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Abstract

We prove that for any positive integers x, d and k with gcd(x, d) = 1 and 3< k < 35, the
product x(x+ d) · · · (x+ (k − 1)d) cannot be a perfect power. This yields a considerable
extension of previous results of Győry et al. and Bennett et al., which covered the cases
where k ≤ 11. We also establish more general theorems for the case where x can also
be a negative integer and where the product yields an almost perfect power. As in the
proofs of the earlier theorems, for fixed k we reduce the problem to systems of ternary
equations. However, our results do not follow as a mere computational sharpening of the
approach utilized previously; instead, they require the introduction of fundamentally
new ideas. For k > 11, a large number of new ternary equations arise, which we solve by
combining the Frey curve and Galois representation approach with local and cyclotomic
considerations. Furthermore, the number of systems of equations grows so rapidly with
k that, in contrast with the previous proofs, it is practically impossible to handle the
various cases in the usual manner. The main novelty of this paper lies in the development
of an algorithm for our proofs, which enables us to use a computer. We apply an
efficient, iterated combination of our procedure for solving the new ternary equations
that arise with several sieves based on the ternary equations already solved. In this way,
we are able to exclude the solvability of the enormous number of systems of equations
under consideration. Our general algorithm seems to work for larger values of k as well,
although there is, of course, a computational time constraint.

1. Introduction and statement of new results

A classical theorem of Erdős and Selfridge [ES75] asserts that the product of consecutive positive
integers is never a perfect power. A natural generalization is the diophantine equation

x(x+ d) · · · (x+ (k − 1)d) = byn (1)

in non-zero integers x, d, k, b, y, n such that gcd(x, d) = 1, d≥ 1, k ≥ 3, n≥ 2 and P (b)≤ k.
Here P (u) denotes the largest prime divisor of a non-zero integer u, with the convention that
P (±1) = 1.
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Table 1. Values of the bound Pk,n.

k n= 2 n= 3 n= 5 n≥ 7

3 – 2 2 2
4 2 3 2 2
5 3 3 3 2
6 5 5 5 2
7 5 5 5 3
8 5 5 5 3
9 5 5 5 3
10 5 5 5 3
11 5 5 5 5

Equation (1) has an extremely rich literature. For d= 1, it has been completely solved by
Saradha [Sar97] (for k ≥ 4) and Győry [Gyo98] (for k < 4). Instead of attempting to review all
branches of related results for d > 1 (which would be an enormous task), we refer to the excellent
survey papers by Tijdeman [Tij89] and Shorey [Sho02a, Sho02b]. Here we mention only those
contributions which are closely related to the results of the present paper, that is, which provide
the complete solution of (1) when the number of terms k is fixed.

If (k, n) = (3, 2), then (1) has infinitely many solutions even for b= 1. Euler (see [Dic66])
showed that (1) has no solutions if b= 1 and (k, n) = (3, 3) or (4, 2). A similar result was obtained
by Obláth [Obl50, Obl51] for (k, n) = (3, 4), (3, 5) or (5, 2). By a conjecture of Erdős, (1) has no
solutions in positive integers when k > 3 and b= 1; in other words, the product of k consecutive
terms in a coprime positive arithmetic progression with k > 3 can never be a perfect power. By
‘coprime positive arithmetic progression’ we mean an arithmetic progression of the form

x, x+ d, . . . , x+ (k − 1)d,

where x and d are positive integers with gcd(x, d) = 1.
Erdős’s conjecture has recently been verified for certain values of k in a more general form.

In Theorem A below, the k = 3 case is due to Győry [Gyo99], the k = 4, 5 cases to Győry
et al. [GHS04], and the 6≤ k ≤ 11 cases to Bennett et al. [BBGH06].

Theorem A. Suppose that k and n are integers with 3≤ k ≤ 11, n≥ 2 prime and (k, n) 6= (3, 2);
also suppose that x and d are coprime integers. If, further, b is a non-zero integer with P (b)≤ Pk,n
where Pk,n is as given in Table 1, then the only solutions to (1) are with (x, d, k) from the following
list:

(−9, 2, 9), (−9, 2, 10), (−9, 5, 4), (−7, 2, 8), (−7, 2, 9),
(−6, 1, 6), (−6, 5, 4), (−5, 2, 6), (−4, 1, 4), (−4, 3, 3),

(−3, 2, 4), (−2, 3, 3), (1, 1, 4), (1, 1, 6).

It is a routine matter to extend Theorem A to arbitrary (that is, not necessarily prime) values
of n. Further, we note that upon knowing the values of the variables on the left-hand side of (1),
one can easily determine all the solutions (x, d, k, b, y, n) of (1).

Very recently, for k = 5 or 6 and n≥ 7, the bound Pk,n was improved to 3 by Bennett [Ben08].
Further, for n= 2 and positive x, Theorem A was extended by Hirata-Kohno et al. in [HLST07].
However, they did not handle (1) for some exceptional values of b > 1; for these values, (1) was
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later solved by Tengely [Ten08]. Putting together the results in [HLST07, Ten08], we have the
following theorem.

Theorem B. Equation (1) with n= 2, d > 1 and 5≤ k ≤ 100 has no solution in positive
integers x.

In the case of b= 1, the assumption k ≤ 100 can be replaced by k ≤ 109 in Theorem B
(see [HLST07]). When n= 3, Hajdu et al. [HTT09] obtained the following extension of
Theorem A.

Theorem C. Suppose that n= 3 and that (x, d, k, b, y) is a solution to (1) with k < 32 such
that P (b)≤ k if 4≤ k ≤ 12 and P (b)< k if k = 3 or k ≥ 13. Then (x, d, k) must be from the
following list:

(−10, 3, 7), (−8, 3, 7), (−8, 3, 5), (−4, 3, 5), (−4, 3, 3), (−2, 3, 3),
(−9, 5, 4), (−6, 5, 4), (−16, 7, 5), (−12, 7, 5),
(x, 1, k) with − 30≤ x≤−4 or 1≤ x≤ 5,

(x, 2, k) with − 29≤ x≤−3.

Further, if b= 1 and k < 39, then we have

(x, d, k, y) = (−4, 3, 3, 2), (−2, 3, 3,−2), (−9, 5, 4, 6) or (−6, 5, 4, 6).

Theorems A, B and C confirm the conjecture of Erdős for the corresponding values of k
and n. Moreover, under the additional assumptions made on P (b), they provide the complete
solution to (1) for b > 1 as well.

In this paper we give a significant extension of Theorem A, up to k < 35. Our main result is
the following theorem, which verifies Erdős’s conjecture for k < 35.

Theorem 1.1. If 3< k < 35, the product of k consecutive terms in a coprime positive arithmetic
progression is never a perfect power.

When n≤ 3 or k ≤ 11, Theorem 1.1 follows from the aforementioned results. The remaining
cases are covered by the following theorems.

Theorem 1.2. Equation (1) has no solutions with n≥ 7 prime, 12≤ k < 35 and P (b)≤ Pk,n,
where

Pk,n =

7 if 12≤ k ≤ 22,
k − 1

2
if 22< k < 35.

Theorem 1.3. The only solutions to (1) with n= 5, 8≤ k < 35 and P (b)≤ Pk,5, where

Pk,5 =

7 if 8≤ k ≤ 22,
k − 1

2
if 22< k < 35,

are given by

(k, d) = (8, 1), x ∈ {−10,−9,−8, 1, 2, 3}; (k, d) = (8, 2), x ∈ {−9,−7,−5};
(k, d) = (9, 1), x ∈ {−10,−9, 1, 2}; (k, d) = (9, 2), x ∈ {−9,−7};

(k, d) = (10, 1), x ∈ {−10, 1}; (k, d, x) = (10, 2,−9).

