LOCALIZATION, ALGEBRAIC LOOPS AND H-SPACES II

ALBERT O. SHAR

In a previous work [6] it was shown that by imposing certain finiteness conditions on a nilpotent loop certain algebraic results yielded properties about [X, Y] where X is finite CW and Y is an H-Space. In this sequel we further restrict the category of nilpotent loops to a full subcategory called H-loops which still contains all loops of the form [X, Y]. We prove that on this category there is a unique and universal P-localization if $P \neq \emptyset$ which corresponds to topological localization. We also show that if the H-loop is a group then the two concepts of localization agree.

The first section of this paper is devoted to the definition and basic properties of H-loops. In the second section we develop the localization construction and prove uniqueness. Finally, in the third section we consider the topological and group theoretic situations.

I would like to thank G. Mislin and U. Stammbach for their ideas and helpful comments. I would also like to thank A. K. Bousfield for his prompt and helpful communication.

Section 1. *h*-loops, pre-*H*-loops and *H*-loops. Recall [6] that a (centrally) nilpotent loop *G* is an *h*-loop if for any set of primes Q; $T_Q(G) = \{x \in G | x^n = e, some association, some <math>n \in \langle Q \rangle$ } is a finite normal subloop, called the *Q*-torsion of *G*. (By $\langle Q \rangle$ we mean the multiplicative set generated by *Q*. If *Q* is the set of all primes we will write T(G) for $T_Q(G)$).

Definition 1.1. An h-loop G is a Pre-H-loop if it is residually h-finite, i.e., there exist a collection of epimorphisms $\{f_{\alpha}: G \to G_{\alpha} | \alpha \in I\}$ with each G_{α} a finite h-loop such that i) $f = \prod f_{\alpha}: G \to \prod G_{\alpha}$ is one to one and ii) if x is an element of G not in T(G) then for any set of primes, Q, there is an $\alpha \in I$ such that $e \neq f_{\alpha}(x) \in T_Q(G_{\alpha})$.

We will call $f: G \to \prod G_{\alpha}$ a defining system for G.

Note that any finite h-loop is trivially a pre-H-loop under the identity defining system.

LEMMA 1.2. Let G be a pre-H-loop and let $\{G_{\beta} | \beta \in I\}$ be the collection of all finite h-loop quotients of G. Then g: $G \to \prod G_{\beta}$ is a defining system for G.

Proof. Let $f: G \to \prod_{\alpha \in I} G_{\alpha}$ be a defining system for G. Then $f = (\prod p_{\alpha})g$ where $\prod p_{\alpha}: \prod G_{\beta} \to \prod G_{\alpha}$ is the product of the projection maps. Since f is one to one so is g and property (i) of 1.1 holds. That condition (ii) of 1.1 holds is obvious.

Received January 4, 1978 and in revised form May 25, 1978.

LOCALIZATION II

PROPOSITION 1.3. Let P be a non-empty set of primes and let $f: G \to \prod G_{\alpha}$ be a defining system for the pre-H-loop G. Let $g_{\alpha}: G_{\alpha} \to G_{\alpha}/T_{P'}(G_{\alpha})$ be the quotient map. Then Ker $(qf) = T_{P'}(G)$ where $q = \prod g_{\alpha}$. (P' is the compliment of P.)

Proof. By ([**6**], 3.5) $T_{P'}(G_{\alpha})$ is a normal subloop of G_{α} so that $G_{\alpha}/T_{P'}(G_{\alpha})$ is a loop. If P', the compliment of P, is empty q is the identity and the proposition is trivially true.

If $x \in T_{P'}(G)$ then for each α in $I, f_{\alpha}(x)$ is in $T_{P'}(G_{\alpha})$ and hence Ker $(qf) \supseteq T_{P'}(G)$.

Conversely, if $x \in \text{Ker}(qf)$ then for all α in I, $f_{\alpha}(x) \in T_{P'}(G_{\alpha})$. Thus by (*ii*) of $1.1 \ x \in T(G)$ since P is not empty.

Assume x is not in $T_{P'}(G)$. Then by ([6], 2.9) x = x'y with $e \neq y \in T_P(G)$ for some $p \in P$ and $T_P(G)$ is a loop of p-power order.

