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Convergence of Subdifferentials of Convexly
Composite Functions
C. Combari, R. Poliquin and L. Thibault

Abstract. In this paper we establish conditions that guarantee, in the setting of a general Banach space, the
Painlevé-Kuratowski convergence of the graphs of the subdifferentials of convexly composite functions. We
also provide applications to the convergence of multipliers of families of constrained optimization problems
and to the generalized second-order derivability of convexly composite functions.

Introduction

Attouch’s Theorem states that a sequence of proper lower semicontinuous convex func-
tions on a reflexive Banach space, Mosco epi-converges if and only if the graphs of the
subdifferentials Painlevé-Kuratowski converge to the graph of the subdifferential of the
limit function and a condition that fixes the constant of integration holds (cf. [1]). This
theorem, with “slice” convergence in place of Mosco epi-convergence, was extended by At-
touch and Beer [2] to general Banach spaces. While this result completely characterizes the
Painlevé-Kuratowski convergence of the subdifferentials of convex functions, much less is
known in the nonconvex case. Recently however Poliquin [21] in the context of a finite
dimensional space gave an extension of Attouch’s Theorem for the large class of possibly
nonconvex primal-lower-nice functions. In addition, Levy, Poliquin and Thibault [17] gave
partial extensions in infinite Hilbert spaces. Partial extensions of Attouch’s Theorem to
nonconvex functions are also provided in [13], [18] and [30]. Other types of convergence
(e.g., Attouch-Wets) have also been studied in [3] and [17].

A typical example of a primal lower nice function is the composition of an extended-
real-valued convex function f defined on a Banach space Y with a twice continuously dif-
ferentiable mapping F from a Banach space X into Y satisfying a qualification condition,
cf. [10]. Although these convexly composite functions are primal-lower-nice on a general
Banach space, it appears that the Hilbert structure is essential to derive an Attouch-like the-
orem for primal-lower-nice functions (it also appears to be essential in obtaining “integra-
tion” results and the “proto-differentiability” of subgradient mappings for such functions).
In this paper we abandon the primal-lower-nice setting and instead we study directly in the
setting of general Banach spaces the Painlevé-Kuratowski convergence of the graphs of the
subdifferentials of convexly composite functions satisfying a qualification condition.

Received by the editors March 26, 1998; revised August 5, 1998.
This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under

grant OGP41983 for the second author, and by NATO under grant CRG 960360 for the third author.
AMS subject classification: Primary: 49A52, 58C06, 58C20; secondary: 90C30.
Keywords: epi-convergence, Mosco convergence, Painlevé-Kuratowski convergence, primal-lower-nice func-
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A qualification condition is essential when working with convexly composite functions.
This is easily understood because on Banach spaces that admit a locally uniformly rotund
norm (which includes many well known spaces) every lower semicontinuous function can
be written locally as the composition of a lower semicontinuous convex function and a
smooth mapping (cf. [22]). We therefore cannot expect that in general the convergence of
a sequence of arbitrary lower semicontinuous functions will be linked in any way to the
convergence of the sequence of subgradients. We begin in Section 1 by reviewing the well-
known Robinson qualification condition. We then give an alternate form of this condition
which will be the basis of our qualification condition and of our uniform qualification
condition.

This qualification condition serves many useful purposes. On the one hand, as in the
convex case (cf. [6]), we may speak of the subdifferential of a convexly composite function
since they are all the same under the qualification condition; see [10]. On the other hand
the qualification condition guarantees (cf. [10]) that ∂( f ◦F)(x) = ∇∗F(x)∂ f

(
F(x)
)

where
∂( f ◦ F)(x) is the subdifferential of the convexly composite function ( f ◦ F) at the point
x, ∇∗F(x) is the adjoint of ∇F(x) and ∂ f

(
F(x)
)

is the subdifferential of f at F(x). The
qualification condition is also used in Proposition 1.1 to give a precise estimate for the
norm of the vectors y∗ ∈ ∂ f

(
F(x)
)

in terms of the norms of x∗ where x∗ = ∇∗F(x)y∗;
this is crucial in obtaining our main result. In the rest of this first section we review set-
convergence, epi-convergence (we state a result of Combari and Thibault [9] on the epi-
convergence of a sequence of convexly composite functions) and slice convergence.

We prove in the second section the main result of this paper. Let {( fn ◦ Fn) : n ∈
N} ∪ {( f ◦ F)} be a sequence of convexly composite functions that is uniformly qualified
over the open set Ω (see Section 1). If fn slice converges to f , Fn pointwise converges to F
over Ω, and if for each x ∈ Ω we have

lim
n→∞
u→x

∇Fn(u) = ∇F(x),

then ( fn ◦ Fn) strongly epi-converges to ( f ◦ F) over Ω. Moreover the graph of the subd-
ifferential of ( fn ◦ Fn) Painlevé-Kuratowski converges to the graph of the subdifferential of
( f ◦ F) over Ω∩ dom( f ◦ F). Even in the context of a finite dimensional space this result is
new because the continuity assumptions on∇Fn and ∇F are not sufficient to ensure that
the composite functions are primal lower nice. In addition, because we are dealing with
convex functions that are not necessarily finite on the whole space, the results in [18], [30]
are not applicable.

In Section 3 we give applications to the convergence of multipliers. Finally in Section 4
we give applications to the proto-differentiation of subgradient mappings of convexly com-
posite functions and to second-order epi-derivatives.

