integral. By Proposition 1.1 we have $\operatorname{Im} \phi_{H}^{*} f \subset M_{1}\left(\Gamma_{0}(6)\right)$ and our calculations will occur inside this ring. The ring $M_{1}\left(\Gamma_{0}(6)\right)$ is generated by three forms A, B, C of weight 2 . There is one relation $C^{2}=9 B^{2}-8 A^{2}$. The ring of cusp forms is principally generated by a form of weight $4, D=\left(A^{2}-B^{2}\right) / 4$. There are 4 cusps in $\Gamma_{0}(6) \backslash \Gamma_{1} / \Delta_{1}$, represented by I, $\sigma_{2}=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right), \sigma_{3} \doteq\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right)$ and J with respective widths $1,3,2$ and 6 . We now give the Fourier expansions of the generators at all four cusps. The definition of $E_{2,2}^{-}$ has already been given, similarly define

$$
E_{2,3}^{-}(\tau)=1+12 \sum_{n=1}^{\infty}\left(\sigma_{1}(n)-3 \sigma_{1}(n / 3)\right) q^{n}=1+12\left(q+3 q^{2}+q^{3}+7 q^{4}+6 q^{5}+\cdots\right)
$$

Define the following elements in $M_{1}\left(\Gamma_{0}(6)\right)$:

$$
\begin{aligned}
& A(\tau)=(3 / 4) E_{2,2}^{-}(3 \tau)+(1 / 4) E_{2,2}^{-}(\tau)=1+6 q+6 q^{2}+42 q^{3}+\cdots \\
& B(\tau)=(2 / 3) E_{2,3}^{-}(2 \tau)+(1 / 3) E_{2,3}^{-}(\tau)=1+4 q+20 q^{2}+4 q^{3}+\cdots \\
& C(\tau)=(3 / 2) E_{2,2}^{-}(3 \tau)-(1 / 2) E_{2,2}^{-}(\tau)=1-12 q-12 q^{2}-12 q^{3}+\cdots
\end{aligned}
$$

Table 3. Semi-integral quaternary forms with dyadic trace $\leqslant 3.5$.

Name	Form	Dyadic trace	16. Determinant	ℓ
B_{0}	$\frac{1}{2}\left(\begin{array}{llll}2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$	2	4	2
B_{1}	$\frac{1}{2}\left(\begin{array}{cccc}2 & 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 2\end{array}\right)$	2.5	5	5
B_{2}	$\frac{1}{2}\left(\begin{array}{llll}2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 0 & 0\end{array}\right)$	3	8	4
B_{3}	$\frac{1}{2}\left(\begin{array}{llll}2 & 1 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2\end{array}\right)$	3	9	3
B_{4}	$\frac{1}{2}\left(\begin{array}{llll}2 & 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	3	12	6
B_{5}	$\frac{1}{2}\left(\begin{array}{lllll}2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$	3.5	12	6
B_{6}	$\frac{1}{2}\left(\begin{array}{llll}2 & 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0\end{array}\right.$	3.5	13	13
B_{7}	$\frac{1}{2}\left(\begin{array}{cccc}2 & 1 & 0 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 4\end{array}\right)$	3.5	17	17
B_{8}	$\frac{1}{2}\left(\begin{array}{lllll}2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 1 & 1 & 1 & 4\end{array}\right)$	3.5	20	10
B_{9}	$\frac{1}{2}\left(\begin{array}{llll}2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 4 & 2 \\ 1 & 1 & 2 & 4\end{array}\right)$	3.5	25	5

The elliptic modular forms A, B, C transform nicely as

$$
\begin{aligned}
& (A \mid J)(\tau)=-\frac{1}{6} A(\tau / 6), \quad\left(A \mid \sigma_{2}\right)(\tau)=+\frac{1}{3} A((\tau-1) / 3), \\
& \left(A \mid \sigma_{3}\right)(\tau)=-\frac{1}{2} A((\tau-1) / 2) \\
& (B \mid J)(\tau)=-\frac{1}{6} B(\tau / 6), \\
& \left(B \mid \sigma_{2}\right)(\tau)=-\frac{1}{3} B((\tau-1) / 3) \\
& \left(B \mid \sigma_{3}\right)(\tau)=+\frac{1}{2} B((\tau-1) / 2) \\
& (C \mid J)(\tau)=+\frac{1}{6} C(\tau / 6), \\
& \left(C \mid \sigma_{2}\right)(\tau)=-\frac{1}{3} C((\tau-1) / 3) \\
& \left(C \mid \sigma_{3}\right)(\tau)=-\frac{1}{2} C((\tau-1) / 2)
\end{aligned}
$$

