
J. Functional Programming 7 (2): 163–182, March 1997. Printed in the United Kingdom

c© 1997 Cambridge University Press

163

Natural Expert: a commercial functional

programming environment

NIGEL W. O. HUTCHISON, UTE NEUHAUS
Software AG, Uhlandstr 12, 64297 Darmstadt, Germany

MANFRED SCHMIDT-SCHAUSS
FB Informatik, J. W.Goethe-Universität, Postfach 11 19 32,

60054 Frankfurt am Main, Germany

CORDY V. HALL
Department of Computer Science, University of Glasgow, Glasgow, UK

Abstract

Natural Expert is a product that allows users to build knowledge-based systems. It uses a

lazy functional language, Natural Expert Language, to implement backward chaining and

provide a reliable knowledge processing environment in which development can take place.

Customers from all over the world buy the system and have used it to handle a variety of

problems, including applications such as airplane servicing and bank loan assessment. Some

of these are used 10,000 times or more per month.

Capsule Review

It is interesting to see a lazy functional language being applied in an industrial setting for

expressing rules of expert systems. A functional language provides a solid basis for reasoning

about rules, an aspect that is notoriously difficult to accomplish with, for example, production

systems. Sometimes a lazy language solves a problem automatically that would otherwise

require special programming. The solution one gets for free here is that the user is not asked

questions whose answer is not relevant to the result of a query. The paper describes the

experience of using the system in real life industrial applications including reports on some

of the difficulties encountered.

1 Introduction

Natural Expert (Software AG, 1990a, b) by Software AG is a product that

supports the development of knowledge-based systems. It includes a functional

language called Natural Expert Language (NEL), which is the first successful

implementation of a lazy functional language in a database-oriented mainframe

environment. Natural Expert is currently installed and used at about 20 customer

sites on a variety of platforms, and the applications are in every day use by several

hundred people.

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

164 N. W. O. Hutchison et al.

Software AG (Darmstadt) decided to implement Natural Expert for several

reasons. Looking at expert systems projects in Germany, they found that about 2%

reached production status. The reasons for this seemed to be the following:

• they had primitive I/O, restricted database access support, and were generally

incompatible with other products;

• the tools and methodology came from the AI world, but did not use the

principles of software engineering;

• production rules look simple, but make it hard to understand an entire ap-

plication’s behaviour in practice. Maintenance of production systems is very

difficult.

Expert systems are expected to be good at handling lots of detailed information,

both initially and during application maintenance. To do this, they have to avoid

adding to the inherent problems of managing the application. It seemed clear that

an important part of reducing development and maintenance overhead was to build

a tool that can minimize early errors, and support well-structured programs.

Fortunately, Software AG had another product, a sophisticated entity relationship

DBMS (database management system) called Adabas Entire, which was capable of

efficiently handling complex queries with the expressive power of set comprehensions.

It could easily maintain consistency between different sets of rules and types as

a programmer developed an application. All that was needed was a language

that supported the development of efficient, clean rule definitions within a logical

framework.

The team compared Lisp (McCarthy, 1960; Steele, 1984), Scheme (Abelson and

Sussman, 1984), Prolog (Clocksin and Mellish, 1981), ML (Wikstroem, 1987) and

lazy functional languages such as Hope (Burstall et al., 1980) and Miranda (Turner,

1985; Bird and Wadler, 1988). Their pilot project was based on an existing product,

Savoir (SAVOIR, 1985). They constructed a new rule maintenance environment

with the rule sources and compiled code stored in an Adabas Entire database. The

rules were then combined to make an application which could be interpreted by the

Savoir inference engine. However, the language used was strict, did not support lists

or other structured datatypes, did not have function definitions and it’s I/O was

poor. They then chose to implement a lazy functional language for the following

reasons:

• They wanted a language that was declarative, concise, powerful, extendable

and general.

• Lazy evaluation was likely to be especially suitable, because, like depth first

backward chaining, it evaluates only those rules directly relevant to satisfying

a goal and subgoal.

• Functional programs can be reasoned about.

• Polymorphic type checking makes it much easier to validate an application at

compile time and supports the user in the production of correct reusable code.

• Functional languages are the subject of implementation-oriented research

which is public domain.

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

Natural Expert 165

• Functional languages are increasingly being taught in universities.

This paper first describes the programming environment offered by Natural

Expert, and the system that supports it. The programming environment itself is

written in Natural, Software AG’s proprietary fourth generation language.

In the process, it shows what happened to a lazy functional language as it was

tailored to fit the requirements of Natural Expert, giving functional language

designers a better insight into the restrictions encountered by industry when using

functional languages in practice. We try to give a feel for what it is like to use the

system. However, the figures are not actual snapshots of windows because we’ve

omitted some irrelevant fields.

Finally, the paper explores the commercial applications of Natural Expert and

summarizes customer feedback from questionnaires and letters.

