
Live Coding Patterns and a Toolkit for
Pure Data

ANDREW R. BROWN

Griffith University, South Brisbane, Australia
Email: andrew.r.brown@griffith.edu.au

Creative activities often involve specific processes and
techniques that reflect the unique nature of the activity. For live
coders, these processes and techniques can be expressed as
algorithms and functions in live coding languages. In many
fields, these idiomatic processes are referred to as design
patterns. Design patterns are important to understand because
they can structure thought and direct users towards particular
outcomes. This article examines the design patterns in live
coding practices and languages, specifically focusing on the
Live Coding Toolkit for Pure Data. Pure Data is a visual
programming language, but few live coders have traditionally
used it. This article explains how the Live Coding Toolkit
allows Pure Data to effectively express the patterns of practice
required for successful music live coding performance.

1. INTRODUCTION

Design patterns are abstractions that capture idio-
matic tendencies of practices and processes. These
abstractions are embedded in live coding languages as
functions and syntax, allowing for the reuse of these
practices in new projects. The use of idiomatic patterns
is well established in musical practices; for example,
in playing acoustic instruments and compositional
techniques (Sudnow 1978; de Souza 2017). Music live
coding adopts some of these and introduces new
patterns particular to the demands of coding
as performance. The variety of syntax and user
interfaces across live coding languages can obscure
the similarities between them. Identifying design
patterns common across live coding languages can
demystify any superficial diversity and provide
guidance in the development of new languages.
Understanding these patterns can aid in the design
and use of live coding systems and provide a
framework for analysing live coding independent of
the programming language. This article discusses the
development of such a framework and the creation of
a new toolkit for live coding in the Pure Data (Pd)
programming language, which is a visual language
used for creating real-time interactive media
(Puckette 1996).

McPherson and Tahıroğlu (2020) point out that all
music technology systems afford idiomatic practices.
Following Heidegger (1977), such affordances are

widely acknowledged as a principle of technological
thinking and practice. Heidegger considered technol-
ogies to be a form of ‘enframing’, a way of fixing a
perspective, and that such framing is ‘revealing’ of an
underlying understanding. Design patterns similarly
make concrete our perceptions of what is afforded to
us and/or the way we organise our world. The use of
design patterns in live coding languages allows for
(even promotes) certain musical outcomes, making the
choice of design patterns crucial for the effectiveness of
the language. This article examines the patterns
commonly found in live coding performances and
how they are implemented in code, using the Live
Coding Toolkit (LCT) for Pd as an example.1

The design of live coding mini-languages plays a
crucial role in shaping live coding practices, similar to
how Norman (1988) describes how the design of
products and interfaces can influence their usage. He
builds on the insights of J. J. Gibson from behavioural
psychology that individuals perceive opportunities for
action in the environment and that actions are
determined by the possibilities that can be seen.
During live coding performances, the decisions made
about the progression of music are influenced by the
performer’s understanding of the capabilities and
opportunities presented by their tools, as well as their
skill in utilising them.
Music live coding languages are designed to

facilitate common musical patterns through the use
of algorithms. This concept is not new, as it is rooted in
the cultural structures of musical organisation, such as
scales, tonalities, meters, and timbres, which have
existed and evolved over a long period of time. Collins
(2018) traces this history of algorithmic music going
back centuries across many cultures. The longevity of
this history can be attributed to the fact that,
as Whitehead observed, ‘Art is the imposing of a
pattern on experience, and our aesthetic enjoyment
is recognition of the pattern’ (Whitehead and
Price 1954: 225). These pattern-making activities are
fundamental to human culture and continue to evolve
in new forms of musical expression, including live

1https://github.com/algomusic/Live-Coding-Toolkit-for-Pure-Data/.

Organised Sound 28(2): 264–275 © The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited. doi:10.1017/S1355771823000365

https://doi.org/10.1017/S1355771823000365 Published online by Cambridge University Press

https://orcid.org/0000-0003-4102-8301
mailto:andrew.r.brown@griffith.edu.au
https://github.com/algomusic/Live-Coding-Toolkit-for-Pure-Data/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1355771823000365
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1355771823000365&domain=pdf
https://doi.org/10.1017/S1355771823000365


coding performance, where performers manipulate
musical structure at both micro and macro levels.
This article primarily focuses on the event-based

organisation of sound and how patterns of notes over
time generate music, but it also takes into account
patterns in sound design and signal processing. The
LCT, which is used as a case study in this article,
implements several event-based functions on top of the
Pd language, which is heavily oriented towards sound
design (Puckette 1996). The role of the LCT in
this article is twofold, its development precipitated
reflection on necessary and appropriate pattern
abstractions, and it also serves as a common exemplar
of implementing of pattern-based considerations
under discussion.

2. MUSICAL PATTERNS AND STRUCTURES

The study of Western musical patterns and structures
is well established in music theory and musicology
(Berry 1976; Temperely 2001), traditionally based on
the analysis of written scores. Live coding mini-
languages, on the other hand, are a form of musical
notation articulated in a programming language
(textual or visual) and interpreted by a computer in
real-time. These notations often describe patterns
and processes that generate individual events. For
example, Tidal Cycles succinctly represents grouping,
repetition and concurrency using the symbols [, *, and
. respectively. As in this code snippet: p “demo” $ s
“[bd*3. hh:2*2]. hh*4 cp”. Live coding lan-
guages describe what Taube calls the ‘musical
metalevel’, where the notation represents not just
the composition but also the ‘composition of the
composition’ (Taube 2004: 3).
The design of computer languages for algorithmic

composition has a long history, dating back to the
1960s and 1970s with the development of languages
such as the MUSIC series by Max Mathews and
others, which used a component-based architectural
metaphor. Other languages such as CMIX by Paul
Lansky (1990) and CSound by Barry Vercoe and
others, separated sound and events into ‘score’ and
‘instrument’ or ‘orchestra’, and Common Lisp Music
by Bill Schottstaedt and others followed theMUSIC V
approach of using lists of ‘notes’ to control sound
generators. Puckette notes that the design of music
languages involves balancing performative and com-
positional goals, with the relationship between
processes and data being a key factor. He argues that
the original goal of Pd was to ‘remove the barrier
between event-driven real-time computation and data’
(Puckette 2004: 4). The LCT, introduced in section 6
and built on Pd, also aims to remove this barrier by
encapsulating both process (algorithms) and data into
a single object (abstraction).