1 Preliminaries

Throughout this paper X and Y will be two real Banach spaces. For any function g : X →
R ∪ {+∞} the Clarke subdifferential of g at x is denoted by ∂g(x) (see [6] for a broad
discussion of this subdifferential) and the effective domain of g by dom g := {x ∈ X :
g(x) < +∞}.
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We say that f ◦ F is convexly composite over an open subset Ω of X if f : Y → R ∪
{+∞} is a proper lower semicontinuous convex function and F : X → Y is continuously
differentiable over Ω. We will say that the convexly composite function f ◦ F is qualified at
x ∈ Ω ∩ dom( f ◦ F) if the Robinson qualification condition holds at x, i.e.,

R+

(
dom f − F(x)

)
−∇F(x)(X) = Y.(1.1)

Here∇F(x) denotes the (Fréchet) derivative of F at x. In the finite dimensional setting (1.1)
is equivalent to the following condition used in [25] and [26]

N
(
dom f ; F(x)

)
∩ Ker

(
∇∗F(x)

)
= {0},

where∇∗F(x) denotes the adjoint operator of∇F(x) and N(dom f ; ) the normal cone (in
the sense of convex analysis) to dom f . It is important to realize that (1.1) is actually a local
condition in the sense that when it is satisfied at x it also holds for all x ′ ∈ dom( f ◦ F) near
x, cf. [10].

A powerful consequence of (1.1), which was established in [10], is that under (1.1) all
types of subdifferentials (see [11], [28], [29]) for the convexly composite function f ◦ F
coincide with the Clarke subdifferential. Moreover,

∂( f ◦ F)(x) = ∇∗F(x)∂ f
(
F(x)
)
.(1.2)

Here the set on the right side of the equality is given by {∇∗F(x)y∗ : y∗ ∈ ∂ f
(
F(x)
)
}.

Recall that for the convex function f , the Clarke subdifferential coincides with the subdif-
ferential in the sense of convex analysis, i.e., ∂ f (y) = {y∗ ∈ Y ∗ : 〈y∗, y ′ − y〉 + f (y) ≤
f (y ′), ∀y ′ ∈ Y}. When (1.2) is fulfilled we will say that f ◦ F is subdifferentially qualified
at x. Obviously the convexly composite function f ◦ F is subdifferentially qualified at x
whenever it is qualified at x. On the global side, we will say that f ◦ F is qualified (resp.
subdifferentially qualified) over Ω if (1.1) (resp. (1.2)) holds for any x ∈ Ω ∩ dom( f ◦ F).

In this paper we need to develop a uniform qualification condition for the sequence of
convexly composite functions {( fn ◦ Fn) : n ∈ N} ∪ { f ◦ F}. It is impossible to develop
such a condition based on (1.1). Fortunately in [10] a condition equivalent to (1.1) is given
which can easily be made uniform. Indeed it is proven in [10] that condition (1.1) holds if
and only if there exist r > 0, s > 0 such that

sBY ⊂
(
{ f ≤ r + f

(
F(x)
)
} − F(x)

)
−∇F(x)(rBX),(1.3)

where BX denotes the closed unit ball of X centered at the origin and { f ≤ p} := {y ∈ X :
f (y) ≤ p}. We will say that the sequence of convexly composite functions {( fn ◦ Fn) : n ∈
N} ∪ { f ◦ F} is uniformly qualified over Ω if for each x ∈ Ω ∩ dom( f ◦ F) there exist s > 0
and r > 0 such that (1.3) holds and such that there exists N ∈ N for which one has

sBY ⊂
(
{ fn ≤ r + f

(
F(x)
)
} − F(x)

)
−∇F(x)(rBX)(1.4)

for all n ≥ N . For some other uniform qualification conditions, obtained via the Attouch-
Wets convergence, we refer the reader to Guillaume [14], [15].
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The following result will be needed in the sequel.

Proposition 1.1 For r > 0, and s > 0, assume that (1.3) is satisfied at x ∈ dom( f ◦ F) for
the convexly composite function f ◦ F. Then for every x∗ = ∇∗F(x)y∗ with y∗ ∈ ∂ f

(
F(x)
)

one has

s‖y∗‖ ≤ r(1 + ‖x∗‖).

Proof Consider any y ∈ BY . By (1.3) there exist b ∈ BX and y ′ ∈ Y with f (y ′) ≤
r + f

(
F(x)
)

such that sy = y ′ − F(x) +∇F(x)(rb). Then

〈y∗, sy〉 = 〈y∗, y ′ − F(x)〉 + 〈y∗,∇F(x)(rb)〉

≤ f (y ′)− f
(
F(x)
)

+ 〈y∗,∇F(x)(rb)〉

≤ r + 〈∇∗F(x)y∗, rb〉

≤ r + r‖x∗‖

and hence s‖y∗‖ ≤ r(1 + ‖x∗‖).

In the remainder of this section we review the fundamental concepts of epi-convergence,
Mosco epi-convergence, Painlevé-Kuratowski convergence, and slice convergence. Among
other things, this will enable us to introduce the notation we will need in the next sec-
tions. In addition we review in Theorem 1.2, the relationship between slice convergence of
convex functions and Painlevé-Kuratowski convergence of the graphs of the subdifferen-
tials. Finally in Theorem 1.3 we give a condition that is sufficient for the epi-convergence
of convexly composite functions.

First recall that Attouch’s Theorem [1] gives on a reflexive Banach space the equivalence
between the Painlevé-Kuratowski convergence of the subdifferentials of convex functions
and the Mosco epi-convergence of these functions. A sequence of functions fn from Y into
R∪{+∞}Mosco epi-converges to f if for any y ∈ Y , f (y) ≤ lim infn→∞ fn(yn) for any yn

weakly convergent to y and there exists yn strongly converging to y with limn→∞ fn(yn) =
f (y). This can also be stated in terms of epi-limits (or Γ-limits) as follows. With respect to
a topology τ on Y , the (sequential) epi-limits inferior and superior are defined by

(Lie fn)(y) := inf{lim inf
n→∞

fn(yn) : yn
τ
−→ y}

and

(Lse fn)(y) := inf{lim sup
n→∞

fn(yn) : yn
τ
−→ y}.

One says that the sequence ( fn)n epi-converges (or Γ-converges) to f (see [1], [12]) with
respect to τ if Lse fn = f = Lie fn. Therefore, fn Mosco converges to f if and only if it
epi-converges to f both in the strong and the weak topology of Y .