We use Propostions 2.3 and 2.4 to work out the Fourier expansion of $\phi_{H}^{*} f \mid \sigma$ for $\sigma=I$, $\sigma_{2}, \sigma_{3}, J$. We implement the algorithms from [8, pp. 125, 322-328] to produce a factorisation $\left(\begin{array}{cc}a I & b H \\ c H^{-1} & d I\end{array}\right) \in \Gamma_{n}\left(\begin{array}{cc}\mathcal{A} & \mathcal{B} \\ 0 & \mathcal{A}^{*}\end{array}\right)$ and $\operatorname{obtain} \operatorname{det}(\mathcal{A})$ and $H \square \sigma=\mathcal{A} H \mathcal{A}^{\prime}$. We display $H \square \sigma_{2}, H \square \sigma_{3}, H \square J$ and mention that the associated $|\operatorname{det}(\mathcal{A})|$ equals 3 , 4,12 , respectively:

$$
\begin{aligned}
H \square \sigma_{2} & =\frac{1}{3}\left(\begin{array}{cccc}
4 & 2 & 1 & -1 \\
2 & 4 & -1 & 1 \\
1 & -1 & 4 & -1 \\
-1 & 1 & -1 & 4
\end{array}\right) \\
H \square \sigma_{3} & =\frac{1}{2}\left(\begin{array}{cccc}
2 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
0 & 0 & 2 & 1 \\
1 & 1 & 1 & 3
\end{array}\right) \\
H \square J & =\frac{1}{6}\left(\begin{array}{cccc}
2 & 1 & 1 & 1 \\
1 & 5 & -1 & 2 \\
1 & -1 & 5 & 2 \\
1 & 2 & 2 & 5
\end{array}\right)
\end{aligned}
$$

Note that all three of the cases $\sigma_{2}, \sigma_{3}, J$ satisfy the hypotheses of Proposition 2.4. Note that for $c=2$, we can take $\widehat{c}=-1$ so that $c \widehat{c}=1 \bmod 3$; for $c=3$, we can take $\hat{c}=-1$ so that $c \hat{c}=1 \bmod 2$. Thus we have

$$
\begin{align*}
\left(\phi_{H}^{*} f \mid I\right)(\tau) & =\phi_{H}^{*} f(\tau), \\
\left(\phi_{H}^{*} f \mid \sigma_{2}\right)(\tau) & =3^{-10} \phi_{H \square \sigma_{2}}^{*} f(\tau-1), \\
\left(\phi_{H}^{*} f \mid \sigma_{3}\right)(\tau) & =4^{-10} \phi_{H \square \sigma_{3}}^{*} f(\tau-1), \\
\left(\phi_{H}^{*} f \mid J\right)(\tau) & =12^{-10} \phi_{H \square J}^{*} f(\tau) . \tag{3.1}
\end{align*}
$$

Hence the Fourier expansions may be computed from the numbers $\mathcal{V}(j, H \square \sigma, t)$ given in Tables $4,5,6$ and 7. Among the computations we perform, the computation of these representation numbers is by far the most expensive.

Table 4. $\mathcal{V}(j, H, t)$

j	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B_{9}
6	1									
7	12	36								
8	96	168	114	24	6					
9	196	760	384	108	60	168	108	96	12	4

Table 5. $\mathcal{V}\left(j, H \square \sigma_{2}, t\right)$

j	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B_{9}
$10 / 3$	1									
$11 / 3$	4	12								
$12 / 3$	24	24	6							
$13 / 3$	12	96	24	12						
$14 / 3$	78	192	120	24	6	12				1
$15 / 3$	144	312	192	24	28	84	48	36		

Table 6. $\mathcal{V}\left(j, H \square \sigma_{3}, t\right)$

j	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B_{9}
$6 / 2$	5	4								
$7 / 2$	24	72	12							
$8 / 2$	120	264	138	48	15	12	12			

Table 7. $\mathcal{V}(j, H \square J, t)$

j	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B_{9}
$10 / 6$	1									
$11 / 6$		8								
$12 / 6$	24	12	6		1					
$13 / 6$	24	96	12				8			