In the 1980s, composers recognised the need for
languages to support the creation and manipulation
of musical patterns and structures beyond sound
synthesis (Loy and Abbott 1985). Spiegel, for example,
proposed the development of ‘a basic “library” consist-
ing of the most elemental transformations which have
consistently been successfully used on musical patterns’
(Spiegel 1981: 19). She outlined suggestions for
processes and patterns that such a library might contain.
Wishart, in his book On Sonic Art (1985), provided an
analysis and tutorial on various techniques of computer
music composition. Patterns such as these were
incorporated into computer music languages, including
those designed for live coding, such as Impromptu
(Sorensen and Brown 2007). More recently, techniques
from electroacoustic music have been joined by patterns
commonly found in popular music and electronica, as
evident in Algorave performances within the live coding
community.
McPherson and Tahıroğlu (2020) investigated the

impact of computer music language design and the
patterns they emphasize, on composition and perfor-
mance practices. They posit that there is ‘a complex
interplay between language, instrument, piece, and
performance’ (ibid.: 53) and that the creators of music
programming languages should be considered as
active participants in this creative conversation.
This conversation involves three parties: the human,
the computer and the language.

3. SHARED AGENCY

Live coding languages are designed to provide the
performer with agency over the musical outcome.
However, there is always a degree of agency in the
language itself, and many algorithmic processes are
specifically intended to provide the computer with
influence (agency) over the outcome; for example,
with the use of random functions. The emphasis on
agency in language design often prioritises performer
expressivity and flexibility, but it can be at odds with
simplicity and readability. As previously argued by
Brown (2016), when code is abstracted into black
boxes, as is done in the LCT and other domain-specific
languages, it limits access to direct manipulation of the
algorithm. This creates a tension between a language’s
ability to empower a sense of agency in the performer
and the algorithmic power of automation within the
language. It may be that agency is a limited resource
and that a balance needs to be found between the
influences of the language, the machine, and the
musician.
Handing over agency to the machine is a funda-

mental aspect of algorithmic and generative arts.
For many live coders, the excitement of performance
stems from the risks and rewards of unexpected

Live Coding Patterns and a Toolkit for Pure Data 265

https://doi.org/10.1017/S1355771823000365 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000365


outcomes. Live coding shares this embrace of
the unexpected with other improvisational perfor-
mance practices, while recognising that performances
are a partnership between human and machine. The
main difference being that a machine actor may not
recognise an inappropriate outcome in the way a
human actor might. From one perspective, the goal of
a live coding language is to allow the machine to take
control of the surface-level details of the performance,
allowing the human performer to focus on issues such
as development, structure, momentum and aesthetics.

Agency also exists in the pattern languages used in
live coding music. These patterns (functions), inherent
in mini-language elements, are partially replications of
often-used techniques and habits, but they also have
the potential to be used in new ways for new outcomes.
The architect Christopher Alexander first noted this in
his observations of how farmers build barns, writing
that ‘patterns in our minds are, more or less, mental
images of the patterns in the world: they are abstract
representations : : : The patterns in the world merely
exist. But the same patterns in our minds are dynamic.
They have force. They are generative’ (Alexander
1979: 181–2). This view of the suggestive power of
patterns has an element of technological determinism,
similar to Heidegger’s idea of ‘thrownness’ inherent in
all encounters with technologies (Heidegger 1977).
However, even though languages and patterns have a
directionality or affordance, each person uses the
language differently and draws on their own skills and
aesthetic preferences, enabling them to create a work
that is unique to them.

4. DESIGN PATTERNS

Design patterns are ‘the core abstractions from
successful recurring problem solutions’ (Riehle 1997:
218). Abstractions articulated as algorithmic processes
are frequently discussed in the context of live
coding. The inclusion of specific pattern-generating
structures in mini-languages is a significant aspect of
their differentiation, along with syntax and interface
choices. In relation to design patterns for live coding,
Roberts and Wakefield argue that ‘abstractions are
not merely structural convenience: through their
constraints and affordances, abstractions effectively
present a model of a world with which a live coder
maintains discourse’ (Roberts and Wakefield 2018:
303).

In Alexander’s original conception, pattern lan-
guages were developed to capture well-tried solutions
to common design problems in urban architecture.
For Alexander, design patterns in architecture were a
ubiquitous, if at times unconscious, tool for ensuring
design quality:

[E]very building, every town, is made up of certain
entities which I call patterns: and once we understand
buildings in terms of patterns, we have a way of looking
at them : : : Second, we have a way of understanding the
generative processes which gave rise to these patterns : : :
these patterns always come from certain combinatory
processes, which are different in the specific patterns they
generate, but always similar in their overall structure, and
in the way they work. (Alexander 1979: 11)

According to Alexander, the real work of any design
process is the creation of a language, due to its ability
to influence the generation of designs that use it. This
may partly explain the numerous mini-languages for
live coding, including the LCT.2 Beyond personal
preference for certain programming languages, it is
likely that certain patterns of musical structure appeal
to different musicians’ concepts of music and stylistic
preferences. For example, it appears that within the
live coding community, those producing dance-like
metrical music tend to gravitate towards languages
that prioritise clear cyclic (repetitive) structures and
sample-based sounds, such as Sonic Pi (Aaron and
Blackwell 2013), ixi lang (Magnusson 2011), or Tidal
Cycles (McLean 2014), while those producing work
focused on arhythmic timbral exploration tend to
gravitate towards languages that prioritise synthesis
and signal processing, such as SuperCollider
(McCartney 2002) or Pd.
In the 1990s, design patterns gained popularity in

software development circles, particularly in Silicon
Valley, California, near where Alexander resided, as a
way to describe reusable coding structures that could
be applied to various situations (Gamma, Helm,
Johnson, Johnson and Vlissides 1994). Following this
trend, Dannenberg and Bencina (2005) explored
design patterns for computer music systems, with a
focus on optimal scheduling algorithms. More
recently, Magnusson and McLean (2018) examined
patterns in computer music, using examples from their
languages ixi lang and Tidal Cycles. They concluded
that such domain-specific languages are a double-
edged sword, as they can scaffold the building of
musical structures while also directing compositions
and performances down predefined pathways.