Next we recall the definition of the Painlevé-Kuratowski convergence of sets. For a se-
quence Cn of subsets of Y recall that lim infn→∞Cn = {y ∈ Y : y = limn→∞ yn with
yn ∈ Cn} and lim supn→∞Cn = {y ∈ Y : y = limn→∞ ys(n) yn ∈ Cn}. One says that (Cn)
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Painlevé-Kuratowski converges to C and one writes Cn →pk C if lim supn→∞Cn = C =
lim infn→∞Cn. Note that in terms of distance function

lim inf
n→∞

Cn = {y ∈ Y : lim
n→∞

d(y,Cn) = 0}.(1.5)

Let (Mn) be a sequence of set-valued mappings from X into X∗ and S be a nonempty subset
of X. Recall that the graph of a set-valued mapping M is defined by gph M := {(x, x∗) ∈
X×X∗ : x∗ ∈ M(x)}. The sequential limits inferior and superior with respect to the strong
topology on X and the weak-star topology on X∗ will be denoted by ∗ lim infn→∞ gph Mn

and ∗ lim supn→∞ gph Mn. We will also write

gph M ⊂ lim inf
n→∞

gph Mn over S (resp. lim sup
n→∞

gph Mn ⊂ gph M over S)

when any (x, x∗) ∈ gph M with x ∈ S belongs to lim infn→∞ gph Mn (resp. when any
(x, x∗) ∈ lim supn→∞ gph Mn with x ∈ S belongs to gph M). When both inclusions hold,
we will say that the graphs of Mn Painlevé-Kuratowski converge to the graph of M over S
with respect to the norm× norm topology of X×X∗ and we will write gph Mn →pk gph M
over S. In the same way one defines the Painlevé-Kuratowski convergence with respect to
the norm× weak star topology of X×X∗ of the graphs of Mn to the graph of M over S and
we write gph Mn →∗pk gph M over S.

For general Banach spaces, the Painlevé-Kuratowski convergence of the graphs of sub-
differentials of convex functions is equivalent to the slice convergence of these functions.
Before stating this result, recall that a sequence Cn of closed convex subsets of Y slice con-
verges to a closed convex subset C if for each closed and bounded convex subset B of Y one
has (see Beer [5])

D(B,C) = lim
n→∞

D(B,Cn),

where D(B,C) = inf{‖b − c‖ : b ∈ B and c ∈ C}. The slice convergence of a sequence
of convex functions fn to f is defined as the slice convergence of epi fn to epi f . Here
epi f = {(y, α) ∈ Y × R : α ≥ f (y)}. Beer [5] showed that the slice convergence
of a sequence of convex functions fn to f is equivalent to the Mosco epi-convergence of
fn and f ∗n to f and f ∗ respectively. Here f ∗ denotes the Fenchel conjugate of f , that is
f ∗(y∗) = sup{〈y∗, y〉 − f (y) : y ∈ Y}. As in Beer [4], [5] let

∆ f := {
(

y, y∗, f (y)
)
∈ Y × Y ∗ × R : y∗ ∈ ∂ f (y)}.

Theorem 1.2 (Attouch-Beer [2] and Beer[4]) Let { fn : n ∈ N}∪{ f } be a sequence of proper
lower semicontinuous convex functions from Y into R ∪ {+∞}. The following assertions are
equivalent:

(i) fn slice converges to f ;
(ii) gph ∂ fn →pk gph∂ f and there exist (a, a∗) ∈ gph ∂ f and a sequence (an, a∗n) ∈

gph ∂ fn such that
(
an, a∗n , fn(an)

)
→
(
a, a∗, f (a)

)
;

(iii) ∆ fn →pk ∆ f .
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In general Banach spaces the equivalence between (i) and (iii) was first established by
Beer [4]. Then Attouch and Beer [2] proved the equivalence between (i) and (ii). Note
that a unified and simpler proof of the equivalence between the three assertions has been
given recently by Combari and Thibault [8]. All these results are extensions of Attouch’s
Theorem in reflexive Banach spaces.

We will also need the following theorem which gives a sufficient condition for the epi-
convergence of a sequence of convexly composite functions.

Theorem 1.3 (Combari and Thibault [9]) Let {Fn : n ∈ N}∪{F} be a sequence of mappings
from X to Y that are C1 near x and let fn be a sequence of proper lower semicontinuous convex
functions from Y into R ∪ {+∞} that epi-converges to f with respect to the strong topology.
Assume that f

(
F(x)
)

is finite, Fn pointwise converges to F around x, and that

lim
n→∞
u→x

∇Fn(u) = ∇F(x).

Finally, assume that there exist some r > 0 and s > 0 such that for all n

sBY ⊂
(
{ fn ≤ r + f

(
F(x)
)
} − F(x)

)
−∇F(x)(rBX).

Then ( fn ◦ Fn) strongly epi-converges to ( f ◦ F) on an open neighborhood of x.

2 Main Result

Our main theorem will be a consequence of the two following propositions. Throughout
this section, Ω denotes an open convex subset of X.

Proposition 2.1 Let {( fn ◦ Fn) : n ∈ N} ∪ {( f ◦ F)} be a sequence of convexly composite
functions with ( f ◦ F) subdifferentially qualified over Ω. Assume that fn slice converges to f ,
Fn pointwise converges to F over Ω and for each x ∈ Ω

lim
n→∞
u→x

∇Fn(u) = ∇F(x).

Assume further that for each x ∈ Ω there exists a sequence xn converging to x such that
(

fn ◦
Fn

)
(xn) converges to ( f ◦ F)(x). Then

gph ∂( f ◦ F) ⊂ lim inf
n→∞

gph∂( fn ◦ Fn) over Ω.

