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Landau’s collisionless result for a weakly damped plasma wave is precisely recovered in
a weakly collisional, steady state plasma by treating the physics of the narrow collisional
boundary layer associated with the resonant electrons. To recover Landau’s results, the
collision frequency must be large enough that islands are unable to form and/or the wave
amplitude must be small enough to allow linearization. However, the Landau treatment
fails once the collision frequency becomes too weak and/or the wave amplitude too large.
Remarkably, Landau’s weakly damped plasma wave results require collisions and are
shown to be inappropriate in the collisionless limit for a nonlinear, finite amplitude, steady
state wave!
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Landau (1946) first realized that the singular behavior of the collisionless linearized
kinetic equation describing weakly damped plasma waves could be resolved by
Laplace transforming in time to solve a causal initial value problem. Subsequent
collisionless work by Dawson (1961), O’Neil (1965) and Villani (2014) provided
additional insights into the linear and nonlinear temporal evolution of the resonant
electrons. Here, the focus is on an applied steady state plasma wave where weak colli-
sions must be retained to restore the regularity needed to avoid the singular behavior
dealt with in the preceding formulations by focusing on temporal evolution. Then,
the need to solve an initial value problem or invoke causality by Laplace transform-
ing in time is removed. In this weak collision limit a narrow boundary layer resolves
the singular behavior, and exactly recovers the collisionless results as long as the
wave amplitude is small and the collision frequency finite. However, the deceptive
collisionless behavior is removed once the collision frequency becomes small enough
and/or the wave amplitude becomes sufficiently large that a nonlinear treatment is
required. The nonlinear solution found herein for a monochromatic wave retains the
island structure, but Landau’s results (1946) are no longer valid when the collision
frequency goes to zero for a non-vanishing plasma wave amplitude. The collisional
treatment remains valid as long as there are many electrons in a Debye sphere.
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Consider a weakly dissipative plasma wave with an applied electric field

�E = �zIm[Ẽei(k||z−ωt)] ≈ �zE|| sin(k||z −ωt), (1)

where the wave frequency ω is very much larger than the collision frequency, �z is a
unit vector, Ẽ is a complex amplitude, Im denotes imaginary part and ω, k|| and E||
are positive with k|| the z directed wave vector component. The steady state electron
kinetic equation with the collision operator, C{ f }, retained is

∂ f/∂t + �v · ∇ f − (e/m) �E · ∇v f =C{ f }, (2)

where f , e and m are the electron distribution function, charge magnitude, and mass.
If the plasma is homogeneous with stationary ions and the electrons are a stationary
Maxwellian f0(v) to lowest order, then C{ f0} = 0 and the kinetic equation becomes

∂ f1/∂t + v||∂ f1/∂z − (e/m) �E · �z∂( f0 + f1)/∂v|| =C{ f1}, (3)

where f = f0 + f1, only spatial variation in z enters, and �z · �v = v|| with v2 = v2
|| + v2

⊥.
The ordering allows ∂ f1/∂v|| ∼ ∂ f0/∂v|| to retain nonlinear behavior. The solution of
this equation can be viewed as the weakly collisional, steady state counterpart of the
collisionless, early temporal evolution model considered by O’Neil (1965).

The effects of resonant electrons, k||v|| ≈ω≈ωp, on the plasma or Langmuir
wave are retained by this ordering, with the electron plasma frequency defined by
ω2

p = 4πe2ne/m. For the weakly dissipative plasma waves of interest ω2/k2
||v

2
e � 1,

with ve = (2Te/m)1/2 the electron thermal speed. This inequality implies ω2/k2
|| ≈

v2
|| ∼ v2� v2

e are of interest in C{ f1}. As a result, the high speed expansion (v2� v2
e )

of the collision operator

C{ f1} = ∇v ·
{

νe

2x3

[
(v2←→I − �v�v) · ∇v f1 + 2T f 0

(Z + 1)m
∇v

(
f1

f0

)]}

≈ νe

2x3

[
v2
⊥ +

v2
e

(Z + 1)

]
∂2 f1

∂v2
||

, (4)

is adequate, where f0 = neπ
−3/2v−3

e e−v2/v2
e , x = v/ve, νe = 3

√
π(Z + 1)νee/4 and

νee = 4
√

2πe4neln�/3m1/2T 3/2 = νei/Z , for a quasineutral plasma, with Z the ion
charge number, and a large Coulomb logarithm, ln�� 1, assuring there are many
electrons in a Debye sphere. The final form is adequate for a resonance where rapid
v|| variation occurs in the thin collisional boundary layer. Collisions are negligible
elsewhere.