5. PERFORMANCE CONSIDERATIONS

Ultimately, live coders must navigate the practical
challenges of making music in the high-pressure
setting of live performance, using code that was not
originally intended for such scenarios. In my experi-
ence, audiences’ reactions to live coding are most
extreme for professional computer programmers, who
understand the importance of trial and error in coding

2https://github.com/toplap/awesome-livecoding.

266 Andrew R. Brown

https://doi.org/10.1017/S1355771823000365 Published online by Cambridge University Press

https://github.com/toplap/awesome-livecoding
https://doi.org/10.1017/S1355771823000365


and debugging and are amazed by the risks taken to
get the syntax right, first time, during live coding.
There are some important considerations driven by

the practicalities of live performance that play into the
design of live coding mini-languages. These practical-
ities have as much sway as the more philosophical
concerns of abstraction and agency. Many of these
considerations are covered in some detail by Roberts
and Wakefield (2018) and those that relate specially to
design pattern choices are highlighted in this section
with some discussion of how the LCT treats these issues.
Automation is a fundamental aspect of computer

programming, and for live coding it is essential for
creating music so that the performer can focus on
writing new code or modifying existing code. Live
coding environments need to prioritise time as a key
factor, and many general-purpose programming lan-
guages neglect time in favour of order of execution,
assuming that as-fast-as-possible is all that is necessary
in terms of temporality (Sorensen and Gardner 2010).
The LCT is fortunate in that Pd, the language it is built
on, already pays close attention to time and scheduling
of events. However, as we will see, the LCT’s functions
provide a concise way of sequencing note events
temporally. Hot swapping of code is closely related to
automation. It refers to the ability to replace one
operating function on the fly with another without
interruption. This is in contrast to conventional
computer programming where applications are halted
to allow recompiling and then run again. Each live
coding environment manages hot swapping in its own
way. In the case of the LCT, and in Pd more generally,
direct hot swapping of node graphs is not possible,
although hot swapping of single objects is and PD is
designed as a real-time system. Live parameter changes
are well supported, and workarounds for relatively
seamless substitution of new graph organisation are
possible. However, these may not be idiomatic to
standard Pd development processes, so using it in a live
coding context requires special attention to ensure
interruptions are minimised when editing or adding to
a patch.
Efficiency in quickly creating a well-formed musical

process is crucial in live coding as the timely initiation
and progression of the work is essential for keeping the
music engaging and the audience interested. In a live
coding performance, a musician typically has a limited
amount of time to write a piece, usually working on it
while it is being performed. A significant factor in
selecting design patterns for a mini-language is to
provide ready-made functions for processes that might
otherwise be time-consuming to repeatedly hand-code
in each performance. This allows for more time to
focus on the creative aspects of the performance.
Designing live coding mini-languages is a delicate

balance between simplicity and flexibility. Live coding

practice has been shown to require high cognitive load
from performers, making it more challenging com-
pared with instrumental performance (Sayer 2016).
Fluency in touch typing can help alleviate some of this
cognitive load, but it still requires a high level of
conscious decision-making. For this reason, designers
of live coding mini-languages must consider the
balance between ease of use and expressiveness.
Providing fewer choices can simplify the process but
limit the musical outcomes. In the design of the LCT,
this balance was evident at both the micro and macro
levels. Each abstraction aimed to keep the number of
inputs and outputs small to improve learnability and
reduce errors. At the macro level, the desire to keep the
library compact was balanced with the need to provide
patterns for different stylistic contexts. However, this
led to an increase in the number of objects over the
development period to meet the demands of different
musical situations.
Another language design factor effecting the cogni-

tive load during live coding performance is the
readability of code. In this regard, an advantage of
text-based languages is that variables and functions
can be given arbitrary names allowing easier identifi-
cation of their purpose; for example, a sequence could
be called ‘bassline1’. In Pd and other visual languages,
objects have fixed names with the downside that each
instance can look similar. While comment text blocks
can be added in Pd to annotate the patch, another way
around this situation is to add an additional argument,
which will be ignored by the computer, as a name to
an object; for example [cycle 60 100 4] can be [cycle 60
100 4 baseline1].
In all languages there is a challenge surrounding the

number and order of arguments. Typically, there are
little or no cues for what these arguments should be so,
again, succinctness and consistency aids memory.
One interesting solution to this is Extempore’s
(Sorensen 2018) use of code snippets that insert
boiler-plate code for particular patterns in the editor
with placeholder defaults for arguments. The partial
solution in the LCT is to have reasonable defaults for
all parameters and make arguments optional so that it
is straightforward to get the music started.
The live coding manifesto implores performers to

‘show us your screens’.3 The visual clarity of node-
based visual programming languages, such as Pd, may
be considered an advantage to audience appreciation
of the algorithmic processes, however, these languages
can become confusing as patches become more
complex, leading to the argument that they do not
scale well. The time pressures of live performance can
exacerbate this issue, making it difficult to maintain
neatness and organisation. Pd editing commands such

3https://toplap.org/wiki/ManifestoDraft.

Live Coding Patterns and a Toolkit for Pure Data 267

https://doi.org/10.1017/S1355771823000365 Published online by Cambridge University Press

https://toplap.org/wiki/ManifestoDraft
https://doi.org/10.1017/S1355771823000365


as Duplicate the Triggerize (to insert a node on a
connector) can assist efficient live coding and the high-
level abstractions in the LCT aim to address this
complexity by reducing the number of objects required
and improve the live coding experience.

Many live coding environments have explored
adding GUI elements to enhance the text-based
coding interface (Roberts, Wakefield, Wright and
Kuchera-Morin 2015). Visual programming environ-
ments, such as Pd, may provide an advantage for live
coding by offering GUI elements, such as sliders and
buttons, to interact with the program. This allows for
a more direct way of varying parameters and adjusting
audio levels compared with typing numbers.

6. INTRODUCING THE LIVE CODING
TOOLKIT FOR PURE DATA

The LCT is a mini-language built within Pd that
provides a library of abstractions to support musical
live coding. Pd uses a dataflow style of programming,
where a visual graph of objects with specific functions,
such as mathematical operators or MIDI message
parsers, make up a program known as a ‘patch’ in Pd.
The LCT includes Pd patches that appear as objects
that can be added as an extra library of functions for
Pd programmers to use. These functions include
operations such as cycling through a data list, pitch
quantization, generating probabilistic sequences and
simple predefined synthesizers. Some of the LCT
abstractions will be discussed in later sections of this
article.