Proof Let (x, x∗) ∈ gph ∂( f ◦ F) with x ∈ Ω and let ε > 0. Note that x ∈ dom( f ◦
F). Since ( f ◦ F) is subdifferentially qualified over Ω, there exists y∗ ∈ ∂ f

(
F(x)
)

such
that x∗ = ∇∗F(x)y∗. By (iii) in Theorem 1.2 there exist (yn, y∗n ) ∈ gph∂ fn such that
(yn, y∗n ) →

(
F(x), y∗

)
and fn(yn) → f

(
F(x)
)

. Fix some real positive number r < ε and
some integer N1 such that

2‖y∗n‖ ‖∇Fn(x ′)−∇F(x)‖ ≤ ε/6(2.1)
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for all n ≥ N1 and x ′ ∈ x + 2rB (this is possible under our assumptions). According to
our assumptions there exists a sequence xn converging to x with

(
fn ◦ Fn

)
(xn) converging

to ( f ◦ F)(x). It is easily seen by the Inequality Mean Value Theorem that Fn(xn) → F(x).
So we can find an integer N ≥ N1 such that for every n ≥ N one has ‖xn − x‖ < r and

| fn(yn)− fn

(
Fn(xn)

)
| + ‖y∗n‖ ‖Fn(xn)− yn‖ ≤ εr/2.(2.2)

For each u ∈ x + 2rB we have (by definition of ∂ fn)

〈y∗n , Fn(u)− yn〉 ≤ fn

(
Fn(u)

)
− fn(yn).

Hence

〈y∗n , Fn(u)− Fn(xn)〉 ≤ ( fn ◦ Fn)(u)− fn(yn) + ‖y∗n‖ ‖Fn(xn)− yn‖.

This ensures that there exists x ′n ∈ {tu + (1− t)xn : t ∈ [0, 1]} ⊂ x + 2rB such that

〈∇∗Fn(xn)y∗n , u− xn〉 ≤ ( fn ◦ Fn)(u)− fn(yn) + ‖y∗n‖ ‖Fn(xn)− yn‖

+ ‖y∗n‖ ‖∇Fn(x ′n)−∇Fn(xn)‖ ‖u− xn‖

≤ ( fn ◦ Fn)(u)− ( fn ◦ Fn)(xn) + | fn(yn)− fn

(
Fn(xn)

)
|

+ ‖y∗n‖ ‖Fn(xn)− yn‖

+ ‖y∗n‖ ‖∇Fn(x ′n)−∇Fn(xn)‖ ‖u− xn‖.

(2.3)

For each n ≥ N and each u ∈ x + 2rB we have by (2.1)

‖y∗n‖ ‖∇Fn(x ′n)−∇Fn(xn)‖ ≤ ‖y∗n‖
(
‖∇Fn(x ′n)−∇F(x)‖ + ‖∇F(x)−∇Fn(xn)‖

)

≤ ε/6.

Let x∗n := ∇∗Fn(xn)y∗n . Therefore, according to (2.2) and (2.3) we obtain for each n ≥ N

〈x∗n , u− xn〉 ≤ ( fn ◦ Fn)(u)− ( fn ◦ Fn)(xn) + εr for all u ∈ x + 2rB.

Applying (for each n ≥ N) the Ekeland variational principle to the function ( fn ◦ Fn) −
〈x∗n , ·〉 we find un with ‖un − xn‖ ≤ r and such that

( fn ◦ Fn)(un)− 〈x∗n , un〉 ≤ ( fn ◦ Fn)(u)− 〈x∗n , u〉 + ε‖u− un‖

for all u ∈ x+2rB. As ‖un−x‖ < 2r, the point un is an unconstrained local minimum of the
function u 7→ ( fn ◦Fn)(u)−〈x∗n , u〉+ε‖u−un‖. Therefore 0 is in the Clarke subdifferential
of this function at the point un. Hence for each n ≥ N (by the subdifferential calculus rules
for the Clarke subdifferential; see [6]) x∗n ∈ ∂( fn ◦ Fn)(un) + εB. Hence there exists u∗n such
that (un, u∗n) ∈ gph ∂( fn ◦ Fn) and ‖u∗n − x∗n‖ ≤ ε. Since x∗n = ∇

∗Fn(xn)y∗n → x∗,
we may suppose that ‖x∗n − x∗‖ ≤ ε for all n ≥ N . Thus for each n ≥ N we have
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(un, u∗n) ∈ gph∂( fn ◦ Fn) and ‖(x, x∗) − (un, u∗n )‖ ≤ 2ε. According to (1.5) we conclude
that (x, x∗) ∈ lim infn→∞ gph∂( fn ◦ Fn).

Remark It is easily shown that the proof of the above proposition is also valid when a
presubdifferential in the sense of [11], [28] (contained in the Clarke subdifferential) is used
in place of the Clarke subdifferential.

In the proof of the next proposition, we employ Fréchet subgradients. For a function
g : X → R ∪ {+∞} and x ∈ dom g the Fréchet subdifferential of g at x is defined by

∂Freg(x) := {x∗ ∈ X : lim inf
u→x

‖u− x‖−1
(
g(u)− g(x)− 〈x∗, u− x〉

)
≥ 0}.

Recall from [10] that under (1.1) the Fréchet subdifferential ∂Fre( f ◦ F)(x) coincides with
the Clarke subdifferential ∂( f ◦ F)(x).

Proposition 2.2 Let {( fn ◦ Fn) : n ∈ N} ∪ {( f ◦ F)} be a sequence of convexly composite
functions that is uniformly qualified over Ω. Assume that ( f ◦ F) = Lie( fn ◦ Fn) or that
f = Lie fn with respect to the strong topology over Ω. In addition assume that Fn pointwise
converges to F over Ω and that for each x ∈ Ω

lim
n→∞
u→x

∇Fn(u) = ∇F(x).

Then over Ω ∩ dom( f ◦ F)

∗ lim inf
n→∞

gph∂( fn ◦ Fn) ⊂ gph∂( f ◦ F).