From these expansions we see that $\phi_{H}^{*} f$ vanishes to order at least 6 at every cusp so that there are pararmeters $\alpha_{0}, \ldots, \alpha_{8}$ and $\beta_{0}, \ldots, \beta_{7} \in \mathbb{C}$ such that

$$
\phi_{H}^{*} f=(D)^{6}\left(\alpha_{0} A^{8}+\alpha_{1} A^{7} B+\cdots+\alpha_{8} B^{8}+C\left(\beta_{0} A^{7}+\beta_{1} A^{6} B+\cdots+\beta_{7} B^{7}\right)\right) .
$$

Without introducing any new parameters we also have equalities for any $\sigma \in \Gamma_{1}$:

$$
\begin{align*}
\phi_{H}^{*} f \mid \sigma=(D \mid \sigma)^{6}\left(\alpha_{0}(A \mid \sigma)^{8}+\ldots\right. & +\alpha_{8}(B \mid \sigma)^{8} \tag{3.2}\\
& \left.+(C \mid \sigma)\left(\beta_{0}(A \mid \sigma)^{7}+\ldots+\beta_{7}(B \mid \sigma)^{7}\right)\right)
\end{align*}
$$

For $\sigma=I, \sigma_{2}, \sigma_{3}, J$ the left side of equation 3.2 is computed from equation 3.1, equation 1.2 and Tables 4 through 7 . The right side is computed from the expansions of the elliptic modular forms A, B and C. At the cusp [I] we equate the coefficents for
$j=6, \ldots, 9$; at the cusp $\left[\sigma_{2}\right]$ for $j=6 / 3, \ldots, 15 / 3$; at the cusp $\left[\sigma_{3}\right]$ for $j=6 / 2, \ldots, 8 / 2$ and at the cusp $[J]$ for $j=6 / 6, \ldots, 13 / 6$. Elimination of the 17 parameters α_{i}, β_{i} from the $4+10+3+8=25$ linear equations results in 8 linearly independent equations:

$$
\begin{aligned}
& a\left(B_{2}\right)=-86 / 21 a\left(B_{0}\right)-188 / 21 a\left(B_{1}\right) \\
& a\left(B_{3}\right)=100 / 3 a\left(B_{0}\right)+58 / 3 a\left(B_{1}\right) \\
& a\left(B_{4}\right)=-300 / 7 a\left(B_{0}\right)+24 / 7 a\left(B_{1}\right) \\
& a\left(B_{5}\right)=-1892 / 21 a\left(B_{0}\right)+568 / 21 a\left(B_{1}\right) \\
& a\left(B_{6}\right)=288 / 7 a\left(B_{0}\right)-53 / 7 a\left(B_{1}\right) \\
& a\left(B_{7}\right)=2860 / 63 a\left(B_{0}\right)-8738 / 63 a\left(B_{1}\right) \\
& a\left(B_{8}\right)=656 / 7 a\left(B_{0}\right)+3872 / 7 a\left(B_{1}\right) \\
& a\left(B_{9}\right)=21016 / 21 a\left(B_{0}\right)+15532 / 21 a\left(B_{1}\right) .
\end{aligned}
$$

When we combine these 8 linear relations with the 2 linear relations in equation 1.5 obtained by considering $\phi_{D_{4}}^{*}$, we see that the rank is actually 9 , so that we have a total of 9 linearly independent relations in $a\left(B_{0}\right), \ldots, a\left(B_{9}\right)$:

$$
\begin{align*}
& a\left(B_{1}\right)=2 a\left(B_{0}\right) \\
& a\left(B_{2}\right)=-22 a\left(B_{0}\right) \\
& a\left(B_{3}\right)=72 a\left(B_{0}\right) \\
& a\left(B_{4}\right)=-36 a\left(B_{0}\right) \\
& a\left(B_{5}\right)=-36 a\left(B_{0}\right) \\
& a\left(B_{6}\right)=26 a\left(B_{0}\right) \\
& a\left(B_{7}\right)=-232 a\left(B_{0}\right) \\
& a\left(B_{8}\right)=1200 a\left(B_{0}\right) \\
& a\left(B_{9}\right)=2480 a\left(B_{0}\right) . \tag{3.3}
\end{align*}
$$

These relations and Theorem 1.1 imply that $\operatorname{dim} S_{4}^{10} \leqslant 1$. Since we can come up with one nonzero cusp form G_{10} in S_{4}^{10} we have a theorem.

Theorem 3.4. We have $\operatorname{dim} S_{4}^{10}=1$ and $S_{4}^{10}=\mathbb{C} G_{10}$.