Because Pd is already a music-specific language, it
may be unclear why a live coding toolkit is necessary.
When building a live coding tool on top of general-
purpose computer programming languages, sound and
time are often low priorities that need to be addressed.
Pd, however, already prioritises both. While Pd is
oriented towards sound design and music composition,
the LCT is a library designed to complement Pd’s
strengths in these areas. Pd supports event-based
organisation, but lacks many event-based pattern
primitives found in other live coding languages. The
LCT provides some of these missing primitives.

The live coding community has many mini-lan-
guages,4 which, like the LCT, are built on top of an
underlying programming language. Designing a
domain-specific language requires the developers to be
explicit about decisions regarding possibilities for music
organisation and structure and to offer specific functions
for music-making. All mini-languages provide such a
vocabulary for musical thinking and expression.

The LCT for Pd is a high-level language that aims
for simplicity and efficient expression, not unlike other

live coding languages, including ixi lang, Tidal,
ChucK (Wang and Cook 2003), Gibber (Roberts
and Kuchera-Morin 2011), Fluxus (Griffith 2007),
FoxDot (Kirkbride 2016) and Sonic-Pi.
Most music live coding languages are text based,

which is advantageous as text can be flexible and
expressive. Pd, as a visual programming language, has
its own advantages, such as a more graphical data flow
representation and being less prone to minor syntactic
errors. However, patching, which is usually done with
a single mouse pointer, can be slower than typing in a
text-based language. The LCT offers higher-level
building blocks for common live coding patterns that
can help compensate for the slower pace of patching
while retaining many of the benefits of visualising data
flow. Additionally, text-based live coding allows for
significant edits to a function prior to re-evaluation, a
technique that was established early in the develop-
ment of live coding practices (Collins 2003) and
refined over time (Sorensen, Swift and Gardner 2014).
In patching environments such as Pd, updates to node
connections take effect immediately, so the process of
editing a patch involves techniques specific to those
environments. These techniques include concurrent
connection–disconnection of nodes, preparation of
default values for Number boxes prior to connection
to avoid discontinuities in parameter changes, and
copying and modifying patch network sections for
subsequent replacement.
Since Pd is already a powerful sound synthesis

library, the LCT includes some basic synthesizers
(pitched and percussion) written in Pd, similar to how
other live coding mini-languages include sound
generators written in SuperCollider. Users can also
create their own sound patches in Pd. It also includes
MIDI input and output pathways for controlling
parameters with external MIDI controllers and
outputting musical event triggers to external audio
plugins and synthesisers. Given the improvisational
and compositional focus of the LCT and many live
coding practices, the next section of this article will
explore design patterns and processes commonly
found in live coding practices and included in
the LCT.

7. LIVE CODING DESIGN PATTERNS

Like any practice, live coding relies on certain
conventions and tropes, referred to here as design
patterns. This is not to say that all live coding is the
same, as the outcomes of live coding are certainly
diverse, but rather that the task of creating algorithmic
music as a real-time performance requires specific
solutions. In the following sections, a variety of these
common patterns will be discussed and how they have
been implemented in the LCT will be outlined.4https://github.com/toplap/awesome-livecoding#languages.

268 Andrew R. Brown

https://doi.org/10.1017/S1355771823000365 Published online by Cambridge University Press

https://github.com/toplap/awesome-livecoding#languages
https://doi.org/10.1017/S1355771823000365


7.1. Timing

Keeping time is fundamental to all musical practices.
Every live coding language has a method for keeping a
steady pulse and scheduling events. The technical
details of these processes are often quite low level in
the programming environment. For example, the
computer processor clock is typically very fast and
very accurate, yet operating system timers built on this
often need to compromise on time accuracy when
managing a multi-threaded environment, audio pro-
cesses may not be the highest priority in these
environments, and programming languages add yet
another layer of execution prioritisation (Dannenberg
and Bencina 2005; Sorensen and Gardner 2010).
Many musical genres rely on a single clock to keep
parts in time while multiple time bases or variations in
timing are used for more experimental forms of music.
The LCT Tempo abstraction uses Pd’s Metronome

object as the foundation for its timing, but with the added
feature of a Tempo abstraction. This Tempo abstraction
changes the default time measurement to beats per
minute, and also allows for beat subdivision/multiplier
value for the output pulse. The Tempo abstraction
outputs a standard Bang message, an incrementing beat
counter, an inter-onset timer and a reset trigger on start,
which is useful for synchronising with other objects.
While one Tempo object is sufficient when parts are
synchronised, multiple Tempo objects can be used. The
patch in Figure 1 demonstrates an implementation of
Steve Reich’s Piano Phase duet, which uses two Tempo
objects set to ¼ beat pulses (semiquavers/sixteenth notes)
and can be set to different tempi to produce Reich’s
desired effect of one instrument speeding up while the
other stays at a fixed tempo, which shifts the parts
through different temporal phase relationships.

7.2. Periodicity

Periodic patterns, like those described by trigonometry
and more straightforward cyclic repetitions, are

prominent in many natural systems and found in
many aspects of music and acoustics (Milne 2018).
In music, these are found in the undulating pulsation
of a low frequency oscillator for vibrato or tremolo
effects, they can outline the rise and fall of melodic
contours and can represent the dynamic pulsation of
metric rhythms.
In live coding contexts, Periodic motion is a

common pattern, especially in the Extempore envi-
ronment where the cosr function is frequently used for
various musical purposes. The LCT has a Periodic
abstraction that generates output following a stepped
cosine shape and is controlled by the Tempo object.
Arguments and inputs such as the number of steps in a
cycle, the centre of the range, and amplitude deviation
can be specified. Figure 2 shows an example patch
where the Periodic object controls the rise and fall
of the cutoff frequency on a filtered noise tone.
Arguments to the Periodic object in this patch are
expressed as MIDI pitch values, which are then
converted to frequencies and sent through a smooth-
ing process to the filter cutoff.