2 An introduction to Natural Expert

As we will see, the Natural Expert environment is quite complex. For this reason,

we introduce the environment by considering a tiny demonstration program – a

program to compute the nth prime number. Of course, this is not intended to be

an applications program, since the goal is to familiarize the user with the basic

components of the system, rather than start building an expert system.

A little Natural Expert terminology: programs are referred to as functional

models. A function is called a rule. A semantic model is a hypertext-like graph

maintained by the DBMS. Semantic models are used in two ways: first, to maintain

the program itself, as discussed in this section; second, to maintain data that is

manipulated by an application program, as discussed in the next section.

Natural Expert provides a menu-driven user interface. The menu fields can be

described as follows:

• function name: the name of the function.

• function type: the type of the function. Lists of type a are written as L(a). The

integer type is written as I, and the text or string type as T. NEL supports a

variety of fixed precision types; for instance, N7 is the type of a number with

seven decimal places.

• attached-to: the attached-to refers to a node in the semantic model. This node

could, for example, contain text describing the behaviour of the function.

• rule form: rule forms are categories of rules. Usually the form is Standard

which shows an editable rule in NEL. It may also be a Gateway definition of

an interface to Natural, or an Imported definition from a specific library.

• stage: as rules are developed they can acquire one of the following four stage

labels:

— A rule that only exists as a name and a type (created as a forward reference)

is labelled as Incomplete.

— A rule that lacks type declarations for at least one of its components or

else cannot be compiled because of syntax, type or semantic errors is given

the label Tokenized.

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

166 N. W. O. Hutchison et al.

NATURAL EXPERT KNOWLEDGE PROCESSING

Function Name

Function Type

Attached to

Match

: PRIMES

: L(I) -> L(I)

:

: $L

Rule Form : STANDARD–

Stage : TOKENIZED

Rule Maintenance

$H :: $T : $H :: PRIMES SELECTED ($IS–MULT, ST)

NIL : NIL

STRUCT $L OF

WHERE $IS–MULT $N : = $N MOD $H NE 0;

Model PRIMES

***** *****

Fig. 1. Definition of the PRIMES rule written in NEL.

Fig. 2. Haskell version of the PRIMES function.

— A rule that has been successfully compiled is given the status Production.

— All rules which call other rules with out-of-date types with respect to the

last compilation are labeled Recompile.

The programming environment helps the developer to keep track of these

stages by maintaining a workplan for each model. It automatically adds rules

to the workplan (for instance, where forward references are created or rules

are set to recompile). The user may also insert or remove rules from the plan.

• match: function argument names appear in this field.

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

Natural Expert 167

NATURAL EXPERT KNOWLEDGE PROCESSING

Rule Name Rule Form

Stage

Rule Maintenance

WHERE $NTH IS ASK–INTEGER <‘Which prime number do you want?’> $H NE 0;

Model PRIMES

***** *****

Attached To :

START: STANDARD–

PRODUCTION

:

:

SAY <‘Prime’, LEGIBLE $NTH, ‘is’‚

LEGIBLE (PICKED) ($NTH, PRIMES(2…)))>

Fig. 3. START rule for the PRIMES model.

Fig. 4. Haskell version of the START rule in the PRIMES model.

Figure 1 shows a NEL rule (that is, a function) that given the infinite list [2..]

returns the infinite list of primes. This is a standard program – see, for instance,

Bird and Wadler (1988). For comparison, figure 2 gives the definition as it appears

in Haskell (Hudak et al. (1990). Various aspects of the NEL code may appear

unfamiliar at first glance, so we explain these aspects below.

A glance at figure 1 shows that NEL resembles a functional language interme-

diate code (as found in the core syntax of several compilers written in functional

languages); and that it has some syntactic idiosyncracies. Note, in particular, that

local variables start with a $ and function arguments are tupled rather than curried.

These design decisions were in general taken to make it easier for the user to learn

the language.

Lists are constructed with infix ‘cons’, written ::, and deconstructed with STRUCT,

which is equivalent to Haskell case. The function SELECTED applies a predicate

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

168 N. W. O. Hutchison et al.

NATURAL EXPERT KNOWLEDGE PROCESSING

Model PRIMES

***** *****

Which prime number do you want? 33

Dialog Overview

Prime 33 is 139

Fig. 5. Interacting with the PRIMES model.

NATURAL EXPERT KNOWLEDGE PROCESSING

Antecedent HierarchyModel PRIMES

***** *****

00

01

01

01

01

02

–START

–PICKED

–ASK–INTEGER

–…

–PRIMES

–SELECTED

Fig. 6. Antecedent Hierarchy for the PRIMES model.

to a list, returning those elements for which the predicate is true, like the Haskell

function filter, and NE is the infix predicate ‘not equal’, like the Haskell /=. The

syntax for function binding is :=, compared with = in Haskell.

The first rule called in a program is always the START rule, similar to the use

of main in Haskell. Figure 3 gives the START rule for the primes example, and its

equivalent in Haskell appears in figure 4.