If instead of assuming that ( f ◦ F) = Lie( fn ◦ Fn), one assumes that fn ◦ Fn epi-converges to
f ◦ F with respect to the strong topology over Ω, then one has

∗ lim sup
n→∞

gph∂( fn ◦ Fn) ⊂ gph∂( f ◦ F).

Proof Let (x, x∗) ∈ ∗ lim infn→∞ gph ∂( fn◦Fn) with x ∈ Ω∩dom( f ◦F). By the comment
preceding the statement of this proposition, it will be enough to show that x∗ ∈ ∂Fre( f ◦
F)(x).

Fix positive real numbers r and s as given by (1.4) and take a sequence (xn, x∗n ) with
x∗n ∈ ∂( fn ◦ Fn)(xn), xn converging to x and x∗n weak-star converging to x∗. It is easily seen
(using our assumptions) that Fn(xn) converges to F(x). Since ( f ◦ F) = Lie( fn ◦ Fn) or that
f = Lie fn with respect to the strong topology over Ω one has

f
(
F(x)
)
≤ lim inf

n→∞
fn

(
Fn(xn)

)
.

As ( f ◦ F)(x) is finite, there exists an integer N1 such that f
(
F(x)
)
≤ fn

(
Fn(xn)

)
+ r and

fn

(
Fn(xn)

)
< +∞ for all n ≥ N1. Thus by (1.4) and Lemma 2 in [24] there exists an integer

N ≥ N1 such that for all n ≥ N

1

2
sB ⊂

(
{ fn ≤ 2r + fn

(
Fn(xn)

)
} − Fn(xn)

)
−∇Fn(xn)(2rB)(2.4)
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and hence ∂( fn ◦ Fn)(xn) = ∇∗Fn(xn)∂ fn

(
Fn(xn)

)
. Without loss of generality we may sup-

pose that this holds for all n ∈ N. Choose y∗n ∈ ∂ fn

(
Fn(xn)

)
such that x∗n = ∇

∗Fn(xn)y∗n .
By (2.4) and Proposition 1.1 one has s‖y∗n‖ ≤ 4r(1 + ‖x∗n‖) and hence the sequence y∗n is
bounded.

Consider any real number ε > 0, and choose (according to the assumptions of the
proposition) ρ > 0 such that ‖y∗n‖ ‖∇Fn(x ′)−∇Fn(x ′ ′)‖ ≤ ε for all x ′, x ′ ′ ∈ x + 2ρB and
n ∈ N. For any u ∈ x + ρB and yn → F(u) we have (because y∗n ∈ ∂ fn

(
Fn(xn)

)
)

〈y∗n , yn − Fn(u)〉 + 〈y∗n , Fn(u)− Fn(xn)〉 ≤ fn

(
yn

)
− fn

(
Fn(xn)

)

and hence for some x ′n := tnu + (1− tn)xn with tn ∈ [0, 1]

〈y∗n , yn − Fn(u)〉 + 〈∇∗Fn(xn)y∗n , u− xn〉

≤ fn(yn)− fn

(
Fn(xn)

)

+ ‖y∗n‖ ‖∇Fn(x ′n)−∇Fn(xn)‖ ‖u− xn‖.

(2.5)

Suppose first that ( f ◦F) = Lie( fn◦Fn), and consider any sequence un in x+2rB converging
to u. By (2.5), with yn = Fn(un), we have for all n large enough

〈x∗n , un − xn〉 ≤ ( fn ◦ Fn)(un)− ( fn ◦ Fn)(xn) + ε‖u− xn‖

and hence

〈x∗, u− x〉 ≤ lim inf
n→∞

( fn ◦ Fn)(un)− lim inf
n→∞

( fn ◦ Fn)(xn) + ε‖u− x‖.

This ensures that

〈x∗, u− x〉 ≤
(
Lie( fn ◦ Fn)

)
(u)− lim inf

n→∞
( fn ◦ Fn)(xn) + ε‖u− x‖

≤
(
Lie( fn ◦ Fn)

)
(u)−

(
Lie( fn ◦ Fn)

)
(x) + ε‖u− x‖

= ( f ◦ F)(u)− ( f ◦ F)(x) + ε‖u− x‖.

(2.6)

Suppose now that f = Lie fn. Taking the limit inferior in (2.5) we obtain (since Fn(xn) →
F(x))

〈x∗, u− x〉 ≤ lim inf
n→∞

fn(yn)− lim inf
n→∞

fn

(
Fn(xn)

)
+ ε‖u− x‖

≤ lim inf
n→∞

fn(yn)− f
(
F(x)
)

+ ε‖u− x‖

and hence taking the infimum over all sequences yn converging strongly to F(u) we have
that

〈x∗, u− x〉 ≤ f
(
F(u)
)
− f
(
F(x)
)

+ ε‖u− x‖.(2.7)

It is easily seen that the above inequalities (2.6) and (2.7) imply that x∗ ∈ ∂Fre( f ◦F)(x). This
completes the proof of the first part of the proposition. The second part of the proposition
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is a direct consequence of the preceding one because (x, x∗) ∈∗ lim sup gph ∂( fn ◦ Fn)
means that (x, x∗) ∈∗ lim inf gph ∂( fk ◦ Fk) for a subsequence k ∈ K ⊂ N and because
epi-convergence is preserved by subsequences.

Remark In fact if one just considers the case where fn epi-converges to f the proof is much
simpler. Indeed let (x, x∗) ∈∗ lim supn→∞ gph∂( fn ◦Fn) with x ∈ Ω∩dom( f ◦F). Taking
a subsequence, we may suppose that there exists (xn, x∗n ) ∈ gph ∂( fn ◦ Fn) with xn norm
converging to x and x∗n weak-star converging to x∗. As in the beginning of the proof of
the proposition one obtains that the sequence y∗n is bounded (here y∗n ∈ ∂ fn

(
Fn(xn)

)
and

x∗n = ∇
∗Fn(xn)y∗n ). Fix a weak-star cluster point y∗ of this sequence. Then for any y ∈ Y

and any yn converging to y one has

〈y∗n , yn − Fn(xn)〉 + fn

(
Fn(xn)

)
≤ fn(yn).