4. Final Comments

The computations that have been performed for the form H are largely independent of the weight k. Applied to the space S_{4}^{8} we may extend the Fourier expansion of the Schottky form J beyond that given in [1]. Table 8 gives the Fourier coefficients $a\left(B_{i}\right)$ for $J / 2^{16}$ and $G_{10} / 2^{18} 3^{4} 5$.

Table 8. (Fourier Coefficients)

f	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B_{9}
$J / 2^{16}$	1	-1	2	6	-12	-12	11	2	-72	116
$G_{10} / 2^{18} 3^{4} 5$	1	2	-22	72	-36	-36	26	-232	1200	2480

Although the parameters α_{i} and β_{i} were simply eliminated in Section 3, their values are also determined by this process. It may be of interest to present the images of $\phi_{s}^{*} f$ for $s=D_{4}, H$ and $f=J, G_{10}$.

$$
\begin{aligned}
\phi_{D_{4}}^{*} J & =2^{16}\left(C_{8,2}^{+}\right)^{4} \\
\phi_{D_{4}}^{*} G_{10} & =2^{18} 3^{4} 5\left(C_{8,2}^{+}\right)^{4}\left(\left(E_{2,2}^{-}\right)^{4}+48 C_{8,2}^{+}\right) \\
\phi_{H}^{*} J & =2^{12} D^{6}(A+C)^{4} \\
\phi_{H}^{*} G_{10} & =2^{14} 3^{3} 5 D^{6}(A+C)^{4}\left(25 A^{4}-8 A^{3} B-7 A^{3} C-8 A^{2} B C-A B C^{2}+4 A C^{3}-B C^{3}-C^{4}\right)
\end{aligned}
$$

It is interesting to note that the image of G_{10} comes out to a multiple of the image of J under both $\phi_{D_{4}}^{*}$ and ϕ_{H}^{*}. As a final comment we note that linear relations among Fourier coefficients can be viewed as linear relations among Poincare series.

References

[1] B. Brinkman and L. Gerritzen, 'The lowest term of the Schottky modular form', Math. Annalen 292 (1992), 329-335.
[2] U. Christian, Selberg's Zeta-, L-, and Eisenstein series, Lecture Notes in Math. 1030 (Springer-Verlag, Berlin, Heidelberg, New York, 1983).
[3] W. Duke and Ö. Imamoğlu, 'Siegel modular forms of small weight', Math. Ann. 308 (1997), 525-534.
[4] M. Eichler, 'Über die Anzahl der linear unabhängigen Siegelschen Modulformen von gegebenem Gewicht', Math. Ann. 213 (1975), 281-291.
[5] M. Eichler, 'Erratum: Über die Anzahl der linear unabhängigen Siegelschen Modulformen von gegebenem Gewicht', Math. Ann. 215 (1975), 195.
[6] V.A. Erokhin, 'Theta series of even unimodular 24-dimensional lattices', Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 86 (1979), 82-93.
[7] V.A. Erokhin, 'Theta series of even unimodular lattices', Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 112 (1981), 59-70.
[8] E. Freitag, Siegelsche Modulfunktionen, Grundlehren der mathematische Wissenschaften 254 (Springer Verlag, Berlin, 1983).
[9] J.I. Igusa, 'Schottky's invariant and quadratic forms', in Christoffel Symposium (Birkhäuser Verlag, Basel, Boston, MA, 1981), pp. 352-362.
[10] G. Nipp, Quaternary quadratic forms, computer generated tables (Springer-Verlag, New York, 1991).
[11] C. Poor and D. Yuen, 'Dimensions of spaces of Siegel modular forms of low weight in degree four', Bull. Austral. Math. Soc. 54 (1996), 309-315.
[12] C. Poor and D. Yuen, 'Dimensions of spaces of Siegel cusp forms and theta series with pluri-harmonics', Far East J. Math. Sci. (FJMS) 1 (1999), 849-863.
[13] C. Poor and D. Yuen, 'Linear dependence among Siegel Modular Forms', Math. Ann. 318 (2000), 205-234.
[14] R. Salvati Manni, 'Modular forms of the fourth degree (Remark on a paper of Harris and Morrison)', in Classification of irregular varieties, (Ballico, Catanese, Ciliberto, Editors), Lecture Notes in Math. 1515 (Springer, Berlin, 1992), pp. 106-111.

Department of Mathematics
Fordham University
Bronx, NY 10458
e-mail: poor@fordham.edu

Math/CS Department
Lake Forest College
555 N. Sheridan Rd.
Lake Forest, IL 60045
e-mail: yuen@lfc.edu

[^0]: Received 13th August, 2001
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.