The function LEGIBLE converts atoms (numbers, booleans ...) to text, similar to

a restricted version of the Haskell show function. The function PICKED returns the

nth element of a list, similar to !! in Haskell, and the notation 2 ... returns an

infinite list starting with 2, equivalent to the Haskell notation [2..].

Input and output is performed by functions with side effects. The SAY outputs

its string argument to the screen. The function ASK INTEGER takes a text, prints the

text on the screen, waits for the user to type an integer, and returns that integer.

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

Natural Expert 169

Side effects are intended to be used in NEL in a disciplined manner. Output is

usually performed only at the top level, and the use of side effects for input is

discussed further in the next section. In contrast, Haskell scrupulously avoids side

effects, leading to the referentially transparent but somewhat more complex code

using appendChan and readChan.

Finally, the model is executed by the runtime session manager. This facility provides

a dialog box in which the user responds to the application, and matches each query

to its response, as shown in figure 5.

Navigation through both the semantic and functional models is made easy by

the ZOOM command, which can follow kind, item and attribute links in the semantic

model (much like hypertext) (see section 3. This is often used to support program

documentation and information on types. Figure 6 shows a snapshot of the system

as ZOOM expands the START rule, displaying the consequent hierarchy, that is, a list

of all callers. It can also display the antecedent hierarchy, a list of all callees.

3 Interfacing NEL to the world – the office example

Our next example matches a team of programmers with the office that best fits its

specification. This example will illustrate the way in which input/output is integrated

with lazy evaluation, and the interaction between the function model (application

program) and semantic model (database).

The semantic model consists of items, each of which is an instance of a kind.

Associated with the kind is the set of attributes each item may possess. In our

example, the kind OFFICE possesses five attributes: office number, area, number

of windows, terminals and telephones. In this simple example, each attribute has

type I (integer). An office instance, the item OFFICE M101, appears in figure 7. This

corresponds to an entry in the database.

Notice that one of the attributes, the TERMINALS attribute, is assigned the value

UNKNOWN. All value domains in NEL include this value, which has a variety of uses.

Functions that test for this value include the predicate known, which returns False

if its argument is UNKNOWN.

Data types specify records, which are built by constructors applied to attributes.

In our example, the type TEAM is built by the constructor C TEAM and has three at-

tributes: number of team members, number of terminals, and number of telephones.

Again, each attribute has type I. Figure 8 shows the declaration of this type. The

corresponding Haskell data type definition is

data TEAM = C_TEAM Int Int Int

The best office for a given team is computed as follows. An office cannot be used

by a team unless it has enough space per person and there are at least as many

windows as there are people, so the acceptable offices have to be filtered out from

all of the possible offices. Then, the best of the acceptable offices can be determined

by cost. Calculating the cost takes into account the expense of either taking away or

adding new resources such as telephones and terminals, and the cost of any space

over the minimum required. One office is better than another if its cost is lower, so

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

170 N. W. O. Hutchison et al.

NATURAL EXPERT KNOWLEDGE PROCESSING

Kind of item

Item MaintenanceModel OFFICE

***** *****

Identification

OFFICE:

Attached to

:

:

:

OFFICE–M101

Attribute name

1 OFFICE–NO

2 AREA

3 WINDOWS

4 TERMINALS

5 TELEPHONES

Attribute value

2

25

2

3

UNKNOWN

Fig. 7. The OFFICE instance OFFICE M101.

the best office can be found by sorting the acceptable offices by cost, then picking

the cheapest. This may be expressed straightforwardly using functional concepts like

filter, map, sort, and so on. We omit this code as it demonstrates no new features.

3.1 Integrating I/O with lazy evaluation

Recall that ASK INTEGER takes a list of text, prints that text, waits for the user to

type an integer, and returns that integer. A convenient aspect of lazy evaluation is

that sometimes the user will not be plagued with questions the answer to which is

irrelevant. Consider, for instance, the following code, part of the team requirements

rule (figure 9):

C_TEAM ($TEAM_MEMBERS, $TEAM_TERMINALS, $TEAM_TELEPHONES)

WHERE

$TEAM_MEMBERS IS ASK_INTEGER <‘How many team members?’>,

$TEAM_TERMINALS IS (IF ($TEAM_MEMBERS EQ 1)

THEN 1

ELSE ASK_INTEGER <‘How many terminals?’>),

$TEAM_TELEPHONES IS ASK_INTEGER <‘How many telephones?’>

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

Natural Expert 171

NATURAL EXPERT KNOWLEDGE PROCESSING

Type name

Type MaintenanceModel OFFICE

***** *****

TEAM

Attached To

:

:

:

Attribute Names Attribute Types

I

I

I

Constructor

No.

MEMBERS

TERMINALS

TELEPHONES

–1

–2

–3

Fig. 8. Defining the TEAM type.

Here EQ tests for equality, similar to == in Haskell. If the answer to the question

“How many team members?” is 1 then it is assumed that 1 terminal is required, and

the question “How many terminals?” will not be asked.