7.3. Cycles

Looping is a common pattern in musical live coding
and electronic and popular music genres. There are a
wide range of ways to implement cyclic patterns and
variations in complexity, from simple looping phrases
in ixi lang, to nested for-loops in Sonic Pi, Extempore’s
use of temporal recursions, and Tidal Cycle’s extensive
cycle manipulation options.
The Cycle abstraction in the LCT is a simple

approach to sequence looping. It takes a list of values
and outputs them in order, and loops back to the
beginning when it reaches the end of the list. Lists of
values are passed in with a Pd Message object or they
can be returned from a Pd Array.
A common feature of cycling operations in live

coding is the ability to separate note parameters,

Figure 1. An implementation of Piano Phase in the Live
Coding Toolkit for Pd.

Figure 2. A ‘beach wind’ LCT patch using slow periodic
oscillation of a resonant low pass filter cutoff.

Live Coding Patterns and a Toolkit for Pure Data 269

https://doi.org/10.1017/S1355771823000365 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000365


which are typically combined in Western notation. In
the LCT, different lists can be used for pitch, dynamic
and duration, allowing them to cycle independently.
This approach is demonstrated in Figure 3, where
there are three pitches, two dynamic values and six
duration values, which can cycle out of phase within
the same Cycle abstraction.

The separation of note attribute parameters also
allows data from one dimension to be easily varied
while maintaining consistency elsewhere. For exam-
ple, changing the pitch sequence while maintaining the
rhythm. These techniques support an evolutionary
development of the music without the need to re-
specify every event each time.

7.4. Indeterminacy

The use of pseudo random numbers and probabilistic
distributions is common in algorithmic and generative
music and other media, as it provides variety and
unpredictability that is often highly valued in this style
of music. This idea of indeterminacy has a long history
in music composition, from musical dice games to the
use of stochastic procedures by Iannis Xenakis (1971).
Most programming languages have a built-in random
function, which is also inherited by live coding mini-
languages. The LCT is no exception, it has the Rand
abstraction that builds on Pd’s Random object and
includes three different random outputs: a linear
distribution, a gaussian distribution and a random
walk. These were selected as they appear most
frequently in literature on algorithmic composition
(Dodge and Jerse 1997; Taube 2004; Gifford, Brown
and Davidson 2013). Additionally, the LCT has
the RandSeq and RandChord abstractions, which
generate a linear random sequence or set of a specified
size and value range. The RandSeq output can be
passed to a Cycle abstraction for looping playback,

and the RandChord output can be passed to the
PolySynth∼ or Midi abstraction for playback.
The patch in Figure 4 shows an extensive use of the

LCT’s Rand abstraction applied to many parameters
and the use of RandSeq for the pitch sequence.
The sound source is a noise modulated sawtooth
waveform made of Pd objects.

7.5. Branching

Building on the use of probabilistic parameter choices,
we now focus on probabilistic transitions between
processes. Branching, in which decisions are made
(even at random) to move in one direction or another,
is a powerful organising pattern in algorithmic
systems. This probabilistic branching process is the
foundation for Markov models, state transition net-
works and timed Petri nets. These structures are often
used to determine the statistical character of a work or
section of it, and the probabilities used can be derived
from the analysis of existing works, providing a
compact way to embed those tendencies.
The LCT includes the Direct abstraction to support

the creation of these probabilistic branching models.
The Direct abstraction is a simple, four-way branching
node. It takes a signal (value) to be redirected in one
inlet and the branch number (outlet) to send it to in the
other inlet. Typically, the output is processed through
some decision system to choose the next branch
value, which is passed back in for the next event. This
recursive process continues. An example of this can be
seen in Figure 5, where an incrementing counter is fed
into the left inlet of the Direct abstraction and the
outlet number is provided in the right inlet. From each
output, a Bang message is sent to trigger a particular
percussive sound, and as input for an algorithm that
decides the next branch number.

8. EVALUATION

A series of studies were conducted to evaluate the
LCT, and the functions written for it that articulate
the musical patterns outlined in previous sections.
These studies were designed to ensure that the LCT
and its functions were suitable for their intended
purpose. The studies covered a range of musical genres
commonly used in live coding and each focused on
different library abstractions (functions). Each study
involved a period of testing and composing, followed
by a from-scratch narrated live coding ‘performance’.
Videos of each study are available online.5 A summary
of the studies and the LCT features they were designed
to test is outlined in Table 1.

Figure 3. The LCT Cycle abstraction accepts lists of values
for pitch, dynamic and duration.

5https://youtu.be/070_kvkYp6o.

270 Andrew R. Brown

https://doi.org/10.1017/S1355771823000365 Published online by Cambridge University Press

https://youtu.be/070_kvkYp6o
https://doi.org/10.1017/S1355771823000365


The method for this evaluation involved a combi-
nation of autoethnographic reflection and user testing
(Ellis, Adams, and Bochner 2011). Specific evaluation
criteria were used, including patch robustness, suc-
cinctness, consistency and flexibility. My reflections
on these trials are also informed by my experience live
coding since 2005. Although the process is inherently
subjective, the technical corrections and feature
modifications made as a result were as much about
resolving systemic issues and ensuring interoperability
as they were about personal musical or coding
preferences. The availability of the videos for each
study walk-through increases the integrity of the

investigations because it allows the reader to review
the data and check the reported results against these.
During the four-month evaluation period, over
160 changes were made to the library, as documented
in the Github repository.

8.1. Supporting design patterns within Pd

For consistency with Pd naming conventions, a tilde
(∼) was added to the name of all audio objects. This
applied to objects used for sound synthesis/playback,
signal effects and audio output, including synth∼,
fm∼, sampler∼, echo∼, panner∼ and out∼.

Figure 4. An LCT patch that makes extensive use of the random-based abstractions to create a chaotic soundscape.

Figure 5. The Branch abstraction is at the centre of a transition network that determines a rhythm pattern playing three
synthesised drum kit sounds.