Note that in the n= 5 case, Theorem 1.3 yields an extension of Theorem A already for
8≤ k ≤ 11.
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K. Győry, L. Hajdu and Á. Pintér

Similarly to [BBGH06, GHS04], results on (1) have a simple consequence for rational solutions
of equations of the form

u(u+ 1) · · · (u+ k − 1) = vn. (2)

More precisely, we have the following.

Corollary 1.1. Suppose that n≥ 2, 1< k < 35 and (k, n) 6= (2, 2). Then (2) has no solutions
in positive rational numbers u, v.

For k ≤ 11, this was proved in [BBGH06]. When k > 11, the statement is a straightforward
consequence of Theorem 1.1; see [BBGH06, GHS04] for the necessary arguments. We note that (2)
was first studied by Sander [San99].

In the case of k ≤ 11 and n≥ 5, Equation (1) was reduced in [Gyo99, GHS04, BBGH06, Ben08]
to finitely many ternary equations of signature (n, n, n), (n, n, 2) or (n, n, 3). In our proofs,
we start with the same reduction strategy. However, for k > 11 and n≥ 5 prime, numerous
new ternary equations arise which must be solved under certain arithmetic conditions. To solve
these equations, in the n≥ 7 case we combine the Frey curve and modular Galois representation
approach with local methods and some classical work on cyclotomic fields. Our results concerning
ternary equations, which may be of independent interest, do not follow from a straightforward
application of the modularity of Galois representations attached to Frey curves; it is also
necessary to understand the reduction types of these curves at certain small primes.

For n= 5, hardly any new information is available through the theory of ‘general’ modular
forms. In this case we make use of some classical and new results concerning equations of the
form AX5 +BY 5 = CZ5. The proof of these new results involves some cyclotomic and local
considerations.

As k increases, the number of possible k-tuples (a0, . . . , ak−1) introduced in (3), and hence
the number of systems of ternary equations that arise, grow so rapidly that, in contrast with
the k ≤ 11 cases treated in [BBGH06, Ben08, GHS04, Gyo99], it is practically impossible to
handle all the cases one by one without using a computer. The principal novelty of our paper
lies in the development of an algorithm for our proof. For fixed k, we combine our algorithm
for solving the new ternary equations with several sieves based on the ternary equations already
solved, and we use a computer to exclude the solvability of the enormous number of systems of
ternary equations. Our general method seems to work for larger k as well, and we do not see
any theoretical obstacle to extending the results even further. However, the computational time
consumed by the method increases rather rapidly with k, which is why we stopped at k = 34.
We give a few details of the computational endeavor here, as these may be of interest to some
readers.

We used a 2.4 MHz PC with a quad processor to execute the calculations. To establish our
new results for ternary equations of signature (n, n, 2) (see Proposition 2.2), we implemented
our algorithm in Magma [BCP97]. The total running time for proving Proposition 2.2 came to
about two weeks. The proof of Theorem 1.1 proceeds via proving Theorems 1.2 and 1.3; to verify
these two results, we implemented our sieving procedures in Maple, separately for the n≥ 7 and
n= 5 cases. The program codes utilized in our computations are available from the authors upon
request. In both of the cases n≥ 7 and n= 5, the program took the following times to run for
different values of k: a few seconds for k up to 19, a few minutes up to k = 23, a few hours up to
k = 29, a few days for k = 30 and 31, and about a week each for k = 32, 33 and 34. Altogether,
after having verified Proposition 2.2, the calculations to establish Theorems 1.2 and 1.3 took
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about a month each. We mention this to emphasize that, because of the huge number of cases to
be looked into, if one has only the ‘ternary’ results, it would be hopeless to attack the problem
without some additional, new ‘sieving’ ideas. Conversely, using only the sieving procedures with
the previously known ‘ternary’ results, one would be left with a lot of cases which have not been
dealt with. So, to prove our theorems, we need to find a balanced and efficient combination of
the two techniques.

The organization of the paper is as follows. In the next section we introduce notation and
summarize some old as well as establish some new results about ternary equations which will
be used in the proofs of Theorems 1.1, 1.2 and 1.3. The final section is devoted to proving our
theorems.

2. Notation and auxiliary results

For integers d, x, k with k ≥ 3 and for indices 0≤ i1 < · · ·< il < k, put

Π(i1, . . . , il) = (x+ i1d) · · · (x+ ild)

and

Πk = Π(0, 1, . . . , k − 1) = x(x+ d) · · · (x+ (k − 1)d).

Assume that (1) has a solution in non-zero integers x, d, k, b, y and n with the requested
properties. Further, we may assume that n is an odd prime. From (1) one can then deduce
that

x+ id= aix
n
i (i= 0, 1, . . . , k − 1) (3)

where xi is a non-zero integer and ai is an nth-power-free positive integer with P (ai)≤ k. For a
given k, there are only finitely many and effectively determinable such k-tuples (a0, a1, . . . , ak−1).

For brevity, we introduce the following notation. Write

[i1, i2, i3] : ci1ai1x
n
i1 + ci3ai3x

n
i3 = ci2ai2x

n
i2 , (4)

where 0≤ i1 < i2 < i3 < k and ci1 = (i3 − i2)/D, ci2 = (i3 − i1)/D and ci3 = (i2 − i1)/D with
D = gcd(i3 − i2, i3 − i1, i2 − i1). Further, if 0≤ j1 < j2 ≤ j3 < j4 < k with j1 + j4 = j2 + j3, then
let

[j2, j3]× [j1, j4] : aj2aj3(xj2xj3)n − aj1aj4(xj1xj4)n = (j2j3 − j1j4)d2.

Given a k-tuple (a0, a1, . . . , ak−1), we obtain in this way a complicated system of ternary
equations to be solved.

In proving our theorems, we shall use several results concerning ternary equations to solve the
systems of equations that arise. In this section we collect some earlier theorems and establish two
new results for ternary equations which will be needed later on. We start with ternary equations
of signature (n, n, 2).

Proposition 2.1. Let n≥ 7 be prime, let u and v be non-negative integers, and let A and B be
coprime positive integers. Then the following diophantine equations have no solutions in pairwise
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K. Győry, L. Hajdu and Á. Pintér

coprime non-zero integers X, Y, Z with XY 6=±1 :

Xn + 2uY n = 3vZ2, u 6= 1; (5)
Xn + Y n = CZ2, C ∈ {2, 6}; (6)

Xn + 5uY n = 2Z2 with n≥ 11 if u > 0; (7)
AXn +BY n = Z2 with AB = 2upv where u 6= 1, p ∈ {11, 19}. (8)

Proof. This result is due to Bennett et al. [BBGH06]. 2

The following result is new. For its formulation, we need some further standard notation. If
m is a positive integer, let rad(m) denote the radical of m, i.e. the product of distinct prime
divisors of m with the convention that rad(1) = 1.
Set

I1 = {(2, 1), (2, 3), (2, 5), (2, 7), (6, 1), (6, 5), (10, 1), (10, 3), (14, 1), (14, 3), (22, 1),
(26, 1), (30, 1), (34, 1), (38, 1), (42, 1), (46, 1), (66, 1), (70, 1), (78, 1), (102, 1),
(114, 1), (130, 1), (138, 1)},

I2 = {(3, 1), (3, 5), (5, 1), (5, 3), (7, 1), (13, 1), (15, 1), (17, 1), (21, 1), (23, 1), (33, 1), (35, 1),
(39, 1), (51, 1), (57, 1), (69, 1), (165, 1)}

and

I3 = {(3, 2), (5, 6), (7, 2), (11, 2), (13, 2), (15, 2), (17, 2), (19, 2),
(21, 2), (23, 2), (33, 2), (35, 2), (39, 2)}.