The order in which questions are asked will depend upon the order of evaluation.

It is up to the user to write in a style where this order does not matter, which tends

to be easy for the sort of questions asked by expert systems.

Observe that ASK INTEGER is not referentially transparent. For example, the ex-

pression

($N, $N) WHERE $N IS ASK_INTEGER <‘Pick a number’>

and the expression

(ASK_INTEGER <‘Pick a number’>, ASK_INTEGER <‘Pick a number’>)

are not equivalent: the first will ask the question once and the two components must

be the same, while the second will ask the question twice and the two components

may differ.

This lack of referential transparency has had a real impact on the compiler

design. Some optimizations based on common subexpression elimination or full

laziness must be disabled, because they would transform programs like the second

into programs like the first.

An alternative is to keep a ‘memo table’ which pairs each text with the associated

answer, and if ASK INTEGER is called again with the same text, return the same answer

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

172 N. W. O. Hutchison et al.

NATURAL EXPERT KNOWLEDGE PROCESSING

Rule Form : STANDARD–

Rule Maintenance

C–TEAM ($TEAM–MEMBERS, $TEAM–TERMINALS,

WHERE

Model OFFICE

***** *****

Variable Name

Variable Type

Attached To

:

:

:

TEAM–REQUIREMENTS

Stage : PRODUCTIONTEAM

(IF (KNOWN $TEAM–TELEPHONES)
THEN $TEAM–TELEPHONES

ELSE $TEAM–TERMINALS

$TEAM–MEMBER IS
ASK–INTEGER <‘How many team members?’>

ASK–INTEGER <‘How many terminals?’>

ASK–INTEGER <‘How many telephones?’>

$TEAM–TERMINALS IS

$TEAM–TELEPHONES IS

Fig. 9. Defining team requirements in NEL.

without asking the user a second time. This guarantees referential transparency, but

requires time and space to maintain the table. Since both are at a premium in NEL

applications, this solution was not adopted.

3.2 Access to the DBMS using ‘gateway’ functions

In our example, the variable available offices is bound to a list of records

describing each office. The computation of this list is interesting, as it demonstrates

the interface between NEL and its associated DBMS.

This list is computed in two steps. First, the database is queried to find a list

of each office instance. Then, for each instance in the list, the database is queried

to find attributes associated with that instance. These steps convert the database

information on each office into a Natural Expert datatype.

Two so-called gateway functions, ITEM FIND and ITEM ATT NUMBER, provide the

necessary access to the database. One role of the gateway functions is to validate

DBMS access. Each gateway function must be passed a DBMS profile, which

contains information such as a password. A value of type DBMS PROFILE contains

a user-id, a password, and a model name. In the following, we assume the variable

PROFILE contains a profile that allows access to the office model.

The function ITEM FIND takes the name of a kind and a profile and returns a list

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

Natural Expert 173

NATURAL EXPERT KNOWLEDGE PROCESSING

: STANDARD–

Rule MaintenanceModel OFFICE

***** *****

Variable Name

Variable Type

Attached To

:

:

:

AVAILABLE–OFFICES Rule Form

: PRODUCTIONL (OFFICE) Stage

MAPPED ($CREATE–OFFICE, $OFFICES)

WHERE
$OFFICES IS ITEM–FIND (‘OFFICE’, DBMS–PROFILE),

$CREATE–OFFICE $ROOM
:= C–OFFICE ($MK–ATT ($ROOM ‘OFFICE–NO’),

$MK–ATT ($ROOM ‘OFFICE–NO’),
$MK–ATT ($ROOM ‘AREA’),
$MK–ATT ($ROOM ‘WINDOWS’),
$MK–ATT ($ROOM ‘TELEPHONES’)),

($MK–ATT ($ROOM, $ATT) :=FIXED (ITEM–ATT–NUMBER
($ROOM, $ATT, DBMS–PROFILE))

Fig. 10. Available offices.

Fig. 11. Defining available offices.

of all instance keys of that kind. Kind names are represented by text. The text type

is written simply T, the profile type is written DBMS PROF, and the instance key type

is written INT KEY.

type: (T, DBMS_PROF) -> L(INT_KEY)

syntax: ITEM_FIND ($KIND, $PROFILE)

The function ITEM ATT NUMBER takes an instance name, an attribute name, and

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

174 N. W. O. Hutchison et al.

a profile and returns the value of that attribute, which must be a fixed-precision

number. We write N7 for fixed-precision numbers with seven decimal places.

type: (INT_KEY, T, DBMS_PROF) -> N7

syntax: ITEM_ATT_NUMBER ($INSTANCE, $ATTRIBUTE, $PROFILE)

In our example, the variable AVAILABLE OFFICES contains a list representing all

offices in the database. Figure 10 shows the NEL code defining this variable. This

code works as follows:

• The variable $OFFICES is a list of office instance names. It is computed using

ITEM FIND.