Hence by taking the limit superior on both sides of the inequality we have

〈y∗, y − F(x)〉 + f
(
F(x)
)
≤ 〈y∗, y − F(x)〉 + lim inf

n→∞
fn

(
Fn(xn)

)
≤ lim sup

n→∞
fn(yn).

Taking the infimum over all sequences yn converging to y we have

〈y∗, y − F(x)〉 + f
(
F(x)
)
≤ (Lse fn)(y) = f (y).

This means that y∗ ∈ ∂ f
(
F(x)
)

and hence

x∗ = ∇∗F(x)y∗ ∈ ∇∗F(x)∂ f
(
F(x)
)
= ∂( f ◦ F)(x).

Our main theorem is thus a consequence of Propositions 2.1 and 2.2 and of Theo-
rem 1.3.

Theorem 2.3 Let {( fn ◦ Fn) : n ∈ N} ∪ {( f ◦ F)} be a sequence of convexly composite
functions that is uniformly qualified over Ω. Assume that fn slice converges to f , Fn pointwise
converges to F over Ω and that for each x ∈ Ω

lim
n→∞
u→x

∇Fn(u) = ∇F(x).

Then ( fn ◦ Fn) strongly epi-converges to ( f ◦ F) over Ω and over Ω ∩ dom( f ◦ F) one has

gph ∂( fn ◦ Fn)→pk gph ∂( f ◦ F) and gph ∂( fn ◦ Fn)→∗pk gph ∂( f ◦ F).

Proof First note that slice convergence of fn to f implies in particular that fn epi-converges
to f in the strong topology. This shows that the assumptions of Proposition 2.2 are verified
and we conclude that

lim sup
n→∞

gph ∂( fn ◦ Fn) ⊂ ∗ lim sup
n→∞

gph ∂( fn ◦ Fn) ⊂ gph∂( f ◦ F)
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over Ω ∩ dom( f ◦ F) (the first inclusion always holds).
The previous observation also implies that the assumptions of Theorem 1.3 are verified

at any x ∈ Ω ∩ dom( f ◦ F). As a consequence of Theorem 1.3, we conclude that for
any x ∈ Ω ∩ dom( f ◦ F), the sequence ( fn ◦ Fn) epi-converges to ( f ◦ F) on an open
neighborhood of x. For a point x ∈ Ω but x /∈ dom( f ◦ F) we easily have that ( f ◦ F)(x) =
limn→∞( fn◦Fn)(xn) for any sequence xn converging to x (this is because fn epi-converges to
f and Fn(xn) converges to F(x)). From this we conclude that ( fn◦Fn) strongly epi-converges
to ( f ◦F) overΩ. It follows that for any x ∈ Ω there exists a sequence xn that converges to x
with ( fn ◦Fn)(xn) converging to ( f ◦F)(x). From this and the fact that a convexly composite
function is subdifferentially qualified when it is qualified, we deduce that the assumptions
of Proposition 2.1 are verified on Ω. From Proposition 2.1, we obtain that over Ω one has

gph ∂( f ◦ F) ⊂ lim inf
n→∞

gph∂( fn ◦ Fn) ⊂ ∗ lim inf
n→∞

gph∂( fn ◦ Fn)

(the second inclusion always holds). This completes the proof of the theorem.

Remarks (1) We are grateful to a referee for pointing out that the result in Theorem 2.3
also holds in the norm× weak-star topology of X × X∗.

(2) We point out that contrary to Theorem 1.3, where the functions are assumed to
epi-converge, we suppose here in Theorem 2.3 that the functions fn slice converge. This
stronger assumption is natural. Indeed if Fn is the identity mapping over X (with
X = Y ) one has fn ◦ Fn = fn and the natural condition (see Theorem 1.2) for the
Painlevé-Kuratowski convergence of gph ∂ fn is the slice convergence of fn (but not the epi-
convergence).

3 Applications to the Convergence of Multipliers

It is often useful in optimization theory to approximate a given problem with a sequence
of hopefully simpler problems. In this context it is then important to know whether the
sequence of multipliers will convergence to a multiplier for the original problem. In this
section we show how the results of the previous sections can be applied to the convergence
of multipliers. For the sake of simplicity and to avoid messy technical details we have lim-
ited our discussion to problems with inequality constraints.

Let gi : X → R for i = 0, 1, . . . , p be a family of p + 1 convexly composite functions
with gi = fi ◦ Fi . Consider also for each integer n ∈ N a family of p + 1 convexly composite
functions gi,n = fi,n ◦ Fi,n. Denote by (P) the mathematical programming problem

(P) Minimize g0(x) subject to gi(x) ≤ 0 for all i = 1, . . . , p,

and recall that for a local solution x of (P), the vector λ = (λ0, λ1, . . . , λp) ∈ Rp+1 is a
multiplier if λi ≥ 0 for i = 0, . . . , p, λigi(x) = 0 for i = 1, . . . , p, ‖λ‖ = 1, and

0 ∈ λ0∂g0(x) + λ1∂g1(x) + · · · + λp∂gp(x).(3.1)

We refer to Clarke [6] for the existence of multipliers for problems with locally Lipschitz
data. Denote by (Pn) the corresponding problem associated with gi,n for i = 0, . . . , p. The
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following theorem concerns the convergence of multipliers of optimization problems given
by convexly composite functions. For other results with equi-lower semidifferentiable func-
tions over some separable Banach spaces, we refer the reader to Zolezzi [30]. For bounds
on Kuhn-Tucker points of perturbed optimization problems with nondifferentiable convex
data, see Schultz [27].