Proposition 2.2. Let n > 31 be a prime, let A, B and C be pairwise coprime positive integers
with (rad(AB), C) ∈ I1 ∪ I2 ∪ I3, and take p ∈ {11, 13, 17, 19, 23, 29, 31} such that p -AB. Then
the equation

AXn +BY n = CZ2 (9)

has no solutions in pairwise coprime non-zero integers X, Y, Z with p |XY except, possibly, in
those cases listed in Table 2.

As mentioned in the introduction, to prove our results in the n≥ 7 case we had to find an
efficient combination of the ‘modular’ and ‘sieving’ techniques. A very large number of new
ternary equations arose for each k > 11. We followed the strategy explained below. First, we
solved a few well-chosen ternary equations (considering only a small subset I of I1 ∪ I2 ∪ I3 in
Proposition 2.2); then, using our sieves (which will be detailed in the next section), we tried to
reduce each case (a0, a1, . . . , ak−1) to ternary equations that either had been treated already in
Propositions 2.1, 2.4 or 2.5 or belonged to I. After a while (for larger values of k), exceptional
cases arose for which such a reduction was unavailable. At that point we enlarged the set I in
several steps, and gradually we reached the finite sets I1, I2 and I3 in Proposition 2.2. By using
the equations that occur in Propositions 2.1, 2.4 or 2.5 or which correspond to I1 ∪ I2 ∪ I3 in
Proposition 2.2, we were able to ‘cover’ all cases (a0, a1, . . . , ak−1), i.e. prove the insolubility of
each system of equations that arose. For the details, we refer to the proof of Theorem 1.2

Proof of Proposition 2.2. To solve our equations of the form (9), we shall apply the modular
approach. Specifically, to a putative non-trivial solution (X, Y, Z) of (9) one can associate a Frey
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Table 2. The possibly exceptional cases in Proposition 2.2.

n (rad(AB), C, p)

37 (2,7,31), (3,5,31), (6,5,31), (19,2,29), (22,1,31), (46,1,29), (46,1,31),
(70,1,29)

41 (2,7,11), (21,2,13), (21,2,19), (21,2,29), (22,1,31), (46,1,31), (51,1,13),
(102,1,13), (165,1,13), (165,1,31)

43 (5,6,13), (6,5,23)
47 (5,6,11), (5,6,29), (6,5,31), (15,2,11), (15,2,29), (33,2,13), (33,2,23), (39,2,31)
59 (3,5,31), (6,5,31), (39,2,23), (165,1,17)
61 (5,6,13), (5,6,29),(14,3,17), (15,2,13), (15,2,29), (39,2,17), (39,2,19)
67 (165,1,29)
71 (33,2,23)
79 (5,6,17), (15,2,17), (165,1,19)
83 (165,1,29)
89 (165,1,29), (165,1,31)
97 (5,6,31), (15,2,31), (165,1,29)
107 (5,6,31), (15,2,31)
127 (33,2,31), (165,1,29)
137 (5,6,23)
193 (5,6,31), (15,2,31)
229 (33,2,31)
239 (33,2,31), (165,1,29)

curve E/Q, with the corresponding mod n Galois representation

ρEn : Gal(Q/Q)→GL2(Fn)

on the n-torsion E[n] of E. This representation arises from a cuspidal newform f =
∑∞

r=1 crq
r

of weight two and trivial Nebentypus character. For details, we refer to [BS04]. As usual,
for a positive integer m let rad2(m) denote the 2-free radical of m, i.e. the product of
distinct odd prime divisors of m, with the convention that rad2(1) = 1. It can be shown that
the level N of the newform considered above is contained in {2α · rad2(AB) · rad2

2(C) : α=
0, 1, 2, 3, 5, 7}, {2α · rad2(AB) · rad2

2(C) : α= 1, 5} or {256 · rad2(AB) · rad2
2(C)}, according to

whether (rad(AB), C) belongs to I1, I2 or I3, respectively. The assumption that p |XY for a
prime p ∈ {11, 13, 17, 19, 23, 29, 31} implies that if p is relatively prime to N , then

NormKf/Q(cp ± (p+ 1))≡ 0 (mod n), (10)

where cp is the pth Fourier coefficient of f and Kf is the field generated by the Fourier coefficients
of f . This means that if (10) does not hold, we arrive at a contradiction. For recipes associated
with this technique, see [Ben03] or [Coh07].

We illustrate our approach by considering the case of (rad(AB), C) = (38, 1). The
corresponding levels are 19, 2 · 19, 4 · 19, 8 · 19, 32 · 19 and 128 · 19. Suppose that X, Y, Z is a
solution of the corresponding equation (9) in pairwise coprime non-zero integers such that p |XY ,
where p is a prime with 11≤ p≤ 31. Using a simple Magma program, we calculated the Fourier
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coefficients cp of the corresponding one-dimensional newforms f at the levels considered above,
obtaining

n | (cp − (p+ 1))(cp + p+ 1) =:Bp. (11)
For the corresponding higher-dimensional newforms f at the levels under consideration, we used
a stronger sieve. Let

Am = NormKf/Q(c2m − (m+ 1)2)
∏

|a|<2
√
m

a is even

NormKf/Q(cm − a)

for m= 3, 5, 7. Our method now yields that

n | gcd(Bp, A3, A5, A7). (12)

Consequently, if for some prime p with 11≤ p≤ 31 the statements (11) and (12) do not hold for
any f in question, then in the case of (rad(AB), C) = (38, 1), Equation (9) has no solution in
pairwise coprime non-zero integers X, Y, Z with p |XY .

Using the same arguments for each equation considered in Proposition 2.2, we infer that (9)
may have a solution with the prescribed properties only in the cases listed in Table 2.

We note that the Hasse–Weil bound implies that Bp 6= 0. Further, for the pairs (rad(AB), C)
and for the higher-dimensional case, we omit Am from the stronger sieve if Am = 0 or m |ABC. 2

Remark . We can choose further primes m to make a stronger sieve. For example, in the
(rad(AB), C) = (165, 1) case we can apply the sieve n | gcd(Bp, A7, A61, A73) for higher-
dimensional forms and we can exclude the cases

(n, p) = (41, 13), (41, 31), (59, 17), (67, 29), (79, 19),
(89, 31), (97, 29), (127, 29), (239, 29) (13)

as well. However, to find such appropriate primes m involves a long computation. Since, for
our later purposes, Table 2 and its refinement that excludes the cases listed in (13) are already
sufficient, we do not continue this procedure.

We use ternary equations of signature (n, n, 3) via the following result of Bennett [Ben08].
For a prime p and non-zero integer u, ordp(u) denotes, as usual, the largest integer v for which
pv | u holds.

Proposition 2.3. Let n be a prime with n≥ 7. Then

x(x+ d)(x+ 3d)(x+ 4d) = byn (14)

has only the solutions (x, d, b, y) = (±2,∓1, 4, 1) in non-zero integers x, d, b, y with gcd(x, d) = 1
and P (b)≤ 3.