• The function $MK ATT takes an instance name and an attribute name and

returns the integer representing the instance attribute. It has type

(T, T) -> I

It uses ITEM ATT NUMBER to perform the lookup, and FIXED to convert a

fixed-precision number (type N7) to an integer (type I).

• The function $CREATE OFFICE takes an office instance name and returns a

record of type OFFICE representing the corresponding attributes. A value of

type OFFICE is built with the constructor C OFFICE and has five fields, all of

type integer, representing the office number, area, number of windows, number

of terminals and number of telephones.

• Finally, mapping function $CREATE OFFICE down the list $OFFICES computes

the appropriate list. The function MAPPED applies a function to each element

of a list, similar to map in Haskell.

The equivalent Haskell code appears in figure 11.

3.2.1 Gateway functions – what they are and how they are defined?

Gateway functions call routines from Natural. Since Natural and Natural Ex-

pert use different language paradigms, these functions must impose restrictions

on the data they transmit. Gateway functions must be first-order and monomor-

phic, and so cannot take advantage of polymorphism. More significantly, gateway

functions are hyperstrict, that is, they entirely evaluate all arguments and results

(Buneman et al., 1982), and so cannot take advantage of lazy evaluation. In the

office example, the list $OFFICES returned by the gateway will be evaluated in full,

although the list AVAILABLE OFFICES may be computed from this incrementally via

lazy evaluation.

Natural Expert eases the creation of gateways by generating templates, so the

user only needs to write part of the code. The user first specifies the argument and

result data types for the gateway. The system uses this information to automatically

create a template that converts arguments from the representation used by NEL

to Natural, and converts results back again. The template also calls servers to

transmit data between the two language systems. The user is responsible for writing

a Natural program that performs the actual database lookup.

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

Natural Expert 175

Gateway functions may update as well as read the database. The order in which

these side effects occur is determined by the order in which the gateway functions are

evaluated during program execution. Application programmers are taught to handle

side effects such as these carefully, usually by performing them at top level. There is

a special class of rules, called action rules, that are helpful for such sequencing. For

instance, one action rule causes its argument to be evaluated in full. The NEL team

has found this approach to be awkward, and hopes to eventually develop a better

means by which I/O can be controlled.

3.2.2 The role of the DBMS in supporting Natural Expert

One of the main features of Natural Expert is the way in which its programming

environment uses the underlying DBMS, Adabas Entire, to make software devel-

opment easier. Both the functional model (program) and semantic model (data) are

maintained by the DBMS. As we have seen, the DBMS aids in tasks such as labeling

functions with their stage (for instance, whether they need to be recompiled), and

generating lists of the antecedents (callees) and consequents (callers) of a given

function.

The reason that Adabas Entire is efficient enough to be used in this way is

that it is based on the entity relationship model. This is a structured, object-oriented

model (Chen76) that allows entities and their relationships to be represented and

manipulated directly, using a powerful query language. Such a model is closely

related to the structure of semantic and functional models, and so will naturally be

efficient in representing them. In contrast, relational databases store data in tables

that represent relations. This representation is simple and easy to understand, and

it supports data independence, but it is too inefficient for the DBMS queries typical

for Natural Expert.

4 Integrating NEL with commercial DP-environments

NEL is written in both Natural and C, as is the runtime system. It is designed to

give access to a variety of databases. In addition, NEL was designed to be used on a

mainframe with a transaction processing (TP) monitor. In this section, we describe

the restrictions these decisions impose, and show how NEL was implemented to

handle them successfully.

4.1 Restrictions on the design of NEL

TP-monitors A TP-monitor can be viewed as an operating system within an oper-

ating system. It maximizes the number of possible users within the constraint of

acceptable response times, making efficient usage of resources by sharing them as

much as possible. Application programs that run within a TP-monitor have access

to operating system resources only through interfaces supplied by the monitor. This

includes database accesses as well as terminal communication.

These requirements imply that the resources available per end-user are rather

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

176 N. W. O. Hutchison et al.

restricted. For example, at most one copy of an executable program or module is in

main storage, and there is always a limit on the maximum CPU-time for a single

user-request. Storage per user session thread seldom exceeds 500 KB. This means

that programs and static data are best shared, while dynamic data is allocated by

individual users.

4.2 How NEL was designed to handle these restrictions

Natural Expert was developed with TP monitors in mind, so it respects their

resource limitations. Typically, a user is allocated a heap size of 80K. This is

sufficient for running applications and compares favourably with the megabytes

required by other functional languages on workstations. NEL’s implementation was

constrained by this space restriction, which is why some features normally supported

by a functional language were omitted. For example, local recursion is not supported

because it requires allocating ‘holes’ for recursive references, and because garbage

collection is done using reference counting. Dynamic data was reduced by adding a

read-only heap. Maximal structures which do not contain redexes are identified at

compile time and generated into this heap. A small range of integers is supported,

again to save space.