Neglecting the nonlinear term leads to an inhomogeneous Airy equation with
solution

f1|res =−
eω f0

T (k5
||v

2
⊥zν)1/3

Im
[

Ẽei(k||z−ωt)

∫ ∞
0

dτe−isτ−τ3/3

]
, (5)

with s = (k||/v2
⊥zν)1/3(v|| −ω/k||), ν = νe/2x3 and v2

⊥z = v2
⊥ + v2

e/(Z + 1). This solu-
tion can be checked by direct substitution and integration by parts, and is valid near
v|| ≈ω/k||. It retains collisions (via s) and slightly generalizes the earlier weak colli-
sions solutions of Su & Oberman (1968), Johnston (1971) and Auerbach (1977) by
keeping v2

⊥ dependence, and of Catto (2020) and Catto & Tolman (2021) by keeping
v2

e/(Z + 1) in v2
⊥z.
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The collisional boundary-layer width of the resonance from s = 1 is (v|| −ω/k||)ν =
(�v||)ν = |νv2

⊥z/k|||1/3. This corresponds to a normalized width (�v||)ν/ve ∼
(νek2

||v
2
e/ω

3)1/3 and an effective resonant collision frequency νeff ∼ νe[ve/(�v||)ν]2�
νe for v2

⊥z ∼ v2
e .

For |s| � 1,
∫∞

0 dτe−isτ−τ3/3→ 1/is. As a result, away from resonance f1|res
matches the usual collisionless non-resonant solution

f1|non = eE ||v|| f0 cos φ/T (k||v|| −ω), (6)

where φ ≡ k||z −ωt . The perturbed non-resonant density nnon =
∫

d3v f 1

∣∣
non

, is then
calculated from the principal value integral by expanding for ω/k||v|| � 1 to obtain

nnon = ene E|| cos φ

π 1/2veT k ||
P
∫ ∞
−∞

dv||
v||e
−v2||/v2

e

v|| −ω/k||
≈ −enek||E|| cos φ

mω2

(
1+ 3k2

||v
2
e

2ω2
+ . . .

)
.

(7)
The resonant contribution to the perturbed density, nres =

∫
d3v f 1

∣∣
res

, is

nres ≈−eωE||
T k2
||
Im

[
eiφ

∫
d3v

k1/3
|| f0

(v2
⊥zν)1/3

∫ ∞
0

dτe−isτ−τ3/3

]
. (8)

The localization of the resonance makes it convenient to perform the v|| integral
first by letting ω/k|| �w� (�v||)ν = |νv2

⊥z/k|||1/3 to find∫ w

−w

du
ds

du
f0

∫ ∞
0

dτe−isτ−τ3/3 ≈ 2 f0(u = 0)

∫ ∞
0

dτe−τ3/3 sin(Wτ)

τ
≈ π f0(u = 0), (9)

for u = v|| −ω/k|| and W ≡ (k||/v2
⊥zν)1/3w� 1. As a result, collisions cancel to yield

4πenres ≈−
2π 1/2ω2

pωE||
k2
||v3

e

e−ω2/k2||v2
e sin φ, (10)

due to the delta function character of π−1
∫∞

0 dτe−τ3/3 cos(sτ) when integrated
over s.

The perturbed Poisson equation, ∇ · �E =−4πe(nnon + nres), then gives[
ω2 −ω2

p

(
1+ 3k2

||v
2
e

2ω2
+ . . .