Proof. The statement is a simple consequence of a recent result of Bennett [Ben08]. However,
for the sake of completeness we give the main steps of the proof.

Suppose that (x, d, b, y, n) is a solution to (14) with by 6= 0. If 3 - x(x+ d), then, using the
notation (3), the identity [1, 3]× [0, 4] gives

a1a3(x1x3)n − a0a4(x0x4)n = 3d2,

and we also have gcd(a1a3x1x3, a0a4x0x4) = 1 and P (a0a1a3a4)≤ 2. As either ord2(a1a3) =
ord2(a0a4) = 0, or ord2(a1a3) = 0 and ord2(a0a4)≥ 2 (or vice versa), the result follows from (5)
of Proposition 2.1 in this case.
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Otherwise, if 3 | x(x+ d), then the identity (x+ d)2(x+ 4d)− x(x+ 3d)2 = 4d3 yields

a2
1a4(x2

1x4)n − a0a
2
3(x0x

2
3)n = 4d3.

After simplifying with a suitable power of 2, we get an equality that is either of the form

Xn + 3vY n = 2uZ3 where u≥ 1, v ≥ 3 and gcd(X, 3Y ) = 1

or of the form

AXn +BY n = Z3 with AB = 2u3v where u≥ 1, v ≥ 3 and gcd(AX, BY ) = 1.

Using results from [Ben08, BVY04] on certain ternary equations of signature (n, n, 3), the
statement again follows in this case. 2

We will also use results on ternary equations of signature (n, n, n) which have been proved
using the method involving Frey curves and modular forms; see [DM97, Kra97, Rib97, Wil95].

Proposition 2.4. Let n≥ 3 and u≥ 0 be integers. Then the equation

Xn + Y n = 2uZn

has no solutions in pairwise coprime non-zero integers X, Y, Z with XY Z 6=±1.

Proof. This result is essentially due to Wiles [Wil95] (in the n | u case), Darmon and
Merel [DM97] (if u≡ 1 (mod n)) and Ribet [Rib97] (in the remaining cases for n≥ 5 prime); see
also Győry [Gyo99]. 2

Proposition 2.5. Let n≥ 5, and let A and B be coprime positive integers with AB = 2u3v or
2u5v, where u and v are non-negative integers with u≥ 4. Then the equation

AXn +BY n = Zn (15)

has no solutions in pairwise coprime non-zero integers X, Y and Z.

Proof. This is [SS01, Lemma 13]. 2

For n= 5, most of the above assertions on ternary equations cannot be applied, in which case
we shall use the following results in addition.

Proposition 2.6. Let n≥ 3 be an integer. All solutions of the equation

x(x+ 1) · · · (x+ k − 1) = byn (16)

in positive integers x, k, b, y with k ≥ 8 and P (b)≤ 7 have

k ∈ {8, 9, 10} and x ∈ {1, 2, . . . , p(k) − k}, (17)

where p(k) denotes the smallest prime satisfying p(k) > k.

Proof. This result follows from a theorem of Saradha [Sar97], which says that in (16), P (y)≤ k.
As was seen in Győry [Gyo98], we then get x ∈ {1, 2, . . . , p(k) − k}, whence p(k) > x+ k − 1.
Denote by p(k) the greatest prime with p(k) ≤ k. Then, for k ≥ 11, we have p(k) ≥ 11. Further,
by Chebyshev’s theorem, p(k) < 2p(k). In view of p(k) ≤ k, we have p(k) | x(x+ 1) · · · (x+ k − 1).
But it follows that 2p(k) > x+ k − 1. Hence (16) and P (b)≤ 7 give pn(k) | x(x+ 1) · · · (x+ k − 1),

which implies that pn(k) ≤ x+ k − 1. Thus we get pn(k) ≤ 2p(k), which is a contradiction.

It remains to treat the case k ∈ {8, 9, 10}. Then p(k) = 11 and it is easy to check that the
values of k and x listed in (17) give the solutions of (16). 2
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Lemma 2.1. Let n= 5. Suppose that for k = 5, P (b)≤ 3, and for 6≤ k ≤ 11, P (b)≤ 5. Then
the only solution to (1) with d≥ 2 is (x, d, k) = (−5, 2, 6).

Proof. This is a special case of [BBGH06, Theorem 1.2]. 2

Lemma 2.2. Let n= 5. Suppose that (x, d, y, b) provides a solution to (1) with P (b)≤ 3 and
k = 4. Then either (x, d) = (−3, 2) or, up to symmetry, (a0, a1, a2, a3) = (4, 3, 2, 1) or (9, 4, 1, 6).

Proof. This is [BBGH06, Lemma 6.3]. 2

Let C be a 5th-power-free positive integer with P (C)≤ 7. Then we can write

C = 2α · 3β · 5γ · 7δ (18)

with non-negative integers α, β, γ, δ not exceeding 4.

Proposition 2.7. If the equation

X5 + Y 5 = CZ5 (19)

has a solution in pairwise coprime non-zero integers X, Y and Z, then one of the following cases
holds.

(i) C = 2 and X = Y =±1.

(ii) C = 7δ with 1≤ δ ≤ 4, 5 |XY , 5 - Z and Z is odd.

(iii) C ∈ {2 · 32 · 7δ, 22 · 34 · 7δ, 23 · 3 · 7δ, 24 · 33 · 7δ} with 1≤ δ ≤ 4 and 5 | Z.

This implies that if, in (19), 5 -XY Z, then (i) must hold. If, in particular, P (C)≤ 5, then
Proposition 2.7 reduces to [BBGH06, Proposition 6.1].

Proof. Let (X, Y, Z) be a solution of (19) in pairwise coprime non-zero integers. By results of
Dirichlet and Dénes [Den52], it suffices to deal with the case C > 2 and XY Z 6=±1. It follows
from a theorem of Lebesgue [Dic66, p. 738, item 37] that 5 - C and

C ≡±1,±7 (mod 52). (20)

First, assume that 5 - Z. We have

C4 ≡ 1 (mod 52) and 24 6≡ 1 (mod 52),

whence

C4 6≡ 24 (mod 52).

Applying [BGP04, Lemma 6.1 and Corollary 6.2] to (19), we deduce that 5 |XY , CZ is odd and

r4 ≡ 1 (mod 52) (21)

for each prime divisor r of C. In view of (18) and (21), we infer that only r = 7 can hold, and
(ii) follows.

Now suppose that 5 | Z. The prime 5 being regular, a theorem of Maillet (see, for example,
[Dic66, p. 759, item 167]) implies that C must have at least three distinct prime factors. This
means that in (18), γ = 0 and α, β, δ ≥ 1. It is easy to check that, together with (20), this
gives (iii). 2
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3. Proofs of the main theorems

First we prove Theorems 1.2 and 1.3. As was mentioned earlier, we need to consider the n= 5 and
n≥ 7 cases separately. The reason is that the theory of ternary equations cannot be efficiently
applied in the n= 5 case. Let us start with n≥ 7.

Proof of Theorem 1.2. In proving this theorem we shall eventually reduce the problem to the
solution of several ternary diophantine equations. We now explain the main ideas of our proof.
Suppose that under the assumptions of our theorem, (1) has a solution. Observe that, by (3), to
determine all solutions to (1) with fixed k it suffices to characterize the arithmetic progressions
of the form a0x

n
0 , a1x

n
1 , . . . , ak−1x

n
k−1, where the xi are non-zero integers and the ai are positive

integers such that gcd(a0x
n
0 , a1x

n
1 ) = 1,

P (ai)≤ k and ai is nth-power-free for i= 0, 1, . . . , k − 1. (22)

Furthermore, the assumption P (b)≤ Pk,n implies that

n | ordp

(k−1∏
i=0

ai

)
for all primes p > Pk,n. (23)

In particular, if p is a prime and u≥ 1 is an integer with pu | aixni , then pu | ajxnj if and only if
pu | i− j. This assertion will be used later on without any further reference.