It should be noted that many companies cannot use Natural Expert because it

currently takes up too much space, even given these compromises. The architectural

limits of many commonly used mainframes demand that each user be given at

most 80K. Thus, reducing space consumption is an important goal in developing

industrial lazy functional languages.

Complex functional language features, such as list comprehensions, have been

omitted from NEL to reduce problems in training. However, Software AG has

had success in teaching customers functional programming through a company

training course. Customers learn functional programming techniques using higher

order functions, and find polymorphism very useful.

5 Natural Expert in industry

This section contains reports on a variety of applications in locations around the

world. Development times include research, design, implementation, testing and

documentation: times for multi-phase projects include maintenance times for earlier

phases. Some customers used other projects implemented with Natural Expert

by Software AG for the company, and simply did the new work themselves. This

suggests that the implementation language, NEL, was in fact easy enough to use.

It also makes it harder to keep track of the applications developed in Natural

Expert.

The following table summarizes the person days, number of Natural Expert

models and rules, and Natural modules for some of the applications described

below:

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

Natural Expert 177

Name days models rules modules

Satellite 2400 10 1400

Siade 150 2 240 100+

Arian names 300 1 46 120

Arian addresses 180 1 65 120

Dietas 900 4 200 500

Sades 550 1 250 420

Consumo 150 1 30 194

The applications themselves are described below.

• Satellite, Telefonica de Espana, Madrid, Spain

The aim of the Satellite system was to create a tool for the user which

could interpret a question in normal Spanish, and retrieve the appropriate

information. Telefonica plans to package the nucleus of the application and

to launch it as a commercial product.

• Siade, Telefonica de Espana, Madrid, Spain

Siade is a system for automating the generation and maintenance of cost/

investment records, designed to reduce management workloads. It implements

a complex standard, defining 50 distinct types of decisions which may be taken

about expenditures or investments, so that the standard can be managed by

personnel without computer experience. Siade is used 20,000 times a month.

• Arian, Software AG Espana, Spain

Arian identifies Hispanic names and addresses, a task which can be difficult

because both the first and the second name can have more than one part and

these two parts of the name can occur in reverse. It matches names against

a dictionary which can be augmented by local operators more familiar with

unusual local names.

• Dietas, Software AG Espana, Spain

Dietas works out menus for hospital patients.

• Sades, Software AG Espana, Spain

Sades looks at a road network and works out where to put gas stations on it.

• Teacher Retirement System of Texas, USA

Natural Expert was used to create two applications for TRS:

— The Claims system selected the forms required to process a particular death

claim. Previously, only a few of the 50 possible forms were selected (and

not always correctly) because many factors could affect a possible selection

and forms frequently changed, requiring the rules to change as well.

— Natural Expert also helps select which paragraphs are needed for a

particular claims letter. This allows clerks to create a complete letter with

the push of a button.

• Consumo, Banco Exterior, Spain

The Consumo project was a decision support system for personal loans,

constructed for one of the largest banks in Spain. Initial processing was done

by using a statistics package to handle 60% of the cases. However, this package

could not make any recommendations if it rejected an applications, and this

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

178 N. W. O. Hutchison et al.

could cost money when these applications were reasonable. Consumo salvages

more than half of these, and can offer alternatives to the borrower when it

does reject an application.

Three other interesting applications, for which no figures are given, are:

• Banco Mercantil, Caracas, Venezuela

Banco Mercantil in Caracas, Venezuela, recently began to issue VISA and

Mastercard credit cards. It was essential that a system for processing these be

implemented as soon as possible, since 100,000 applications were anticipated,

and there were only 20 people to process them. Knowledge engineers at Banco

Mercantil had just developed a successful expert system for processing loan

applications using Natural Expert, so it was decided to take advantage of

the similarities in the problems and adapt it.

The system was developed in three weeks. Many functions from another NEL

application (a Personal Loan Expert system) were reused without any changes.

• Colisage Gros Volume, Polygram, France

Polygram is a subsidiary of Phillips which controls 33% of the European

market for records and cassettes. They initially solved their gross volume

distribution problem by minimizing two variables: the empty space within a

parcel, and the number of stations it stops at. The existing system was written

in GURU, a production rule system, one of the few cases in which Natural

Expert was compared directly against another form of expert system.

GURU started having problems when the ratio of cassettes to records changed.

An initial system was then developed by two people at Polygram and two from

Software AG, and finished by Polygram, which commented that the new system

was shorter and better integrated the existing environment.

• Ivanhoe, Paris, France

Ivanhoe invoices airlines for services provided when an airplane is on the

ground at an airport, generating simple invoices and explanations. After inten-

sive discussion, the customer built their own system. Today, each flight passing

by Orly or Roissy is supported by Ivanhoe.

5.1 Customer opinions

Software AG asks their customers to fill out a questionnaire on Natural Expert,

and maintains a ‘Likes and Dislikes’ file for applications. Here are some of their

comments:

• Inland Steel, East Chicago, Indiana

Natural Expert was the easiest expert system product to integrate with our

current production mainframe environment. Coding the Surface Defect expert

system (over 100 rules in Natural Expert) took much less time than coding

the others, despite its size.

