THIRTY YEARS OF MASS BALANCE AND CLIMATE

RECORDS ON HINTEREISFERNER:

A BASIS FOR MODELLING

(Abstract)

by

M. Kuhn (Institut für Meteorologie und Geophysik, Universität Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Austria)

The effect of the present-day climate on a typical Alpine valley glacier is demonstrated on the 30-a record of mass balance of Hintereisferner. The balances of 1952-53 to 1981-82 were determined by the direct glaciological method, occasionally checked by geodetic volume comparison. The series includes three negative and two positive extremes, the first 15 a being predominantly negative. Specific balances for 100 m altitude zones have been established for all years except two. These records are supplemented by climatic data from a nearby valley station, and, since 1969, by temperature records taken at the equilibrium line and at the glacier front. Based on these and other records, a model is developed that describes the altitudinal and temporal development of mass and energy balance using temperature and precipitation. The performance of this model is tested for various climates.

SENSITIVITY OF AN ICE-SHEET MODEL TO

ATMOSPHERIC VARIABLES

(Abstract)

by

Tamara Shapiro Ledley*

(Department of Meteorology and Physical Oceanography, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.)

Recent studies of long-term climate variations which have employed zonally-averaged ice-sheet models and an equilibrium-line net-budget parameterization (Oerlemans and Bienfait 1981, Pollard 1982) have been able to reproduce many of the complete deglaciations and reinitiations of the northern-hemisphere ice sheets found in the geologic record. However, when the equilibrium-line net-budget parameterization is replaced with an energy-balance equation designed to compute the temperature and ablation at the ice surface, the reinitiation of a zonally-averaged ice sheet is much more difficult than previously indicated.

In order to investigate what magnitude changes in air temperature and surface albedo are necessary to initiate ice-sheet growth, an energy-balance netbudget parameterization, in which these terms are varied, is applied to a zonally-averaged ice sheet that is initiated with either ice-free conditions (low summer surface albedo of 0.16) or with a 10 m-thick ice field (high-surface albedo ranging from 0.7 to 0.8). The energy-balance net-budget parameterization is made up of two parts: the accumulation rate and the ablation rate. The accumulation rate is parameterized as follows:

$$S_n = P_r * r_a * F_y * e_s/e_{s_i}$$

where P_r is the present precipitation rate, r_a is the ratio of the density of water to ice, F_y is the fraction of precipitation that falls as snow, and e_s/e_{si} is the ratio of the saturation vapor pressure at the surface air temperature to that at the present surface air temperature. The ablation rate is derived from a surface-energy balance equation of the form:

$$F_{P} + F_{S} + (1-a) F_{SW} + F_{1W} + F_{1r} = 0$$

where Fp is the latent heat flux, F_s is the sensible heat flux, a is the surface albedo, F_{sw} is the shortwave radiation available at the surface, F_{lw} is the long-wave radiation from the atmosphere, and F_{ir} is the long-wave radiation from the surface. The

*Present address: Department of Space Physics and Astronomy, Rice University, PO Box 1892, Houston, Texas 77251, USA