The number of possible k-tuples (a0, a1, . . . , ak−1) with properties (22) and (23) grows
very rapidly with k, and it is impossible to look at the different cases one by one when
k is relatively large. So we apply the following strategy. We exclude the possible coefficient
k-tuples (a0, a1, . . . , ak−1) in several steps, by using certain procedures in a well-determined
order. A k-tuple will be excluded after ensuring that in the corresponding case, (1) has no
solution. We start with arguments that enable us to exclude a large number of k-tuples
(a0, a1, . . . , ak−1). By induction, a lot of possibilities can be excluded. Specifically, if for some
`≥ 3, P (a0 · · · a`−1)≤ P`,n or P (ak−` · · · ak−1)≤ P`,n holds, then the statement follows either by
induction or from Theorem A. Using this observation, the number of k-tuples to be considered
can be reduced drastically. Therefore, after each successive step, it will become simpler and
simpler to manage and exclude the remaining k-tuples. We shall explain the details later on,
when we describe the sieves. Moreover, we will provide examples to illustrate how the sieves
work.

In what follows, we will always assume that k is fixed with 11< k < 35. We use the following
convention. Let 2 = p1 < p2 < · · ·< pπ(k−1) be the primes that are less than or equal to k − 1,
where π(k − 1) denotes the number of primes not exceeding k − 1. Observe that as Pk,n < k for
n≥ 7, by (23) we have P (ai)< k in (22) for all i= 0, 1, . . . , k − 1. We indicate the distribution of
the primes p1, . . . , pπ(k−1) among the aixni or the ai (i.e. the prime divisors not exceeding k − 1
of the aixni or the ai) with the aid of certain π(k − 1)-tuples of the form (mπ(k−1), . . . , m1). For
3≤ j ≤ π(k − 1), let

mj ∈ {×, 0, 1, . . . , pj − 1}, (24)

where mj =× if pj - Πk (i.e. if pj does not divide x(x+ d) · · · (x+ (k − 1)d)) and, otherwise, mj

is the integer from {0, 1, . . . , pj − 1} for which pj | x+mjd. In our proof, we first consider cases
where it is not specified which terms of the progression x, x+ d, . . . , x+ (k − 1)d are divisible
by 2 or 3. Then we write mj = ∗ for j = 1, 2. In such a case we say that the distribution of
p1, . . . , pπ(k−1) among the aixni or the ai corresponds to the π(k − 1)-tuple (mπ(k−1), . . . , m1).
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By means of these π(k − 1)-tuples we shall obtain information about the location of the
coefficients ai without ‘large’ prime factors, which will be of crucial importance in our proof.
To each of these π(k − 1)-tuples there correspond a great number of k-tuples (a0, a1, . . . , ak−1)
under consideration. Hence the use of our tests: sieving with all π(k − 1)-tuples of the form
(mπ(k−1), . . . , m3, ∗, ∗) will enable us to exclude full branches of k-tuples (a0, a1, . . . , ak−1)
simultaneously; this makes our algorithm very efficient. Our first three tests below seem to
be especially efficient, at least for the range of k under consideration.

Later, we shall need to refine our algorithm by specifying also those terms of x, x+ d, . . . , x+
(k − 1)d which are divisible by 2 and/or 3. For j = 1 and 2, let

mj ∈ {×, 0, 1, . . . , k − 1} (25)

such that, as in the j ≥ 3 case, mj =× if pj - Πk and, otherwise, mj is a number from
{0, 1, . . . , k − 1} for which pj | x+mjd and

ordpj (x+mjd) = max
0≤`≤k−1

ordpj (x+ `d).

This will enable us to calculate the exact orders of the primes p1 = 2 and p2 = 3 in the
numbers aix

n
i . Then we shall continue our proof with further tests, sieving first with all

possible π(k − 1)-tuples of the form (mπ(k−1), . . . , m3, m2, ∗) and (mπ(k−1), . . . , m3, ∗, m1), and
thereafter with tuples (mπ(k−1), . . . , m3, m2, m1) where m1, m2 satisfy (25). Finally, a relatively
small number of k-tuples (a0, a1, . . . , ak−1) will be left, with some small exponents n which will
be excluded by means of a local sieve.

In our sieves we shall use ternary equations. We shall distinguish between (n, n, n)-, (n, n, 3)-
and (n, n, 2)-sieves, according to whether the ternary equations involved are of signature (n, n, n),
(n, n, 3) or (n, n, 2), respectively.

(n, n, n)-sieve I. Suppose that we are dealing with a π(k − 1)-tuple T = (mπ(k−1), . . . , m3, ∗, ∗).
First (with the help of T ) we check whether there exists an arithmetic progression i1, i2, i3 with
0≤ i1 < i2 < i3 ≤ k − 1 such that P (ai1ai2ai3)≤ 3 and i1 ≡ i2 ≡ i3 (mod 3). If there are such
indices, then by Proposition 2.4 the identity [i1, i2, i3] implies that 3 | x+ i1d (and, consequently,
3 | x+ i2d, x+ i3d) must be valid, otherwise we are done. We then apply an exhaustive search
for indices i4 and i5 with which some appropriately chosen identities of the form (4) will lead to
a contradiction. For example, assume that P (a2a5a8)≤ 3. Then from [2, 5, 8] we know that
3 | x+ 2d, x+ 5d, x+ 8d. Suppose, further, that P (a4a6)≤ 3. Then gcd(x, d) = 1 shows that
P (a4a6)≤ 2. Hence, as exactly one of ord3(x+ 2d)≥ 2, ord3(x+ 5d)≥ 2 or ord3(x+ 8d)≥ 2
holds, one of the identities [2, 4, 5], [5, 6, 8] or [2, 6, 8] (again by Proposition 2.4) will lead to a
contradiction.

After having checked all the possible π(k − 1)-tuples T of the form (mπ(k−1), . . . , m3, ∗, ∗)
and all the possible triples (i1, i2, i3) in question, we exclude the tuples T and the corresponding
k-tuples (a0, a1, . . . , ak−1) which lead in this way to a contradiction.

As an example, take k = 15 and let

T = (0, 3, 0,×, ∗, ∗).

Then we have P (a2a4a5a6a8)≤ 3 and, by the previous argument, T and the corresponding
15-tuples can be excluded.
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(n, n, 3)-sieve. Suppose that a π(k − 1)-tuple T survives the previous test. Then we try to find
an index i0 and a difference d0 with P (d0)≤ 3, i0 − 2d0 ≥ 0 and i0 + 2d0 ≤ k − 1 such that

P (ai0−2d0ai0−d0ai0+d0ai0+2d0)≤ 3. (26)

Let g = gcd(x+ (i0 − 2d0)d, d0d). Obviously, gcd(x, d) = 1 and P (d0)≤ 3 imply that P (g)≤ 3.
Putting X = (x+ (i0 − 2d0)d)/g and D = d0d/g and then using (3) and (26), we infer that for
these X and D the equation

X(X +D)(X + 3D)(X + 4D) =BY n

has a solution in non-zero integers B, Y with P (B)≤ 3. However, by Proposition 2.3 this implies
that X + 2D = 0, which is impossible. We check all the possible i0 and d0, and exclude again all
the T and all the corresponding k-tuples that lead in this way to a contradiction.