Live Coding Patterns and a Toolkit for Pure Data 271

https://doi.org/10.1017/S1355771823000365 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000365


Like all programming languages, objects in Pd, and
thus the LCT, can use a variety of data types for
arguments in both input and output. During the
creation of the studies, it was determined that
abstractions would be more flexible if they could also
accept additional types to those initially assumed, a
technique known as method overloading. For exam-
ple, the Cycle abstraction can handle input from
bangs, floats, integers and lists of numbers, and the
Tempo abstraction can output both bangs and a pulse
counter. To support greater interoperability and
robustness, several LCT abstractions were modified
to overload inputs and provide additional outputs,
such as the Polysynth∼ abstraction, which can accept
either a single pitch or a list of pitches (a chord), and
the Trans abstraction, which can transpose either a
single pitch or a list of pitches (such as a chord or
sequence) and output the corresponding data type.
The studies utilised different sound sources such as

the LCT’s built-in synths and sampler, ‘vanilla’ Pd
audio processes, and MIDI output to synthesisers and
a MIDI-controlled piano. This showcases how the
LCT can utilise Pd’s existing features for different
input–output modalities, and how it can offer a wide
range of timbre and genre flexibility. However, there
are still more capabilities of Pd that were not explored,
including the use of MIDI controller input for
adjusting parameters, audio input for signal process-
ing and collaboration via network communication
using Open Sound Control.
In the final four studies the Hydra web-based

graphics environment6 was used to provide visual
interest to the performance screen. Hydra enables
compositing of a Pd window within the generative
graphics, ensuring the audience can see both the live
patch and the graphics. The Hydra-MIDI script7 was
used to enable MIDI communications from Pd to
Hydra, allowing synchronisation between changes in
the sound and image.

8.2. Supporting musical patterns

The objects in the LCT that implemented common
design patterns, as described in section 4, were found to
be highly adaptable across a wide range of genres in the
studies. The Cycle, Periodic and Rand functions were
heavily utilised and their functionality was refined
during the evaluation stage, but not fundamentally
changed. The complementarity of deterministic and
repetitive processes such as Tempo, Cycle and Periodic
with stochastic functions such as Rand, RandSeq,
RandChord and Gate once again demonstrates the
well-established maxim that aesthetic interest relies on a

T
ab
le

1.
A

ta
bl
e
ou

tl
in
e
of

th
e
liv

e
co
di
ng

st
ud

ie
s
us
ed

fo
r
ev
al
ua

ti
on

an
d
re
fi
ne
m
en
t
of

th
e
L
C
T

S
tu
dy

M
us
ic
al

ge
nr
e

A
bs
tr
ac
tio

ns
fe
at
ur
ed

D
es
cr
ip
tio

n

1
M
in
im

al
is
m

te
m
po

,
cy
cl
e,

m
id
i

St
ev
e
R
ei
ch
’s
P
ia
no

P
ha
se

2
So

ft
ro
ck

pe
ri
od

ic
,
sy
nt
h∼

,
fm

∼
,
dr
um

s∼
,
qu

an
t,
ra
nd

,
de
fe
r,
ga
te

an
d
ou

t∼
M
im

ic
ki
ng

el
em

en
ts

of
a
pe
rf
or
m
an

ce
by

A
nd

re
w

So
re
ns
en

3
N
oi
se

pa
nn

er
∼

an
d
ec
ho

∼
C
on

tr
ol
lin

g
‘r
aw

’
P
d
au

di
o
ob

je
ct
s

4
B
re
ak

be
at

sa
m
pl
e∼

,
po

ly
sa
m
pl
e∼

an
d
ra
nd

ch
or
d

E
xp

lo
ri
ng

ch
or
d
ge
ne
ra
ti
on

an
d
sa
m
pl
e
pl
ay
ba

ck
op

ti
on

s
5

A
m
bi
en
t

ra
m
p
an

d
ra
nd

M
od

ul
at
in
g
ar
hy

th
m
ic

pa
rt
s
w
it
h
ex
te
ns
iv
e
us
e
of

ra
nd

om
ne
ss

6
A
lg
o
da

nc
e

ra
nd

se
q

R
an

do
m
is
ed

sa
m
pl
e
se
qu

en
ce
s
of
te
n
us
ed

in
A
lg
or
av
es

7
So

lo
pi
an

o
di
re
ct

an
d
m
id
i

B
ar
tó
k
in
sp
ir
ed

us
in
g
a
D
is
kl
av
ie
r
pi
an

o
8

A
lg
o
E
D
M

pe
ri
od

ic
an

d
cy
cl
e

Sa
m
pl
e-
ba

se
d
au

di
o
an

d
H
yd

ra
gr
ap

hi
cs

9
Sy

nt
h
gr
oo

ve
eu
cl
id

an
d
pe
ri
od

ic
M
ID

I
sy
nt
h
au

di
o
an

d
H
yd

ra
gr
ap

hi
cs

10
P
op

ch
or
ds

ra
nd

ch
or
d,

cy
cl
e
an

d
eu
cl
id

L
C
T
in
st
ru
m
en
ts

an
d
H
yd

ra
gr
ap

hi
cs

11
N
oi
se

fe
ed
ba

ck
ra
nd

an
d
ra
m
p

M
od

ul
at
in
g
P
d
de
la
y
lin

es
an

d
H
yd

ra
gr
ap

hi
cs

6https://hydra.ojack.xyz/.
7https://github.com/arnoson/hydra-midi.

272 Andrew R. Brown

https://doi.org/10.1017/S1355771823000365 Published online by Cambridge University Press

https://hydra.ojack.xyz/
https://github.com/arnoson/hydra-midi
https://doi.org/10.1017/S1355771823000365


balance of order and chaos. This finding reinforces both
the ubiquity of these processes in the literature on
algorithmic music, and their prevalence in most
(perhaps all) live coding mini-languages.
Several objects were added as it became clear

through composing the studies that certain functions
were repeatedly required. These included:

• randchord – generates and stores a randomised set
of pitches within a range and scale;

• gate – probabilistically let data through so it acts as
a stochastic filter, limiting the data stream;

• gate∼ – probabilistically let an audio signal
through;

• polysample∼ – an eight-voice version of the sample
playback object;

• modrand – triggers one of four outlets at random at
each modulo cycle.

The inclusion of Randchord in the LCT is a logical
addition as it complements the functionality of
Randseq. The use of a probabilistic Gate abstraction,
which is more versatile than Pd’s Spigot object and
which can only be open or closed, is a nod to the use of
more advanced data filters, sometimes referred to as
sieves, by legendary algorithmic composers such as
Gottfried Michael Koenig and Iannis Xenakis. The
Polysample∼ abstraction is consistent with the other
poly versions of ‘synths’ in the LCT. The Modrand
abstraction is used to trigger a random choice at
regular metric intervals, such as on the downbeat of a
measure. It serves as a convenience function that
encapsulates what would typically be a Modulo →
Random → Select network in Pd. During this
evaluation process, examples and help files were
updated for new and modified objects.

