SOME RELATIONSHIPS BETWEEN FILTERS*

Ivan Baggs

(received November 29, 1966)

A filter is a set theoretical concept and as such, its structure is independent of any topology which can be put on the given space. However, an O-filter, whose counterpart in the theory of nets is the O-nets of Robertson and Franklin [2], is defined with respect to the topology on the given space. The purpose of this paper is to give necessary and sufficient conditions for every O-filter to be an ultrafilter and for every Cauchy filter to be an O-filter.

1. <u>Definition</u>. A filter \mathcal{F} on a topological space (x,τ) is an <u>O-filter</u> if and only if for every open set $G \in \mathcal{F}$, either G or $G \in \mathcal{F}$.

It is clear that every ultrafilter is an O-filter. Robertson and Franklin [2] have given an example to show that an O-filter is not necessarily an ultrafilter.

2. LEMMA. If every O-filter on a topological space (X,τ) is an ultrafilter then (X,τ) is T

<u>Proof.</u> Assume (X,τ) is not T_o . This implies for some $x,y\in X$ and $x\neq y$, each is a limit point of the other. Under this assumption we will construct an O-filter $\mathcal F$ which is not an ultrafilter as follows: let (i) $\{x,y\}\in \mathcal F$; (ii) for every open set $G\in \mathcal T$, if $\{x,y\}\subset G$ then $G\in \mathcal F$, otherwise $G^c\in \mathcal F$. Clearly $\mathcal F$ is an O-filter. But since neither $\{x\}$ nor $\{x\}$

Canad. Math. Bull. vol. 10, no. 2, 1967

^{*}An extract from the author's Masters thesis. The author gratefully acknowledges the help given by Dr. S.A. Naimpally.

belongs to F, F is not an ultrafilter.

3. LEMMA. Let (X, τ) be a topological space with at least three elements and such that $\{z\}$ is open for all $z \in X$ except z = x and z = y. If at most one of x and y is a limit point of the other then every O-filter is an ultrafilter.

<u>Proof.</u> Without loss of generality we may assume that every open set containing y also contains x, but there exists an open set N_x , containing x, which does not contain y. Let \mathcal{F} be an O-filter on X. If \mathcal{F} is not an ultrafilter then there exists $A \subset X$ such that neither A nor $A^c \in \mathcal{F}$. Clearly one of x and y is in A and the other in A^c , since neither A nor A^c is open. Assume $x \in A$ and $y \in A^c$.

Let N be an arbitrary open neighbourhood of y. Then we prove that both Ny and N belong to \mathfrak{F} . For, assume $\overset{c}{N_y} \in \mathfrak{F}$. Then, since $(A \cup N_y)^c \subset \overset{c}{A}^c$ and $(A \cup N_y)^c$ is open, and since $\overset{c}{A}^c \notin \mathcal{F}$, clearly $A \cup N_y \in \mathcal{F}$. But then $(A \cup N_y) \cap N_y^c$, which is a subset of A , is also in \mathfrak{F} . Hence $A \in \mathcal{F}$, a contradiction. Similarly $N_y \in \mathcal{F}$.

Hence $P = N_x \cap N_y \in \mathcal{F}$. If P were a subset of A or A^C then A or A^C would belong to \mathcal{F} . Hence R and S are non-empty where $R = A^C \cap P$ and $S = A \cap P - \{x\}$. Since R and S are open and contained in A^C and A respectively, R^C and S^C must both belong to \mathcal{F} . Hence $\{x\} = P \cap R^C \cap S^C \in \mathcal{F}$, implying $A \in \mathcal{F}$. Therefore \mathcal{F} is an ultrafilter.

Combining Lemmas 2 and 3, we obtain the following:

4. THEOREM. Let (X,τ) be a topological space containing at least three elements all of which are open except $\{x\}$ and $\{y\}$. Every O-filter on X is an ultrafilter if and only if at most one of these points is a limit point of the other.

The following lemma follows from Definition 1.

5. LEMMA. A filter $\widetilde{\mathcal{F}}$ on a topological space (X, τ)

is an O-filter if and only if for each cover $\left\{H_i^{}\right\}_{i=1}^n$ of X , where each $H_i^{}$ is either open or closed, then $H_i^{}$ ε for some i .

It is easy to construct an example of a Cauchy filter which is not an O-filter (see e.g. Baggs [1]).

We now give a necessary and sufficient condition for a Cauchy filter on a complete uniform space to be an O-filter.

6. LEMMA. Every convergent filter on a topological space (X, τ) is an O-filter if and only if every open set is also closed.

<u>Proof.</u> Let every convergent filter be an O-filter. Let U be an arbitrary open set on X. We will show that U^C is open. By assumption every neighbourhood filter on X is an O-filter. If x is an arbitrary member of U^C , U is not a member of N(x), the neighbourhood filter of x. Hence $U^C \in N(x)$. Therefore there exists an open set V such that $x \in V$ and $V \subseteq U^C$. Since this is true for every $x \in U^C$, U^C is open.

Conversely, let every open subset of X be closed. Let $A \in \Upsilon$ and $\mathcal F$ be a convergent filter on X. For some $x \in X$, every neighbourhood of x is a member of $\mathcal F$. But since A is both open and closed, x has an open neighbourhood contained in either A or A^C . Hence A or $A^C \in \mathcal F$.

7. COROLLARY. In a complete uniform space every Cauchy filter is an O-filter if and only if every open set is closed.

Following the method of Sieber and Pervin [3], the following theorem can be easily shown:

- 8. THEOREM. Let (X, u) be a quasi-uniform space. The following are equivalent.
 - (i) (X, u) is precompact.
 - (ii) Every O-filter is a Cauchy filter.
 - (iii) Every ultrafilter is a Cauchy filter.

REFERENCES

- 1. I. Baggs, Nets and Filters in Topology. Masters thesis, University of Alberta, Edmonton, 1966.
- 2. L. C. Robertson and S. P. Franklin, O-sequences and O-nets. Amer. Math. Monthly, 72 (1965), 506-510.
- 3. J.L. Sieber and W.J. Pervin. Completeness in quasi-uniform spaces. Math. Ann., 158 (1965), 79-81.

University of Alberta, Edmonton