To see an example, take k = 15 and

T = (0, 3, 4, 2, ∗, ∗).

Note that T survives the previous test. We have P (a5a6a8a9)≤ 3, hence we can take i0 = 7 and
d0 = 1; then, by the above test, T and the corresponding 15-tuples can be excluded.

(n, n, n)-sieve II. Consider a π(k − 1)-tuple T = (mπ(k−1), . . . , m3, ∗, ∗) which is not excluded
by the previous tests. We let m1 run through the set {×, 0, 1, . . . , k − 1} and examine all
π(k − 1)-tuples of the form T ′ = (mπ(k−1), . . . , m3, ∗, m1). We perform an exhaustive search to
find an identity of the form [i1, i2, i3] leading to a ternary equation of the form AXn +BY n = Zn

such that gcd(A, B) = 1 and AB is 2u3v or 2u5v, with u≥ 4 in either case. If we succeed, then
the corresponding π(k − 1)-tuple and k-tuples can be excluded by Proposition 2.5.

As an example, choose k = 15 and

T ′ = (0, 3, 1, 4, ∗, 11).

Note that this π(k − 1)-tuple cannot be excluded by the previous tests. However, taking the
identity [2, 10, 11], after cancelling an appropriate power of 3 we get a ternary equation of the
form AXn +BY n = Zn with gcd(A, B) = 1 and AB = 2u3v, u≥ 4. Hence we can exclude T ′ and
the corresponding 15-tuples.

(n, n, 2)-sieve I. Suppose that a π(k − 1)-tuple T ′ = (mπ(k−1), . . . , m3, ∗, m1) passes the
previous tests. Then we consider all π(k − 1)-tuples of the form T ∗ = (mπ(k−1), . . . , m2, m1)
with m2 ∈ {×, 0, 1, . . . , k − 1}. We search for an identity of the form [j2, j3]× [j1, j4] which leads
to a ternary equation AXn +BY n = CZ2 such that gcd(A, B, C) = 1 and one of the following
holds: AB = 2u (u 6= 1) and C = 3v; AB = 1 and C ∈ {2, 6}; AB = 2upv (u 6= 1, p ∈ {11, 19}) and
C = 1. Then, upon applying Proposition 2.1, the corresponding π(k − 1)-tuples T ∗ and k-tuples
(a0, a1, . . . , ak−1) can be excluded.

For example, choose k = 15 again, and take

T ∗ = (0, 3, 1, 2, 0, 3).

Note that T ∗ passes all of the previous sieves. However, the identity [5, 10]× [4, 11] gives rise to
a ternary equation of the form Xn + 4Y n = 3Z2, which leads to a contradiction, as explained
above.

(n, n, 2)-sieve II. Assume that a π(k − 1)-tuple T ∗ survives the previous tests. We again try to
find an identity of the form [j2, j3]× [j1, j4] that leads to a ternary equation AXn +BY n = 2Z2
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withAB = 5u, u≥ 1. Then Proposition 2.1 implies that n= 7. We collect these π(k − 1)-tuples T ∗

into a set S, and make a note that these tuples T ∗ have to be separately reconsidered later for
the exponent n= 7.

As an example, let k = 15 and

T ∗ = (0, 3, 4, 1, 8, 3).

As one can easily see, T ∗ survives the previous tests. However, after cancellations, the identity
[5, 6]× [2, 9] leads to a ternary equation of the form Xn + 5uY n = 2Z2 with u > 0. Then
Proposition 2.1 gives that n= 7, and we can put T ∗ into S.

(n, n, 2)-sieve III. Assume that a π(k − 1)-tuple T ∗ survives the previous tests. Then we search
for an identity [j2, j3]× [j1, j4] such that the implied ternary equation satisfies the conditions
of Proposition 2.2. Then this proposition and the subsequent remark yield that n is (explicitly)
bounded for the case corresponding to T ∗. We put these π(k − 1)-tuples T ∗ into the set S, and
to each of them we attach the list of corresponding ‘exceptional’ exponents, to be checked later.

For example, let k = 15 and

T ∗ = (0, 3, 1, 4, 0, 0).

As one can check, this π(k − 1)-tuple passes each earlier sieve. However, the identity [6, 11]×
[3, 14] gives (after cancellations) a ternary equation of the form Xn + 5uY n = Z2 with u≥ 1 and
such that 11 |XY ; hence by Proposition 2.2 we get that n≤ 31. Then we can put T ∗ into S.

After accomplishing the above procedures, one can exclude (or put into S) all the π(k − 1)-
tuples (mπ(k−1), . . . , m1) and corresponding k-tuples (a0, a1, . . . , ak−1) for all values of k, with
very few exceptions. In the remaining cases we proceed as follows. Let (a0, a1, . . . , ak−1) be a
k-tuple which passes all of the above tests. Let T ∗ = (mπ(k−1), . . . , m1) be the corresponding
π(k − 1)-tuple, with mj subject to (24) for j ≥ 3 and (25) for j = 1, 2. We ‘split’ T ∗ into
several π(k − 1)-tuples, depending on which of the indices i, j ord5(x+ id) and ord7(x+ jd) is
maximal. Then, for these ‘refined’ π(k − 1)-tuples, we try to find identities of the form [i1, i2, i3]
or [j2, j3]× [j1, j4] such that Proposition 2.1, 2.2, 2.4 or 2.5 yields a contradiction. Obviously,
for this purpose we can use the sieves explained above. On these ‘refined’ π(k − 1)-tuples we
have more information than we have on T ∗. Thus, it often happens that a sieve which did not
work for T ∗ itself manages to exclude a ‘refined’ π(k − 1)-tuple along with the corresponding
k-tuples (a0, a1, . . . , ak−1). In fact, this is exactly what we perform in all of the remaining
cases. After having gone through all the remaining π(k − 1)-tuples (mπ(k−1), . . . , m1) and
corresponding k-tuples (a0, a1, . . . , ak−1), we are left only with the π(k − 1)-tuples in the set S;
all the other π(k − 1)-tuples (and corresponding k-tuples) have already been excluded.

Let us give an example to illustrate the above method. Take k = 24 (there are no exceptional
k-tuples for k ≤ 23), and let

T ∗ = (m9, . . . , m1) = (0, 0, 6, 10, 3, 1, 2, 4, 7).

One can check that this tuple passes all of the previous sieves. We then ‘split’ T ∗ into 9-tuples
of the form (0, 0, 6, 10, 3, m′4, m

′
3, 4, 7) with

m′3 ∈ {2, 7, 12, 17, 22} and m′4 ∈ {1, 8, 15, 22}.

Here we assume, for fixed m′j (j = 3, 4), that

ordpj (x+m′jd) = max
0≤`≤23

ordpj (x+ `d).
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We try to find an identity of the form [i1, i2, i3] or [j2, j3]× [j1, j4] which, by
Proposition 2.1, 2.2, 2.4 or 2.5, will lead to a contradiction. In this example, noting that
ord2(a7x

n
7 )≥ 5, one can easily check that for m′3 = 2 and m′3 ∈ {12, 17, 22} the identity [5, 7, 17]

and [2, 5, 7], respectively, leads to a contradiction by Proposition 2.5, regardless of the value
of m′4. Furthermore, for m′3 = 7, the identity [2, 5, 17] yields a contradiction by Proposition 2.4,
for any m′4.