Let $\langle y \rangle$ denote the loop generated by y. By ([2], V 2.2) $\langle y \rangle$ has p-power order and the same holds for all the loops $f_{\alpha}(\langle y \rangle)$, $\alpha \in I$. But by ([6], 2.3) the order of $T_{P'}(G_{\alpha})$ is prime to p. Since the order of $f_{\alpha}(\langle y \rangle)$ must divide the order of $T_{P'}(G_{\alpha})$ we get that $f_{\alpha}(y) = e$ for all α in I so that f(y) = e. But this contradicts the fact that f is one to one.

Definition 1.4. Let G be a loop, N a subloop and Q a set of primes. Define the Q-isolator of N in G, $S_Q(N, G)$ to be the set $\{x \in G | x^m \in N \text{ for some associ$ $ation, some } m \in Q\}$.

While if G is a nilpotent group the Q-isolator is a subgroup ([7], 3.25) the same is not true for nilpotent loops.

Definition 1.5. Let G be a pre-H-loop. Then G is an H-loop if there exists a defining system f: $G \to \prod G_{\alpha}$ such that (i) if $g_{\beta}: G \to G_{\beta}$ is epic with G_{β} a finite h-loop then there exists $\tilde{g}: \prod G_{\alpha} \to G_{\beta}$ such that $g_{\beta} = \tilde{g}f$ and (ii) for any set of primes Q, $S_Q(qf(G), \prod G_{\alpha}/T_Q(G_{\alpha}))$ is a loop.

Note that any finite *h*-loop is an *H*-loop and that while for any pre-*H*-loop there is always a defining system such that (i) holds, it is not clear if (ii) holds. We will call a defining system satisfying (i) and (ii) of 1.5 an *H*-defining system.

Let *P* be a set of primes. Recall that a loop *G* is *P*-local if the mapping defined by $x \to x^n$ is a bijection for any association, any $n \in \langle P' \rangle$ and a homomorphism $f: M \to N$ is a *P*-equivalence if ker $f \subseteq T_{P'}(M)$ (*f* is *P*-monic) and for any $x \in N$ there is an $r \in \langle P' \rangle$ and an association such that $x' \in \inf f(f \text{ is } P\text{-epic})$.

LEMMA 1.6. Let G be a pre-H-loop with defining system f: $G \to \prod G_{\alpha}$. Let P be a set of primes and let S be the subloop of $\prod G_{\alpha}/T_{P'}(G_{\alpha})$ generated by $S_{P'}(qf(G),$ $\prod G_{\alpha}/T_{P'}(G_{\alpha}))$. Then S is the P-local subloop of $\prod G_{\alpha}/T_{P'}(G_{\alpha})$ generated by qf(G).

Proof. By 3.4 of [6] II $G_{\alpha}/T_{P'}(G_{\alpha})$ is *P*-local and hence the mapping $x \to x^n$ for $n \in \langle P' \rangle$ is one to one on *S*. Further if $x \in S$ and $y^n = x$, $n \in \langle P' \rangle$ then by definition $y \in S$ so that $x \to x^n$ is onto on *S*. Thus *S* is *P*-local.

On the other hand any *P*-local subloop of $\prod G_{\alpha}/T_{P'}(G_{\alpha})$ which contains gf(G) must also contain $S_{P'}(qf(G), \prod G_{\alpha}/T_{P'}(G_{\alpha}))$. The result follows.

PROPOSITION 1.7. Let G be an H-loop. Then the defining system g: $G \rightarrow \prod_{\beta \in J} G_{\beta}$ of all finite h-loop quotients is an H-defining system.

Proof. Trivially 1.5 (*i*) holds so that we need only demonstrate 1.5 (*ii*). Let $f: G \to \prod_{\alpha \in I} G_{\alpha}$ be an *H*-defining system and note that $I \subseteq J$. For any $\beta \in J - I$ let $\tilde{f}: \prod G_{\alpha} \to G_{\beta}$ satisfy (*i*) of 1.5 and define $i: \prod_{\alpha \in I} G_{\alpha} \to \prod_{\beta \in J} G_{\alpha}$ by the product of the projections P_{β} if $\beta \in I$ and by \tilde{f}_{β} if $\beta \in J - I$. Then the following diagram commutes:

where j is induced by i.

