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Abstract. The next generation of high-contrast imaging instruments will provide the first unre-
solved image of an extrasolar planet. While the emitted infrared light from the planet in thermal
equilibrium should show almost no phase effect, the reflected visible light will vary with the or-
bital phase angle. We study the photometric variation of the reflected light with orbital phase
of a ringed extrasolar planet. We show that a ring around an extrasolar planet, both obviously
unresolved, can be detected by its specific photometric signature.
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1. Introduction

The discovery of extrasolar planets by radial velocity measurements has provided the
first dynamical characteristics of planets (orbital elements and mass). The next step will
be to investigate physical characteristics of extrasolar (albedo, temperature, radius etc.)
and their surroundings. Among the latter are planetary rings. Coming space or ground-
based high-contrast imaging instruments will be able to provide the first image of an
unresolved extrasolar planet, in the thermal infrared or in the visible light. The emitted
thermal infrared light from the planet should show no phase effect assuming the planet
is in thermal equilibrium. But the reflected visible light will vary with phase angle, as
should be shown by a broad-band photometric follow-up of the planet during its orbital
motion.

We thus argue that it is of interest to study how the presence of a ring around a planet
would influence its brightness as a function of its orbital position. This paper shows a
few examples (more in Arnold & Schneider 2004) of how the reflected light curve of a
ringed planet is different from that of a ringless planet, thus revealing the presence of the
ring. The specific signature of a ring has been already mentioned and briefly qualitatively
discussed (Schneider 2001), but here a more quantitative model is considered, in which
the basic optical properties of the planet and the ring are taken into account, together
with all geometrical parameters describing the ringed planet.

2. On the relevance of the existence of ringed planets

Although all giant planets of the Solar System have rings, ringlets or arclets, those of
Saturn are by far the brightest. But at methane absorption wavelengths, giants planets
are fainter than in the visible and their rings appear relatively brighter, increasing their
detectability. For Uranus for example, the rings appear with a brightness comparable to
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the planet (Lellouch et al. 2002). Even the Earth might have been surrounded by a ring,
but only during 105 to several 105 years (see Arnold & Schneider 2004 for a detailed
bibliography). Although Saturn rings are probably younger than the planet itself, 10®
years (Cuzzy & Estrada 1998), i.e. one order of magnitude younger than the planet, we
consider that it remains relevant to look for rings around extrasolar planets, at least for
giant planets.

3. The ringed planet model

To compute the light curve of the ringed planet as a function of the orbital phase angle,
we build radiance maps of the object, for a given set of geometrical parameters (Arnold
& Schneider 2004). We assume that the planet is an isotropic (lambertian) gray spherical
light diffuser. The ring is a planar, homogeneous and anisotropic (non-lambertian) gray
scattering layer. The ring brightness is estimated by assuming only single scattering in
the ring. Mutual lighting (i.e. planet-shine on the ring, or ring-shine on the planet) is
not modeled, but mutual shadowing is computed quite easily. All curves are normalized
to the flux of a ringless planet seen in quadrature.

4. Discussion
4.1. A ringed planet observed at inclination i = 0°

Let’s first consider the simple geometrical configuration where an extrasolar system is
observed pole-on. This configuration means that the planet always remains in quadrature,
thus showing always the same phase. For a ringless planet, it means that its brightness
remains constant during the full orbit (assumed circular). Now for a ringed planet with
non-zero obliquity, the ring alternately shows its illuminated and dark side, moreover it
projects its shadow on the planet. This is illustrated in figure 1 showing strong slope
changes at the equinoxes. This dichotomy of the light curves is due to the ring being
alternately seen in reflection and in transmission. This is a clear ring signature which is
often well visible in other geometrical configurations.

4.2. Dual-band photometry of a ringed planet

The planet and the ring may have different chemical compositions, and dual-band pho-
tometry (or spectroscopy if the object is bright enough) greatly helps to detect the ring
by observing for instance in the (visible) continuum and in a methane absorption band,
where a Saturn-like planet becomes much fainter than the ring. The light curves at both
wavelengths can be significantly different, as shown in figure 2. In the methane band,
stronger slope changes occur at the equinoxes, here again due to the two observation
regimes of the ring, either seen reflecting or transmitting the light. Note that when the
ring disappears at the equinoxes, the object spectrum may be the spectrum of the planet
only, but it can also be composite if a part of the planet is seen through the unilluminated
ring.