• Ivanhoe project, Paris, France

Development in NEL is rapid and sure. It is necessary to have a bit more

training than that required by 4GLs because the programmer needs to learn

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

Natural Expert 179

functional programming, recursion, list and tree manipulation. For a problem

of average complexity, we estimate productivity gains at a ratio of 1:10, which

is likely to be much greater for very complex problems.

• Satellite, Telefonica de Espana, Madrid, Spain

The system is powerful and efficient, admitting comparison with typical systems

of menus and query by example. In fact, in addition to the advantages of

functionality and control, which the other systems (the pieces of the original

software before Satellite was installed) do not have, the retrieval time and

the total time taken to produce data are even better in Satellite.

• Colisage Gros Volume, Polygram, France

The Natural Expert system was much shorter and easier to understand than

the existing solution. Integration with the existing environment was much

better.

One customer noted that it was necessary to rethink problems to use recursion

and functional programming, but that the effort paid off.

On the subject of production rule systems, another commented “One problem in

our application is making sure that all rules are disjoint. This is not necessary in

Natural Expert. Some areas of our expertise do not lend themselves well to being

written as production rules: the limits of the product are reached quickly.”

The negative comments tended to center around two areas. Functional program-

ming often required training, which took time, and functional programs behaved

rather differently from imperative programs that caused one customer to worry

about resource consumption for large problems. He decided not to use Natural

Expert for the reason that he couldn’t predict its behaviour.

One interesting question asked was “Do you see any barriers to Natural Expert’s

use in production applications? If so, what would it take to remove those barriers?

(Consider both technical and organizational/educational barriers)”. A customer

responded that “functional programming is not taught in many US universities”,

and for this reason training programs needed to take the steeper learning curve

required into account.

6 New applications

Recently, Natural Expert has been used to build two new tools. First, Natural

Expert has been used to build re-engineering tools for the analysis and transforma-

tion of conventional source programs. The nucleus of these tools is a reusable set of

modules for source manipulation.

Customers applications consisting of many hundreds of thousands of lines and

tens of thousands of source objects have been successfully processed with these tools.

Typically, one tool scans an entire application looking for certain features and builds

a knowledge base. Other tools read the knowledge base, select the programs which

need attention and then transform them, recording their progress in the knowledge

base.

Experience has shown that particular processing requirements can often be met

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

180 N. W. O. Hutchison et al.

with very little human effort compared with error prone manual correction of such

large applications.

The second is a configurator for complex machinery. This application, comprised

of several Natural Expert models, processes customer requirements using a large

database of rules and constraints. The application is integrated with Computer

Aided Design and a Bill of Materials system. The system is now online to users

in several countries, and presents mission critical services to a large international

company.

7 Conclusions

Natural Expert is marketed as a component of a broad range of Sofware AG

products and solutions designed to meet the requirements of commercial companies.

Natural Expert applications now run on PC, Digital and various UNIX platforms.

7.1 What advantages can Software AG customers obtain from Natural Expert?

It is clear that increasingly customers require special application components with

a high internal logical complexity to secure a competitive advantage . These must

be able to interface with existing commercial databases.

7.2 What needs to be done to support industry in using lazy functional languages?

These are some important problems that need to be addressed. Space consumption

of lazy functional languages is not well understood and users find this unsettling.

Methods to analyse, present, and reason about space requirements are needed.

Absolute space requirements in functional languages tend to be too high. To make

Natural Expert acceptable to mainframe users a great deal of effort had to be

invested in keeping this within the bounds of what is normally available. The ’Space

is cheap’ motto applies to the chips and the boards but doesn’t translate through to

commercial platforms very quickly.

Not enough programmers are familiar with functional languages, and some expe-

rienced programmers find it hard to learn concepts such as recursion and polymor-

phism. Wider use of functional langauges in computer science courses would filter

down to industry – indeed, the effect is beginning to be apparent. Though there are

now several excellent books on functional programming techniques, the examples

used are sometimes difficult to transfer to real life programming.

It should be noted that many multi-user mainframe installations find Natural

Expert difficult to accommodate in their TP monitors because it requires consid-

erably more space from the user threads compared with conventional software. A

thread of 450K is still considered quite large, and of this perhaps 80K will be

available for the Natural Expert runtime stack and heap. Many users currently

use threads even smaller than this. Reconfiguring the environment for larger threads

impacts on the dynamics of the system, and is not popular with administrators.

Having said that, experiences with Natural Expert applications on Unix and

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

Natural Expert 181

PC platforms indicate that the Natural Expert runtime space requirements seem

relatively modest compared with what is commonly required by other packages.

If we were to build this environment again, it would not be called Natural Expert.