8.3. Limitations and further development

During the evaluation process, certain limitations of
the LCT were identified that could not be addressed
without significant changes. These limitations fell into
two categories: procedural and interface restrictions.
Currently, the LCT does not make extensive use of

data storage and data processing. Some areas where it
does include the Randseq, Trans and Sample abstrac-
tions. Randseq stores a sequence of values, Trans does
some advanced list processing to enable diatonic
transposition, and Sample stores audio data and
supports segmentation. However, these are only
limited extensions beyond what is already available
in Pd for list processing or audio data capture and
editing. There are other live coding languages that
better facilitate sequence list manipulations and a few
that support live audio processing. The studies
described here did not require these features, but
there are musical practices that could benefit from

them, so they remain options for future expansion of
the LCT.
During the evaluation, some interface limitations

became apparent, but these issues were not unex-
pected. When creating the series of studies, the number
of inlets and outlets in LCT abstractions meant that it
took time to become familiar with them. Pd does not
include inlet/outlet names and the inlet or outlet does
not indicate the required data type(s), other than the
distinction between data and audio connections. At
present, the goal for the LCT is to keep the number of
inlets and outlets limited, but the experience of
developing the studies showed that even with this,
things can still get confusing. A feature such as pop-up
contextual cues would be useful but is currently not
feasible.
The mouse-based connecting of nodes in the Pd

patch graphs is an inherent limitation in the interface,
though in the studies, the extensive use of auto-
connecting new nodes to selected ones was found to be
very helpful in speeding up patch building. The speed
of patch creation can be improved by using fewer,
higher-level LCT functions; however, the experience
of composing the studies reinforced the importance of
prioritising elegant algorithms. The search for elegant
algorithms is an ongoing challenge for all live coding
practices and was only partially successful in the
evaluation studies. Additionally, when creating the
evaluation documentation videos, the live narration
process was found to be a hindrance to rapid patch
development as it required time to explain what was
happening and increased cognitive load.

9. CONCLUSION

Design patterns, which can be described using
algorithms, are widely used in various fields. Given
that algorithmic music lends itself to pattern-based
algorithmic description, it is not surprising that music
performance blossomed as a live coding practice. As a
result, multiple mini-languages have been developed
to support live coding in music performance. These
languages often share similar design patterns that are
useful for music-making in general or live coding
performance specifically.
Design patterns that represent abstractions of

commonly used processes and techniques useful for
live coding have been discussed. It was argued that
these are not only a structural convenience in
composition or performance, but they also shape the
way the live coder interacts with the system by
providing constraints and opportunities. Abstractions,
through their presence in mini-languages, provide a
representation of the world for the live coder to
interact and communicate musically. Indeed, the
efficiency of the constraining tendency of

Live Coding Patterns and a Toolkit for Pure Data 273

https://doi.org/10.1017/S1355771823000365 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000365


technologies, such as design patterns, is matched by a
danger that it obscures other potentials. In
Heideggerian terms, ‘the extreme danger [of technolo-
gies] lies in the holding sway of Enframing’ (Heidegger
1977: 29). Being aware of these tendencies can
hopefully allow us to use them productively, yet avoid
unintended consequences.

This article explored the history and application of
design patterns in various fields, including algorithmic
music. Based on reviews of literature and practice, a
typology of significant live coding design patterns was
presented. These included timing control, periodicity,
cycling or repetition, indeterminacy and branching or
decision networks.

The LCT for Pd was presented as a mini-language
that enhances Pd’s audio and music capabilities for
live coding. The design patterns identified for live
coding and their inclusion in the LCT were outlined.
The effectiveness of the LCT was demonstrated
through testing on various live coding studies
spanning different musical genres. These showcased
the versatility of the identified patterns and the LCT’s
implementation of them in a live coding context. Some
limitations of the LCT and/or Pd for live coding have
been highlighted. The LCT is an open-source project,
and so it can continue to be improved through user
feedback and developer contributions. Visual pro-
gramming languages such as Pd have not been widely
adopted in the live coding community, possibly due to
a lack of support for relevant design patterns. The
LCT aims to make it easier for Pd users to get into live
coding, and for live coders to use Pd as a platform for
their practice.

The design of live coding mini-languages plays a
critical role in shaping live coding practices. Including
algorithmic descriptions of common musical conven-
tions and techniques in live coding mini-languages,
such as the LCT, should enable more efficient and
successful live coding performances.

REFERENCES

Aaron, S. and Blackwell, A. F. 2013. From Sonic Pi to
Overtone: Creative Musical Experiences with Domain-
Specific and Functional Languages. Proceedings of the
First ACM SIGPLAN Workshop on Functional Art,
Music, Modelling & Design. Boston, MA: ACM, 35–46.

Alexander, C. 1979. A Timeless Way of Building. New York:
Oxford University Press.

Berry, W. 1976. Structural Functions in Music. Englewood
Cliffs, NJ: Prentice Hall.

Brown, A. R. 2016. Performing with the Other: The
Relationship of Musician and Machine in Live Coding.
International Journal of Performance Arts and Digital
Media 12(2): 179–86.

Collins, N. 2003. Generative Music and Laptop
Performance. Contemporary Music Review 22(4): 67–79.

Collins, N. 2018. Origins of Algorithmic Thinking in Music.
In R. T. Dean and A. McLean (eds.) The Oxford
Handbook of Algorithmic Music. New York: Oxford
University Press, 67–78.

Dannenberg, R. B. and Bencina, R. 2005. Design Patterns
for Real-Time Computer Music Systems. ICMC 2005
Workshop on Real Time Systems Concepts for Computer
Music, Barcelona, Spain.

De Souza, J. 2017. Music at Hand: Instruments, Bodies, and
Cognition. New York: Oxford University Press.

Dodge, C. and Jerse, T. A. 1997. Computer Music. New
York: Schirmer Books.

Ellis, C., Adams, T. E. and Bochner, A. P. 2011.
Autoethnography: An Overview. Historical Social
Research/Historische Sozialforschung 12(1): 273–90.

Gamma, E., Helm, R., Johnson, R., Johnson, R. E. and
Vlissides, J. 1994. Design Patterns: Elements of Reusable
Object-Oriented Software. Indianapolis, IN: Addison-
Wesley.

Gifford, T., Brown, A. R. and Davidson, R. 2013.
Amplifying Compositional Intelligence: Creating with a
Psychologically-Inspired Generative Music System.
Proceedings of the International Computer Music
Conference. Perth: ICMA, 357–60.