)]
E|| cos φ =ω2

[
Im(Ẽ)+ 2π 1/2ω2

pωE||
k3
||v3

e

e−ω2/k2||v2
e

]
sin φ,

(11)
where a small imaginary part of Ẽ is required to balance the dissipation – as in
the initial value Landau (1946) and collisional Auerbach (1977) solutions. Here, the
temporal decay of Landau prescription is replaced by the need to provide power
to maintain the steady state. To verify the preceding dispersion relation in a weakly
collision kinetic simulation requires resolving parallel velocity scales of the order of
(�v||)ν = |νv2

⊥z/k|||1/3 ∼ ve(νek2
||v

2
e/ω

3)1/3.
The collisional power absorbed is evaluated using 〈. . .〉φ =

∮
dφ(. . .)/2π to find

P =−eE ||

〈
sin φ

∫
d3vv|| f1

〉
φ

≈−(eE ||ω/k||)
〈
sin φ

∫
d3v f1|res

〉
φ

, (12)
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since
〈
sin φ f1|non

〉
φ
= 0 and only the sin φ term in f1|res contributes. As a result

P0 =
e2 E2

||ω
2

mv2
ek8/3
||

∫
d3v

f0(u = 0)

(v2
⊥zν)1/3

∫ ∞
0

dτe−isτ−τ3/3. (13)

Then d3v→ 2πv⊥dv⊥ds(v2
⊥zν/k||)1/3 leads to the usual ‘collisionless’ O’Neil (1965)

result

P0 =
2π 2e2 E2

||ω
2

mv2
ek3
||

∫ ∞
0

dv⊥v⊥ f0(u = 0)=
(

E2
||

4π

)
π 1/2ω2

pω
2

k3
||v3

e

e−ω2/k2||v2
e , (14)

even though collisions are crucial! But the absence is misleading as confirmed next.
The full nonlinear problem is considered for a monochromatic wave by allowing

∂ f1/∂v|| ∼ ∂ f0/∂v||. Employing the phase φ = k||z −ωt , and noting v⊥ enters as a
parameter, the solution to the lowest order kinetic equation must be of the form
f1 = f1(φ, u) and satisfy

k||u∂ f1/∂φ − (eE ||/m) sin φ(∂ f0/∂v|| + ∂ f1/∂u)= νv2
⊥z∂

2 f1/∂u2. (15)

Noticing ∂ f0/∂v|| ≈ −(mω/T k ||) f0(u = 0) is a slowly varying function of v||, inserting

f1 = g(u, φ)− (u − σα)∂ f0/∂v||, (16)

where σ = u/|u| =±1 or 0, and α is a constant speed to be determined, leads to

k||u∂g/∂φ − (eE ||/m) sin φ∂g/∂u = νv2
⊥z∂

2g/∂u2. (17)

Letting
j = |m/eE ||k|||1/2k||u = |m/eE ||k|||1/2(k||v|| −ω), (18)

and
Δ= νk2

||v
2
⊥z|m/eE ||k|||3/2 ∝ νee/E3/2

|| , (19)

gives the equation to be the same as the one solved numerically by Hamilton et al.
(2023),

j
∂g

∂φ
− sin φ

∂g

∂ j
=Δ

∂2g

∂ j 2
. (20)

where Δ > 0 since v2
⊥ ≈ v2 −ω2/k2

|| > 0 in v2
⊥z. Their steady state solution is found

by temporally evolving the full equation for g with a slow time derivative inserted.
The nonlinear equation treats the island structure as well as collisions. Taking j∼ 1

gives the width of the velocity space island (�v||)is = (v|| −ω/k||)is to be

(�v||)is = |eE ||/mk |||1/2. (21)

A linearized treatment is appropriate when the collisional boundary layer is wider
than any island structure, requiring Δ= [(�v||)ν/(�v||)is]3� 1. However, for a
larger amplitude plasma wave in an extremely weak collisionality plasma, the Δ� 1
limit is of interest. This limit is considered next and will not lead to the Landau
(1946) or Auerbach (1977) results.

The weak collision limit is different than the collisionless limit because the island
structure must be retained. In this limit

1� |eE ||/mk ||v2
e |3/2� ν/k||ve ∼ νek

2
||v

2
e/ω

3, (22)
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FIGURE 1. Contours of constant g( j, ϕ), with the flattened bound region inside the separatrix at
h= 1 and the two unbound regions above (in red and yellow) and below (in dark and light blue).
Very narrow collisional boundary layers surround the separatrix at h= 1 for this Δ= 0.001 case.
(Reprinted with permission from Hamilton et al. 2023.)

for v2
⊥z ∼ v2

e . The collisional boundary layers are now much narrower than the
islands. They surround the separatrix between the bound (or librating) and unbound
(or circulating) electron motion. All the dissipation occurs in these narrow boundary
layers.