It remains to check the π(k − 1)-tuples in S and the corresponding k-tuples (a0, a1, . . . , ak−1)
for the remaining small values of the exponent n. This can be done very easily using the following
local argument.

Local sieve. For each element in S and for the corresponding values of n that remain (obtained
by Propositions 2.1, 2.2 and the subsequent Remark) we consider the problem locally. For each
such n, we choose a prime q of the form q = tn+ 1, with t as small as possible. For example,
in the cases where n= 11, 13, 17, 19, 23 we take q = 23, 53, 103, 191, 47, respectively. Then we
check the putative arithmetic progressions modulo q in the following way. By the choice of the
corresponding modulus, the use of the Euler–Fermat theorem guarantees that xni may assume
only very few values modulo q. Checking all the cases one by one and using the fact that the
numbers aixni (i= 0, 1, . . . , k − 1) should be consecutive terms of an arithmetic progression, we
get a contradiction in each case.

To illustrate the local argument, choose k = 15, n= 23 and take the π(k − 1)-tuple

(0, 3, 1, 4, 0, 0)

from S. Observe that the 23rd powers modulo 47 are exactly −1, 0 and 1. Hence, in this case,
the putative progression aix

23
i (i= 0, 1, . . . , 14) should be of the form

±2α03β013ν0 ,±7δ1 ,±2,±3 · 11ε3 ,±22 · 5γ4 ,±1,±2 · 3,±1,±237δ8 ,±325γ9 ,
±2,±1,±223,±13ν13 ,±2 · 5γ1411ε14

modulo 47, with non-negative exponents smaller than 23 and with the possible extra condition
that at most one of the terms can be equal to 0. However, as one can easily check even by hand,
such an arithmetic progression does not exist. In all other cases a similar argument works, and
this completes the proof. 2

Proof of Theorem 1.3. Let (x, d, k, b, y) be a solution of (1) with n= 5. For d= 1, each factor
x+ id in (1) must be positive or negative. Then we can reduce (1) to the case of x > 0, and
Proposition 2.6 applies to give the solutions listed in the theorem.

In what follows, we assume that d≥ 2. Further, if k ≤ 11, by virtue of Lemma 2.1 we can
restrict ourselves to the case where 7 | a0 · · · ak−1.

For 8≤ k ≤ 13, most of our work in proving Theorem 1.3 is concentrated on the k = 8 case.
For the values 9≤ k ≤ 13, we can then proceed by induction on k. We note that the above sieves
can be utilized to prove our theorem for larger values of k only. For k ≤ 13, too many exceptions
would remain after using our sieves. Hence, for these values of k, we shall handle the k-tuples
(a0, a1, . . . , ak−1) that arise without using sieves, tests or the computer.

The k = 8 case. If 7 | a0, a7, then by omitting x and x+ 7d from (1) we arrive at the case of
k = 6. By Lemma 2.1, we then get x+ d=−5, d= 2. This yields the solution (x, d) = (−7, 2).
If 7 | a1 or 7 | a6, then we omit, respectively, the factors x and x+ d or x+ 6d and x+ 7d and
obtain in a similar manner the solutions (x, d) = (−9, 2), (−5, 2).
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The case where 7 | a2 · · · a5 remains. By symmetry, it suffices to consider 7 | a2a3.
First, suppose that 7 | a2. If 5 - a0 · · · a7, then Lemma 2.1 applied to Π(3, 4, 5, 6, 7) shows

that there is no solution. If 5 | x+ 2d, then 5 | x+ 7d and for (i1, i2, i3, i4) = (3, 4, 5, 6) we get

Π(i1, i2, i3, i4) = b1y
5
1, (27)

where b1 and y1 are non-zero integers with P (b1)≤ 3. Then Lemma 2.2 gives that either
(x+ 3d, d) = (−3, 2), which leads to the solution (x, d) = (−9, 2), or, up to symmetry,

(a3, a4, a5, a6) = (4, 3, 2, 1) or (9, 4, 1, 6).

If (a3, a4, a5, a6) equals (4, 3, 2, 1) or (1, 2, 3, 4), then by applying Proposition 2.7 to [0, 3, 6] we
arrive at a contradiction. In the remaining cases, Proposition 2.7 can be applied to [1, 3, 5] or
[0, 1, 3] and we again get a contradiction.

Next, assume that 5 | x. If 3 - Π8 or 3 | x, we can apply Proposition 2.7 to [1, 4, 7]. Otherwise,
to obtain a contradiction, Proposition 2.7 can be applied to [1, 3, 7], [4, 6, 7] or [1, 3, 4] if 3 | x+ d,
and to [1, 4, 7] if 3 | x+ 2d.

Let 5 | x+ d. If 3 - Π8 or 3 | x, then one of the equations [3, 4, 5], [0, 3, 4], [5, 6, 7] or [4, 5, 7]
leads to a contradiction by Proposition 2.7. In the remaining cases, at least one of the equations
[3, 4, 5], [0, 1, 3], [4, 5, 7], [0, 3, 6], [3, 5, 7] or [0, 2, 4] is not solvable by Proposition 2.7.

Now let 5 | x+ 3d. If 3 - Π8 or 3 | x(x+ 2d), then, by using Proposition 2.7, [1, 4, 7] leads to
a contradiction. If 3 | x+ d, we get (27) with (i1, i2, i3, i4) = (4, 5, 6, 7). Then Lemma 2.2 gives
that either (x+ 4d, d) = (−3, 2), which does not yield any solution of (1), or, up to symmetry,

(a4, a5, a6, a7) = (4, 3, 2, 1) or (9, 4, 1, 6).

It is easy to verify that only the second option can occur. Then [0, 3, 6] or [1, 4, 5] has no solution,
according to whether (a4, a5, a6, a7) equals (9, 4, 1, 6) or (6, 1, 4, 9), respectively.

Finally, assume that 5 | x+ 4d. Then, applying Lemma 2.2 to (27) with (i1, i2, i3, i4) =
(1, 3, 5, 7), we get that either (x+ d, d) = (−3, 2), which yields the solution (x, d) = (−5, 2) of (1),
or, up to symmetry,

(a1, a3, a5, a7) = (4, 3, 2, 1) or (9, 4, 1, 6).

It follows that in each case, x+ d, x+ 3d, x+ 5d and x+ 7d are all divisible by 4, which
contradicts the assumption that gcd(x, d) = 1.

Next, consider the case where 7 | x+ 3d. If 5 - a0 · · · a7 or if 5 | x+ 3d, then we have (27) with
(i1, i2, i3, i4) = (4, 5, 6, 7). Hence, by Lemma 2.2, (a4, a5, a6, a7) equals (4, 3, 2, 1), (1, 2, 3, 4),
(9, 4, 1, 6) or (6, 1, 4, 9). Now Proposition 2.7 shows that in these four cases the following
equations are not solvable: [1, 4, 7]; [2, 3, 4] or [1, 3, 5]; [0, 1, 2] or [1, 4, 5]; and [1, 4, 5], respectively.

Now let 5 | x. If 3 - x+ d, then Proposition 2.7 applies to [1, 4, 7], leading to a contradiction.
If 3 | x+ d, then by Proposition 2.7 at least one of the equations [2, 4, 6], [1, 4, 7], [4, 6, 7] and
[1, 2, 4] has no solution.