Griffiths, D. 2007. Fluxus. Collaboration and learning
through live coding, report from Dagstuhl Seminar
No. 13382. Schloss Dagstuhl.

Heidegger, M. 1977. The Question Concerning Technology
and Other Essays. New York: Harper & Row.

Kirkbride, R. 2016. Foxdot: Live Coding with Python and
Supercollider. Proceedings of the International
Conference on Live Interfaces, Brighton, UK, 194–8.

Lansky, P. 1990. The Architecture and Musical Logic of
Cmix. Proceedings of the International Computer Music
Conference, Glasgow, Scotland.

Loy, G. and Abbott, C. 1985. Programming Languages
for Computer Music Synthesis, Performance,
and Composition. ACM Computing Surveys 17(2):
235–65.

Magnusson, T. 2011. The ixi lang: A Supercollider Parasite
for Live Coding. Proceedings of the International
Conference on Music and Computers, Huddersfield, UK.

Magnusson, T. and McLean, A. 2018. Performing with
Patterns of Time. In A. McLean and R. T. Dean (eds.),
The Oxford Handbook of Algorithmic Music. New York:
Oxford University Press, 245–66.

McCartney, J. 2002. Rethinking the Computer Music
Language: SuperCollider. Computer Music Journal
26(4): 61–8.

McLean, A. 2014. Making Programming Languages to
Dance to: Live Coding with Tidal. Proceedings of the 2nd
ACM SIGPLAN International Workshop on
FUNCTIONAL ART, Music, Modeling & Design,
Gothenburg, Sweden, 63–70.

McPherson, A. and Tahıroğlu, K. 2020. Idiomatic Patterns
and Aesthetic Influence in Computer Music Languages.
Organised Sound 25(1): 53–63.

Milne, A. 2018. Linking Sonic Aesthetics withMathematical
Theories. In A. McLean and R. T. Dean (eds.), The
Oxford Handbook of Algorithmic Music. New York:
Oxford University Press, 155–80.

274 Andrew R. Brown

https://doi.org/10.1017/S1355771823000365 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000365


Norman, D. A. 1988. The Psychology of Everyday Things.
New York: Basic Books.

Puckette, M. 1996. Pure Data: Another Integrated
Computer Music Environment. Proceedings, Second
Intercollege Computer Music Concerts. Tachikawa:
Kunitachi College of Music, 37–41.

Puckette, M. 2004. A Divide between ‘Compositional’ and
‘Performative’ Aspects of Pd. In Proceedings of the
First International Pd Convention. Graz, Austria:
PdCon.

Riehle, D. 1997. Composite Design Patterns. Proceedings of
the 12th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications.
New York: ACM, 218–28.

Roberts, C. and Kuchera-Morin, J. 2011. Gibber: Live
Coding Audio in the Browser. Proceedings of the
International Computer Music Conference. Huddersfield,
UK: International Computer Music Association.

Roberts, C. and Wakefield, G. 2018. Tensions and
Techniques in Live Coding Performance. In R. T.
Dean and A. McLean (eds.), The Oxford Handbook of
Algorithmic Music. New York: Oxford University Press,
293–319.

Roberts, C., Wakefield, G., Wright, M. and Kuchera-
Morin, J. 2015. Designing Musical Instruments for the
Browser. Computer Music Journal 39(1): 27–40.

Sayer, T. 2016. Cognitive Load and Live Coding: A
Comparison with Improvisation Using Traditional
Instruments. International Journal of Performance Arts
and Digital Media 12(2): 129–38.

Sorensen, A. and Brown, A. R. 2007. aa-cell in Practice: An
Approach to Musical Live Coding. Proceedings of the
International Computer Music Conference. Copenhagen:
ICMA, 292–9.

Sorensen, A. and Gardner, H. 2010. Programming with
Time: Cyber-Physical Programming with Impromptu.
Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and
Applications. New York: ACM, 822–34.

Sorensen, A., Swift, B. and Gardner, H. 2014. The Many
Meanings of Live Coding. Computer Music Journal
38(1): 65–76.

Sorensen, A. C. 2018. Extempore: The Design,
Implementation, and Application of a Cyber-Physical
Programming Language. PhD thesis, Australian National
University, Canberra, Australia.

Spiegel, L. 1981. Manipulations of Musical Patterns.
Proceedings of the Symposium on Small Computers and
the Arts. Los Angeles, CA: IEEE, 19–22.

Sudnow, D. 1978. Ways of the Hand: The Organization of
Improvised Conduct. Cambridge, MA: MIT Press.

Taube, H. 2004. Notes from the Metalevel: Introduction to
Algorithmic Music Composition. London: Taylor &
Francis.

Temperley, D. 2001. The Cognition of Basic Musical
Structures. Cambridge, MA: MIT Press.

Wang, G. and Cook, P. R. 2003. ChucK: A Concurrent, On-
the-fly, Audio Programming Language. Proceedings of
the 2003 International Computer Music Conference.
Singapore: ICMA, 219–26.

Whitehead, A. N. and Price, L. 1954. Dialogues of AN
Whitehead, as Recorded by Lucien Price. Biddeford, ME:
David R. Godine.

Wishart, T. 1985. On Sonic Art. New York: Imagineering
Press.

Xenakis, I. 1971. Formalized Music: Thought and
Mathematics in Composition. Bloomington, IN: Indiana
University Press.

Live Coding Patterns and a Toolkit for Pure Data 275

https://doi.org/10.1017/S1355771823000365 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000365

	Live Coding Patterns and a Toolkit for Pure Data
	1.. INTRODUCTION
	2.. MUSICAL PATTERNS AND STRUCTURES
	3.. SHARED AGENCY
	4.. DESIGN PATTERNS
	5.. PERFORMANCE CONSIDERATIONS
	6.. INTRODUCING THE LIVE CODING TOOLKIT FOR PURE DATA
	7.. LIVE CODING DESIGN PATTERNS
	7.1.. Timing
	7.2.. Periodicity
	7.3.. Cycles
	7.4.. Indeterminacy
	7.5.. Branching

	8.. EVALUATION
	8.1.. Supporting design patterns within Pd
	8.2.. Supporting musical patterns
	8.3.. Limitations and further development

	9.. CONCLUSION
	REFERENCES