Hamilton et al. (2023) solved the nonlinear equation for g with slow temporal evo-
lution for an astrophysical application. The steady skew symmetric solution satisfies

g( j, φ)=−g(− j,−φ). (23)

An analytic treatment is possible for Δ� 1 by introducing the reduced constant of
the motion

h( j, φ)= j 2/2− cos φ, (24)

with h= 1 the location of the separatrix enclosed by a narrow collisional boundary
layer separating the bound (−1 < h < 1) and the unbound (h > 1) electrons. The
Δ= 0.001 case shown in their figure 2(a) is reproduced here with their kind permis-
sion as figure 1. The reduced Hamiltonian allows the kinetic equation to be rewritten
in terms of the new variables h, φ as

∂g

∂φ

∣∣∣∣
h

=Δ
∂

∂h

∣∣∣∣
φ

(
j

∂g

∂h

∣∣∣∣
φ

)
. (25)

The Δ� 1 limit allows a solution of the form g= g1(h)+ g2(h, φ)+ · · · to be
found. To lowest order ∂g1/∂φ|h = 0, while to next order

∂g2

∂φ

∣∣∣∣
h

=Δ
∂

∂h

∣∣∣∣
φ

(
j

∂g1

∂h

∣∣∣∣
φ

)
. (26)

The solution to this equation, g1, must satisfy the collisional solubility constraint

∂

∂h

∣∣∣∣
φ

[(∮
h

dφ j

)
∂g1

∂h

∣∣∣∣
φ

]
= 0. (27)
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It is independent of collisions, but its form is collisionally constrained. The partial
solution of Hamilton et al. (2023) for Δ� 1 was completed by Catto (2025a) for
a stellarator application. It vanishes for bound orbits. For the unbound,

∫ π

−π
dϕ j =

σ8k−1 E(k), with k =√2/(h + 1) and E(k) a complete elliptic integral. To match f1

to the non-resonant solution f1|non as k→ 0

∂g1

∂h

∣∣∣∣
φ

=
∣∣∣∣ eE ||
mk ||

∣∣∣∣
1/2

σπk

4E(k)

∂ f0

∂v||
. (28)

Integrating from the separatrix at k = 1 using dh =−4dk/k3 leads to

g1 = σπ

∣∣∣∣ eE ||
mk ||

∣∣∣∣
1/2

∂ f0

∂v||

∫ 1

k

dt

t2 E (t)
→
k→0

σ

∣∣∣∣ eE ||
mk ||

∣∣∣∣
1/2

∂ f0

∂v||

[
2
k
− 1.379− k

2
+ O

(
k3
)]

≈
∣∣∣∣ eE ||
mk ||

∣∣∣∣
1/2

∂ f0

∂v||

[
j − 1.379σ − cos φ

j

]
=
(

u − σα − eE || cos φ

mk ||u

)
∂ f0

∂v||
, (29)

with j =±√2(h + cos φ)=±(2/k)
√

1− k2 sin2(φ/2), and α= 1.379|eE ||/mk|||1/2

now determined. The unbound solution satisfies g1→ 0 at the separatrix (h= 1),
but ∂g1/∂h|ϕ and f1 step crossing it. The narrow, unresolved collisional boundary
layer about the separatrix provides the smooth matching. Far from the resonance
layer f1 = g1 − (u − σα)∂ f0/∂v|| → (eE || f0/k||u) cos φ = f1|non as desired.