4.3. The effect of the longitude of ring obliquity

The orbital angles for which the brightness extrema occur do not always correspond with
those of a ringless planet. It depends on the ring obliquity longitude. It is illustrated in
figure 3. We consider this ¢-shift of the light curve a relevant signature of a ring. It is
unambiguous for a ringed planet on a circular orbit. A ¢-shift can be observed if the orbit
is elliptical, whether the planet has a ring or not, when brightness variations are induced
by distance changes from the planet to its star. But we assume that the astrometry of
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Figure 1. Extrasolar system observed pole-on at different orbital positions (labels, image scale =
radiance®??). Inclination i = 0°, the planet is always seen in quadrature, while the ring, with a
Saturn-like obliquity of i, = 26.73°, shows its illuminated face during the first half-orbit. During
the second half-orbit, the back-illuminated ring becomes fainter. Corresponding light curves are
given at right for different optical thicknesses 7 of the rings (labels).
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Figure 2. Ringed planet for different orbital positions (labels). Planet obliquity is 5°. The
pictures upper left represent the planet in the continuum (albedo: planet 0.34, ring 0.7) and
below in a C'H4 absorption band (albedo: planet 0.05, ring 0.7). The corresponding light curves
are shown at right, in the continuum and in C'Ha4 absorption band for three different planet
albedo. Light curves have significantly different shapes, especially during the second half-orbit:
The ring and planet respective brightnesses vary in opposite directions and by the same order
of magnitude, making the light curve almost flat.

the discovered planet will make possible the correction of the measured reflected light
photometry for the effect of orbit ellipticity.
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Figure 3. A Saturn-like planet for different orbital positions (labels) and different longitudes
A of the ring obliquity: A, = 0° (above left), A, = 30° (above right), A, = 60° (below left).
The three sets of images have the same brightness scale. These figures show that respective ring
and planet brightness extrema do not always occur simultaneously. For instance, when A\, = 30°
(above right), a ring minimum occurs at ¢ = 300°, while the planet minimum occurs at ¢ = 270°.
This difference induces a shift of the system light curve as illustrated at lower right. The curve
for a ringless planet is plotted for comparison. Curves are plotted for —90° < A\, < 90°. Note
that we have the relation: magnitudey, (¢) = magnitudeigoo_», (180° — ¢), all other parameters
being unchanged.

4.4. A planet with a large ring

For a given planet obliquity, the smaller the gap between the inner edge of the ring and
the planet equator, the lower the latitude of the shadow on the planet. Also, the larger
the ring outer diameter, the longer the polar region remains in the shadow of the ring.
The ring thus can almost totally hide the planet, as shown by figure 4 around orbital
position ¢ = 270°. Note that when the planet is hidden, the object spectrum is dominated
by the spectrum of the ring. We consider that such a strong and quite long extinction
occurring at phase angles a > 90° constitutes another specific signature of a ring around
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Figure 4. A thick, dark and large ring (7 = 3 and albedo wo = 0.05) around a planet, seen
for different orbital positions ¢ (labels). The ring is so large that it hides the planet around
¢ = 270°. A curve for a planet with a large, bright and thick ring (albedo wo = 0.7 and 7 = 5)
is shown for comparison.

an extrasolar planet. It was qualitatively discussed by Schneider (in Des Marais et al.
2002a).

Of course, the larger (and/or brighter) the ring with respect to the planet, the more
the ring dominates the light curve. But the ratio of the reflected light from the planet
over the stellar flux gives a value of the planetary radius (Schneider 2001, 2002). The ring
significant flux contribution can lead to an overestimation of the planet radius by a factor
of 10. If the mass of the planet is known (by radial velocity for instance), the overestimated
planet radius would lead to an underestimated planet density. Thus a planet with a very
low apparent density could be a signature of a ring. Moreover, the planet radius can
in principle also be deduced from its infrared thermal flux F), ;r, assuming the planet
temperature has been inferred from the matching of a Planck function to the observed
thermal spectrum (Schneider 2001, 2002). The disagreement between the planet radii at
visible and infrared wavelengths could thus be another signature of a ring.

5. Conclusions

The examples shown demonstrate that a ring around an extrasolar planet significantly
affects the reflected light curve of an extrasolar planet during its orbital motion. A
ring could thus be detected, although both planet and ring would obviously remain
unresolved. This may be achieved simply by a photometric monitoring of the planet light.
We identified the following signatures, which would require only moderate photometric
accuracy to be observed (around 3o ~ 0.5 mag):

i) Light curve dichotomy, with strong slope changes at the equinozes, due to the ring
being alternately seen in reflection and in transmission.

ii) Light curve dependence on wavelength in dual-band photometry (methane band and
continuum for instance), or spectral variations if spectroscopy is possible.

iii) The ¢-shift of the light curve extrema, due to the longitude of the ring obliquity.

iv) Temporary extinction of the planet during the orbital motion, due to the rising
shadow of the ring on the planet.
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v) High brightness in the reflected light, leading to an abnormally large planet radius,
or/and an abnormally low mass density.

vi) Disagreement between the planet radii measured from reflected light and thermal
infrared emission.

Although future space missions studies concentrate mainly on infrared instruments
for technical and scientific reasons, this work shows the additional interest of shorter
wavelengths (visible band) for extrasolar planet characterization.
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