Instead, we would market the tool as something to create software components

which otherwise would be too complex and uneconomic to build. The name aroused

expectations based on the current naive view of what expert systems could achieve.

We were not courageous enough in presenting the power of functional languages.

Early experiences gave the impression that the language was difficult to learn unless

one restricted oneself to a subset of the functionality. We ignored counter evidence

from experiences in Spain – in fact, we realize now that we were unlucky in the

choice of people we presented NEL to at first. We have found that if we present

Natural Expert and a superior programming language and give students lots of

examples to do, then functional languages do very well in comparison. At this point,

we believe we can include high order combinators in the week induction course.

Natural Expert is now sold as a part of the entire product range of Software

AG, because companies want to have the option of using it even if they currently

are buying another Software AG product. Current plans include expanding the

customer base by porting the system to Unix, OS/2 and Windows.

7.3 Why do customers buy Natural Expert?

One customer thought that Natural Expert increased their productivity by a factor

of ten. There is good reason to suppose that NEL can be learned reasonably quickly

and that it makes maintenance of applications easier, since customers buy Natural

Expert for one project, maintain it themselves and create other applications from it.

Several applications are robust and reliable (e.g. Siade), which is used 20,000 times

per month, and Ivanhoe, which regularly services air traffic at two busy French

airports.

References

Atkinson, M. P., Buneman, P. and Morrison, R. (1988) Data Types and Persistence. Springer-

Verlag.

Abelson, H. and Sussman, G. J. (1984) The Structure and Interpretation of Computer Programs.

MIT Press.

Augustsson, L. and Johnsson, T. (1989) The Chalmers lazy-ML compiler. The Computer

Journal, 32(2), 127–141.

Brachman, R. and Schmolze, J. (1985) An overview of the KL-ONE knowledge representation

system. Cognitive Science, 171–216.

Burstall, R. M., McQueen, D. B. and Sanella, D. T. (1980) Hope: an experimental applicative

language. Proc. ACM Symposium on Lisp and Functional Programming, pp. 136–143.

Backus, J. (1978) Can programming be liberated from the von Neumann style. Communications

of the ACM, 21(8), 613–644.

Bird, R. and Wadler, P. (1988) Introduction to Functional Programming. Prentice Hall.

Buneman, O. P, Frankel, R. E and Nikhil, R. (1982) An implementation technique for database

query languages. ACM Transactions on Database Systems, 7(2), June, 164–186.

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

182 N. W. O. Hutchison et al.

Chen P. P. (1976) The Entity-Relationship model: towards a unified view of data. ACM

Transactions on Database Systems, 1(1), March.

Clocksin, W. F. and Mellish, C. S. (1981) Programming in Prolog. Springer-Verlag.

Frost, R. and Launchbury, J. (1989) Constructing natural language interpreters in a lazy

functional language. The Computer Journal, 32(2), 108–121.

Hudak, P., Wadler, P. et al. (1990) Report on the programming language Haskell, Technical

Report YALEU/DCS/RR-777, Yale University, Department of Computer Science.

McCarthy, J. (1960) Recursive function of symbolic expressions and their computation by

machine. Part I. Communications of the ACM, 3(4),184–195.

Milner, R. (1978) A theory of type polymorphism in programming. Journal of Computer and

System Sciences, (17), 348–375.

Milner, R. (1984) The standard ML core language. Internal report CSR-168-84, Edinburgh

University.

Turner, D. (1985) Miranda: a non-strict functional language with polymorphic types. Proc.

IFIP International Conference on Functional Programming Languages and Computer Archi-

tecture, Nancy, France. Lecture Notes in Computer Sciences 201. Springer-Verlag.

Montague, R. (1973) The proper treatment of quantification in ordinary English. In Hintakka,

K. J. J. (ed.), Approaches to Natural Languages. Kluwer.

Peyton Jones, S. L. (1987) The Implementation of Functional Languages. Prentice-Hall.

Poulovassilis, A. and King, P. (1990) Extending the functional data model to computational

completeness. Advance in Database Technology (EDBT 90). Lecture Notes in Computer

Science 416. Springer-Verlag.

Software AG (1990a) Natural Expert Reference Manual 1.1.2.

Software AG (1990b) Natural Expert Reference Manual 1.1.3.

Software AG (1990c) Natural Reference Manual 2.1.

Sastre, J. and Frias, J. (1990) Satelite, “Lenguaje natural en exploitacion”. Bulletin de AEPIA

(Associaon Espanola para la Intelligencia Artificial), 12–13.

SAVOIR Expert System Package (1985) Users Manual 1.2. ISI Limited, 11 Oakdene Road,

Redhill, Surrey RH1 6BT, UK.

Steele G. L. (1984) Common Lisp: The Language. Digital Press.

Trinder, P. (1989) A functional database. PhD Thesis, Department of Computer Science,

University of Glasgow.

Wikstroem, A. (1987) Functional Programming using Standard ML. Prentice-Hall.

https://doi.org/10.1017/S0956796897002657 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002657