Theorem 3.1 Assume that for each i = 0, . . . , p the sequence { fi,n◦Fi,n}∪{ fi◦Fi} satisfies for
a local solution point x of (P) the assumptions of Theorem 2.3. Assume also that the sequence
{gi,n} is equi-Lipschitz around x and that the closed unit ball of X∗ is weak-star sequentially
compact. Let xn be a sequence of local solutions of (Pn) that converges to x. Then any limit of
multipliers of (Pn) at xn is a multiplier of (P) at x.

Proof Let λn = (λn
0 , λ

n
1, . . . , λ

n
p) be a multiplier of (Pn) at xn that converges to some point

λ = (λ0, λ1, . . . , λp). According to (3.1) take ζn
i ∈ ∂gi,n(xn) for i = 0, . . . , p such that

0 = λn
0ζ

n
0 + λn

1ζ
n
1 + · · · + λn

pζ
n
p .

We may suppose that ζn
i weak-star converges to some ζi ∈ X∗ for i = 0, 1, . . . , p; this

follows from the equi-Lipschitz assumption and the hypothesis on the Banach space X.
Then 0 = λ0ζ0 + λ1ζ1 + · · · + λpζp and by Proposition 2.2 one has that ζi ∈ ∂gi(x) for
each i = 0, 1, . . . , p. As it is obvious that λi ≥ 0 it remains only to show that λigi(x) = 0
for i = 1, . . . , p in order to conclude that λ = (λ0, . . . , λp) is a multiplier for (P) at x. Fix
i in {1, . . . , p}. By (1.2) write ζn

i = ξ
n
i ◦ ∇Fi,n(xn) with ξn

i ∈ ∂ fi,n

(
Fi,n(xn)

)
. As fi,n epi-

converges to fi , there exist yi,n → Fi(x) with fi,n(yi,n) → fi

(
Fi(x)
)

. Then, because λn
i ≥ 0

and fi,n is convex we have

0 = λn
i fi,n

(
Fi,n(xn)

)
≤ λn

i fi,n(yi,n)− λn
i 〈ξ

n
i , yi,n − Fi,n(xn)〉.(3.2)

By Proposition 1.1 the sequence ξn
i is bounded and as in the proof of Proposition 2.1 it is

not difficult to see that Fi,n(xn) → Fi(x). Therefore passing to the limit in (3.2) we obtain
that 0 ≤ λi fi

(
Fi(x)
)
= λigi(x). From this we conclude that 0 = λigi(x) since the reverse

inequality is verified because x is an admissible point of (P). This completes the proof.

4 Applications to Second-Order Epi-Derivatives

Let g : X → R ∪ {+∞}. For t > 0 and x∗ ∈ ∂g(x) define the second-order difference
quotients gx,x∗,t : X → R ∪ {+∞} by

gx,x∗,t (ξ) :=
g(x + tξ)− g(x)− t〈x∗, ξ〉

(1/2)t2
.(4.1)

We say, following Rockafellar [25], that g is twice strongly epi-differentiable at x relative to
x∗ if the second-order difference quotients gx,x∗,t strongly epi-converge as t ↓ 0 to a proper

function. The limit function is denoted by g
′′e
x,x∗ . With the obvious modifications we can

also define the second-order slice epi-derivative g
′′s
x,x∗ .
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Similarly, for a set-valued mapping Γ : X ⇒ X∗ with x∗ ∈ Γ(x) define the first-order
difference quotients Γt : X ⇒ X∗ by

Γt (ξ) :=
Γ(x + tξ)− x∗

t
.(4.2)

We say that Γ is Painlevé-Kuratowski (PK) proto-differentiable at x relative to x∗ with

proto-derivative Γ
′ pk
x,x∗ if gphΓt Painlevé-Kuratowski (PK) converges to gphΓ

′pk
x,x∗ .

Let x∗ ∈ ∂g(x) where g := ( f ◦ F) is a convexly composite function on X. Assume that
there exists y∗ ∈ ∂ f

(
F(x)
)

with x∗ = ∇∗F(x)y∗ (this is the case for example when ( f ◦ F)
is subdifferentially qualified at x). We have

gx,x∗,t (ξ) =
f
(
F(x + tξ)

)
− f
(
F(x)
)
− t〈y∗,∇F(x)ξ〉

(1/2)t2

=
f
(
F(x) + t

[
〈∇F(x)ξ + r(t, ξ)

])
− f
(
F(x)
)
− t〈y∗,∇F(x)ξ + r(t, ξ)〉

(1/2)t2

+ (2/t)〈y∗, r(t, ξ)〉.

Here r(t, ξ) = (1/t)[F(x + tξ)− F(x)− t∇F(x)ξ]. With

Gt (ξ) = ∇F(x)ξ + r(t, ξ),(4.3)

we have

gx,x∗,t (ξ) = fF(x),y∗,t

(
Gt (ξ)

)
+ (2/t)〈y∗, r(t, ξ)〉.(4.4)

Note that for each ξ ∈ X, we have r(t, ξ) → 0 as t ↓ 0, which means that Gt (ξ) converges
to∇F(x)ξ as t ↓ 0.

We say that the derivative of F has a first order expansion at the point x for the mapping
D if D is continuous and

∇F(x + tξ)ξ = ∇F(x)ξ + tD(ξ) + o(|tξ|).

The mapping D giving the approximating term must not only be continuous but positively
homogeneous: D(λξ) = λD(ξ) for λ > 0, and in particular D(0) = 0. Differentiability of
∇F at x in the classical sense is the case where D happens to be a linear mapping.

With the obvious modifications, the notion of uniform qualification can be adapted to
a family indexed by t > 0.