Assume now that 5 | x+ d. If 3 - Π8 or 3 | x, then by Proposition 2.7 at least one of the
equations [0, 2, 4], [2, 3, 4] and [5, 6, 7] has no such solution which would yield a solution of (1).
Suppose that 3 | x+ d. If x is odd, then the equation [0, 1, 2] is not solvable by Proposition 2.7.
Otherwise, if x is even, then since gcd(x, d) = 1 we have that d is odd, whence 22 | x or 22 | x+ 2d.
If 32 - x+ 7d or 32 | x+ 7d and 22 | x, then Proposition 2.7 shows, respectively, that [4, 5, 7] or
[2, 4, 5] is not solvable. If 32 | x+ 7d and 22 | x+ 2d, then using the fact that

X5 ≡ 0,±1 (mod 11) (28)
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for any integer X, we deduce that x1 ≡ x4 ≡ x5 ≡ 0 is the only solution of [1, 4, 5] (mod 11), and
this leads to a contradiction.

Next, let 3 | x+ 2d. If x is odd or ord2(x) = ord2(x+ 4d), then in view of Proposition 2.7,
[0, 2, 4] has no solution. As gcd(x, d) = 1, it remains to consider the case where 23 | x or
23 | x+ 4d. If 32 - x+ 2d and 32 - x+ 5d, then [2, 4, 5] is not solvable by Proposition 2.7.

Assume that 32 | x+ 2d. If 23 | x, then [4, 5, 7] yields only the solution

x5
4 ≡ x5

5 ≡ x5
7 ≡±1 (mod 11).

Together with (3), this gives d≡∓1 (mod 11) and x≡±8 (mod 11). Then x+ d≡ 5x5
1 (mod 11)

with 5 - x1 cannot hold. Thus 52 | x+ d, whence ord5(x+ 6d) = 1, and [5, 6, 7] yields a
contradiction (mod 11). If 23 | x+ 4d, then [0, 5, 7] is not solvable (mod 11). Finally, consider
the case where 32 | x+ 5d. If 23 | x+ 4d, then Proposition 2.5 shows that the equation [1, 4, 7] is
not solvable. By assumption, we have 5 | x+ 6d. If 23 | x, then [1, 4, 7] or [2, 4, 6] is not solvable
(mod 11), according to whether 52 | x+ 6d or not.

Now let 5 | x+ 2d. If 3 - Π8, then upon solving [4, 5, 6] by means of Proposition 2.7 we do not
get any solution for (1). First assume that 3 | x+ d. Then, by Proposition 2.7 and the fact that
5 - x(x+ 6d), we find that either [0, 3, 6] or [4, 5, 6] has no solution, according to whether 22 - x
or 22 | x, respectively. Next, let 3 | x+ 2d. Then Proposition 2.7 implies that [0, 1, 4], [0, 4, 6]
or [1, 2, 4] is not solvable, depending on whether 23 | x, 23 | x+ 4d or ord2(x) = ord2(x+ 4d),
respectively. Assume now that 3 | x. If ord2(x+ d) = ord2(x+ 5d), then [1, 3, 5] is not solvable
by virtue of Proposition 2.7. It remains to deal with the cases 23 | x+ d and 23 | x+ 5d. Then
Proposition 2.5 shows that [0, 1, 4] has no solution.

Finally, assume that 5 | x+ 4d. If 3 - Π8 or 3 | x+ 2d, then at least one of the equations [0, 3, 6]
and [1, 4, 7] is not solvable by Proposition 2.7. If 3 | x, then, by Proposition 2.7, [1, 2, 5], [1, 5, 7] or
[1, 3, 5] is not solvable, according to whether 23 | x+ d, 23 | x+ 5d or ord2(x+ d) = ord2(x+ 5d),
respectively. If 3 | x+ d, then [0, 2, 6], [2, 5, 6] or [2, 4, 6] has no solution, according to whether
23 | x+ 2d, 23 | x+ 6d or ord2(x+ 2d) = ord2(x+ 6d), respectively. This completes the proof of
the k = 8 case.

The cases of k = 9, 10, 11. In view of P (b)≤ 7, (1) implies (3) with P (ai)≤ 7 for each i. Hence
we deduce from (1) that

Π(0, 1, . . . , k − 2) = b2y
5
2, (29)

where b2 and y2 are non-zero integers with P (b2)≤ 7. We can now proceed by induction on k.
For k = 9, we apply to (29) the results we proved above in the k = 8 case and infer that all the
solutions of (1) with d≥ 2 are given by d= 2, x ∈ {−9,−7}. For k = 10 we obtain in a similar
fashion that d= 2 and x=−9, while for k = 11 we do not get any solution for (1).

The cases of k = 12, 13. First we suppose that at most one factor, say x+ id, is divisible by 11.
Then 11 - ai, and we get (29). Using induction on k again, we infer that in these cases (1) has
no solution. If two factors, say x+ id and x+ jd with i < j, are divisible by 11, then we deduce
from (1) that

Π(i+ 1, . . . , j − 1) = b3y
5
3, (30)

where j = i+ 11 and b3 and y3 are non-zero integers with P (b3)≤ 7. We can now apply the
results we obtained for k = 10, and it follows that no new solutions of (1) arise.
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The cases of k ≥ 14. From this point on, it is definitely worth algorithmizing the proof and using
a computer. We execute the following tests; as they are rather similar to those employed in case
of n≥ 7, we use the same notation.
(5, 5, 5)-sieve I–II. We apply the sieves (n, n, n)-sieve I and (n, n, n)-sieve II as in case of
n≥ 7, but consecutively. As the underlying Propositions 2.4 and 2.5 are valid also for n= 5, this
can be done without any restrictions.
(5, 5, 5)-sieve III. This is a new sieve. From this point on we work with π(k − 1)-tuples T ∗

of the same type (mπ(k−1), . . . , m1) as in ‘(n, n, 2)-sieve I’ in the proof of Theorem 1.2; that
is, mj satisfies (24) for j ≥ 3 and (25) for j = 1, 2. For each such π(k − 1)-tuple T ∗, we check
whether it is possible to find three terms of the arithmetic progressions under consideration such
that their linear combination leads to an equation of the form

X5 + Y 5 = CZ5

with P (C)≤ 5. If we can find such terms, then the corresponding π(k − 1)-tuple T ∗ and the
k-tuples (a0, a1, . . . , ak−1) can be excluded by Proposition 2.7. (We can easily take care of the
cases corresponding to part (i) of the proposition.) If a π(k − 1)-tuple T ∗ cannot be excluded in
this way, we put it into a set S.
Sieve modulo 11. Similarly as in ‘Local sieve’, we test all elements of S locally. In this case,
we can obviously use the prime 11 because of (28). With the aid of the same method as in the
proof of Theorem 1.2, all π(k − 1)-tuples in S and hence all the k-tuples (a0, a1, . . . , ak−1) can
be excluded; thus the proof is complete. 2

Proof of Theorem 1.1. We must prove that for 3< k < 35 and b= 1, (1) has no solution in positive
integers x, d, y and n. Suppose that such a solution exists. By the result of Erdős and Selfridge,
we have d > 1. Further, as was mentioned earlier, we may assume without loss of generality
that n is prime. If n= 2 or n= 3, then the statement immediately follows from Theorem B or
Theorem C, respectively. In case of n= 5, Theorem 1.1 is a consequence of Theorem A and
Theorem 1.3. Finally, for any prime n≥ 7, Theorem A and Theorem 1.2 together imply the
assertion. 2
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K. Győry, L. Hajdu and Á. Pintér
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