The power absorbed is evaluated using P =−eE ||〈sin φ
∫

d3vv|| f1〉φ. The details
differ slightly from a recent lower hybrid current drive calculation (Catto 2025b) as
the plasma wave evaluation is for an unmagnetized plasma. Using skew symmetry
gives 〈∫∞−∞ duu sin φ f1(u, φ)〉φ = 0. Integrating by parts using 2 sin φ =−d j 2/dφ|h
at fixed h, and inserting the kinetic equation leads to

P = ωeE ||
2k||

〈∫
d3v f 1

d j 2

dφ

∣∣∣∣
h

〉
φ

=−ωeE ||
2k||

〈∫
d3v j 2 ∂g2

∂φ

∣∣∣∣
h

〉
φ

=−ωeE ||
2k||

〈∫
d3v� j 2 ∂

∂h

∣∣∣∣
φ

(
j

∂g1

∂h

∣∣∣∣
φ

)〉
φ

. (30)

In addition〈∫ ∞
−∞

d j j 2 ∂

∂h

∣∣∣∣
φ

j
∂g1

∂h

∣∣∣∣
φ

〉
φ

= 2

〈∫ ∞
1

dhj
∂

∂h

∣∣∣∣
φ

j
∂g1

∂h

∣∣∣∣
φ

〉
φ

= 2
∫ ∞

1
dh

[
∂

∂h

∣∣∣∣
φ

〈
j 2
〉
φ

∂g1

∂h

∣∣∣∣
φ

− ∂g1

∂h

∣∣∣∣
φ

]

= 4h
∂g1

∂h

∣∣∣∣
h→∞

φ,h=1

− 2 g1|h→∞h=1 = 0.384
∣∣∣∣ eE ||
mk ||

∣∣∣∣
1/2

∂ f0

∂v||
. (31)

Using d3v→ 2πv⊥dv⊥d j/(d j/du) and ∂ f0/∂v|| ≈ −(mω/T k ||) f0(u = 0), yields

P = 0.384
mnνeω

2

√
πk2
||v5

e

∣∣∣∣ eE ||
mk ||

∣∣∣∣
1/2

e−ω2/k2||v2
e

∫ ∞
ω/k||

dv⊥v⊥
v2
⊥z

x3
e−v2⊥/v2

e . (32)
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The power absorbed for ω2/k2
||v

2
e � 1 is explicitly collisional and given by

P ≈ 0.144(Z + 2)mnv2
eνee|eE ||k||/mω2|1/2e−ω2/k2||v2

e . (33)

Normalizing P to the result P0 yields

P

P0
≈ 0.081(Z + 2)

νeek5
||v

5
e

ω3

∣∣∣∣ m

eE ||k||

∣∣∣∣
3/2

∼Δ. (34)

Consequently, Landau’s (1946) collisionless results do not hold as νee→ 0 for a
finite E||.

Remarkably, the limits considered here demonstrate weak collisions play the key
role in obtaining what is viewed as ‘collisionless Landau damping’ of a resonant
plasma wave. The behavior is a characteristic of any kinetic equation involving a
velocity space dependent resonance that must be resolved by diffusive collisions in
a boundary layer. It is only when the collision frequency is very small and/or the
amplitude becomes sufficiently large that departures from the deceptively looking
‘collisionless’ Landau (1946) limit arise. For a larger amplitude monochromatic
plasma wave, nonlinearity occurs because of the appearance of island structure
whose separatrix is enclosed by a very narrow collisional boundary layer that must
be present – even as the collision frequency becomes very small. Consequently,
this velocity space fine structure prevents Landau’s limit from being recovered
in the limit of vanishing collision frequency for a plasma wave of non-vanishing
amplitude. Moreover, energy must cascade to these ever finer velocity scales to be
dissipated. The key role of collisions implies the seemingly ‘collisionless’ resonant
Landau (1946) limit is actually a collisional plateau (or resonant plateau) regime,
with Δ > 1, located between the small Δ < 1 nonlinear regime treated here and a
fully collisional plasma limit with νee �ω. Thus, the Landau (1946) limit is valid
when 1� νee/ω� (ω/k||ve)

2|eE ||/k||Te|3/2.

Note added in proofs. François Waelbroeck has kindly brought to my attention a
classic paper by Zakharov and Karpman (1963) in which they solved the tempo-
rally evolving plasma wave problem of Landau but with collisions. The treatment
in this paper solves the steady state driven plasma wave problem with collisions.
Some details differ (like some details of the collision operator and the coefficient of
the power absorbed in the weakly collisional, large plasma wave amplitude limit),
but many other details are broadly the same. Their pioneering treatment should be
consulted for full details.
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