Theorem 4.1 Let g = ( f ◦ F) be a convexly composite function with F : X → Y and f : Y →
R ∪ {+∞}. Assume that ∇F has a first-order expansion at x given by the mapping D. Let
x∗ ∈ ∂g(x). Assume further that x∗ = ∇∗F(x)y∗ with y∗ ∈ ∂ f

(
F(x)
)

and that f is twice
slice epi-differentiable at F(x) relative to y∗. In addition assume that the family of convexly
composite functions {( fF(x),y∗ ,t ◦ Gt ) : t > 0} ∪ {

(
f
′ ′s

F(x),y∗ ◦ ∇F(x)
)
} is uniformly qualified

over some open neighborhood Ω of the origin. Then g is twice strongly epi-differentiable at x
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relative to x∗, and ∂g is Painlevé-Kuratowski proto-differentiable at x relative to x∗. Moreover,
for all ξ ∈ X

g
′ ′e
x,x∗(ξ) =

(
f
′ ′s

F(x),y∗ ◦ ∇F(x)
)

(ξ) + 〈y∗,D(ξ)〉

and

(∂g)
′ pk
x,x∗(ξ) = ∂(1/2)g

′ ′e
x,x∗(ξ)

= ∂(1/2)
(

f
′ ′s

F(x),y∗ ◦ ∇F(x) + y∗ ◦ D
)
(ξ).

Proof Our assumptions imply that ( fF(x),y∗ ,t ◦ Gt )(ξ) strongly epi-converges as t ↓ 0 to

the function
(

f
′ ′s

F(x),y∗ ◦ ∇F(x)
)

over Ω. Because the second-order difference quotients are
positively homogeneous of degree 2, the convergence is actually over X. The first-order
expansion of∇F at x combined with (4.4) and Theorem 1.3 shows that g is twice strongly
epi-differentiable at x for x∗. The rest of the Theorem follows easily from Theorem 2.3 and
the fact that ∂(1/2)gx,x∗,t (ξ) = (1/t)

(
∂g(x + tξ)− x∗

)
.

Next we give a condition that implies that the difference quotients are uniformly quali-
fied over some neighborhood of the origin.

Proposition 4.2 In Theorem 4.1, the family {( fF(x),y∗ ,t ◦Gt ) : t > 0}∪{
(

f
′ ′s

F(x),y∗ ◦∇F(x)
)
}

is uniformly qualified over X if the operator∇F(x) is surjective.

Proof As∇F(x) is surjective, one knows according to the Banach open mapping Theorem
that there exists ρ > 0 such that

BY ⊂ ∇F(x)(ρBX).(4.5)

Note that for each ξ, Gt (ξ) converges to ∇F(x)ξ as t ↓ 0. Consider the family of convexly
composite functions {( fF(x),y∗ ,t ◦ Gt ) : t > 0} ∪ {

(
f
′ ′s

F(x),y∗ ◦ ∇F(x)
)
} and fix any ξ ∈

dom
(

f
′ ′s

F(x),y∗ ◦ ∇F(x)
)

. As fF(x),y∗,t epi-converges to f
′ ′s

F(x),y∗ as t goes to 0 there exist yt →

∇F(x)ξ, t0 > 0 such that for all positive t < t0 we have fF(x),y∗,t (yt ) < (1/2) + f
′ ′s

F(x),y∗ ◦

∇F(x)(ξ) and ‖yt −∇F(x)(ξ)‖ ≤ (1/2). Then for all positive t < t0 (because of (4.5)) we
have for r := max{ρ, 1/2}

BY ⊂
(
{ fF(x),y∗ ,t ≤ r +

(
f
′ ′s

F(x),y∗ ◦ ∇F(x)(ξ)
)
} − ∇F(x)(ξ)

)
+ (1/2)BY −∇F(x)(rBX).

Using Lemma 2 in Robinson [24] we obtain that for all positive t < t0

(1/3)BY ⊂
(
{ fF(x),y∗ ,t ≤ r +

(
f
′ ′s

F(x),y∗ ◦ ∇F(x)(ξ)
)
} − ∇F(x)(ξ)

)
−∇F(x)(rBX).

This shows that the above family is uniformly qualified over X and hence the proof is com-
plete.

As a final application, we turn our attention to the maximum of finitely many C2 func-
tions. The proof of the following corollary follows immediately from Theorem 4.1, Propo-
sition 4.2 and the fact the function f (y) := max{y1, . . . , ym} is twice (slice) epi-
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differentiable on Rm (cf. [25]). In this case, f
′ ′s

y,y∗(ξ) is simply the indicator of the normal
cone to the subdifferential of f at the point y∗; see [25] for details.

Corollary 4.3 Let g(u) = max1≤i≤m fi(u) where fi : X → R are C2 functions. Let F(x) :=(
f1(x), . . . , fm(x)

)
. Assume that∇ fi(x) are linearly independent for i ∈ I(x) := {i | fi(x) =

g(x)}. Then g is twice strongly epi-differentiable at x relative to any x∗ ∈ ∂g(x), and ∂g
is Painlevé-Kuratowski proto-differentiable at x relative to x∗. Moreover, for all ξ ∈ X and
y∗ ∈ ∂ f

(
F(x)
)

with x∗ = y∗ ◦ ∇F(x) we have

g
′ ′e
x,x∗(ξ) =

(
f
′ ′s

F(x),y∗ ◦ ∇F(x)
)

(ξ) + 〈y∗,∇2F(x)(ξ)ξ〉

and

(∂g)
′ pk
x,x∗(ξ) = ∂(1/2)g

′ ′e
x,x∗(ξ)

= ∂(1/2)
(

f
′ ′s

F(x),y∗ ◦ ∇F(x)
)

(ξ) +∇2(y∗ ◦ F)(x)(ξ).

Remark In finite dimensional spaces, Poliquin [19] first showed that the maximum of
finitely many C2 functions is proto-differentiable and gave a formula relating the proto-
derivative of the subgradient mapping to the subdifferential of the second-order epi-
derivative (all this without the linear independence condition above). Precise formulas
were then given in Poliquin-Rockafellar [23]. Penot [18] then showed, in spaces that satisfy
“Condition (A)”, that the subgradient mapping of the maximum of finitely many C2 func-
tions is proto-differentiable. Here we do not assume “Condition (A)” however we assume
linear independence.
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