It is easily seen that i and j are both monic.

Thus by 1.6 $j(S_{P'}(q'f(G), \prod G_{\alpha}/T_{P'}(G_{\alpha}))$ is a *P*-local subloop of $\prod G_{\beta}/T_{P'}(G_{\beta})$ which contains qg(G). But it is clear that

$$\prod_{\alpha \in I} p_{\alpha}(S_{P'}(qg(G), \prod G_{\beta}/T_{P'}(G_{\beta}))) \subseteq S_{P'}(q'f(G), \prod G_{\alpha}/T_{P'}(G_{\alpha}))$$

and that $(\prod_{\alpha \in I} p_{\alpha})j$ is the identity on $\prod G_{\beta}/T_{P'}(G_{\beta})$. Thus

$$j(S_{P'}(q'f(G)), \prod G_{\alpha}/T_{P'}(G_{\alpha})) \subseteq S_{P'}(qg(G), \prod G_{\beta}/T_{p'}(G_{\beta})).$$

Once again applying 1.6 yields the required result.

THEOREM 1.8. Let G be an H-loop and let $f: G \to \prod G_{\alpha}$ be any defining system. Then for any set of primes $Q_{P}S_{Q}(qf(G), \prod G_{\alpha}/T_{Q}(G_{\alpha}))$ is a loop.

Proof. By 1.7 the defining system of all finite *h*-loop quotients, $g: G \to \prod G_{\beta}$ is an *H*-defining system and we may factor $f = (\prod p_{\alpha})g$ where p_{α} is the product of the projections. The same technique as in 1.7 now yields the result.

Section 2. Localization of *H*-loops. Let *G* be an *H*-loop and let $g: G \to \prod G_{\beta}$ be the defining system of all finite *H*-loop quotients. Let *P* be a set of primes and $g: \prod G_{\beta} \to G_{\beta}/T_{P'}(G_{\beta})$ be the product of the quotient maps.

Definition 2.1. If $P \neq \emptyset$ the *P*-localization of an *H*-loop *G*, *L*: $G \to G_P$ is $S_{P'}(qg(G), \prod G_{\beta}/T_{P'}(G_{\beta}))$.

Note that by 1.3 ker $L = T_{p'}(G)$, by 1.6 G_p is the *P*-local subloop of $\prod G_{\beta}/T_{p'}(G_{\beta})$ generated by qg(G) and by definition $x \in G_p$ implies that $x^n \in L(G)$ for some association, some $n \in \langle P' \rangle$. Thus we get:

THEOREM 2.2. If P is a non-empty set of primes and G is an H-loop then P-localization L: $G \rightarrow G_P$ is a P-equivalence and hence is a P-localization in the sense of ([6], 3.1).

Let G be an H-loop and let $f: G \to \prod G_{\alpha}$ be any (not necessarily H) defining system. Let $P \neq \emptyset$ and let

 $k: G \to G' = S_{P'}(qf(G), \prod G_{\alpha}/T_{P'}(G_{\alpha})).$

PROPOSITION 2.3. There is a unique isomorphism $k: G_P \to G'$ such that $k = \tilde{k}L$. Thus up to canonical equivalence $k: G \to G'$ is a P-localization.

Proof. The product of the projections $\prod p_{\alpha}: \prod G_{\beta} \to \prod G_{\alpha}$ as defined in 1.8 induces a map $\tilde{k}: G_P \to G'$ such that $k = \tilde{k}L$ with the uniqueness of \tilde{k} a triviality of the construction.

By 1.6 and 1.8 both L and K are P-equivalences. A trivial modification of ([4], I 1.4) to loops shows that \tilde{k} is a P-equivalence. But both G_P and G' are P-local loops and by ([4], I 1.5) a P-equivalence between P-local loops is an isomorphism.

THEOREM 2.4. Let $f: G \to M$ be a homomorphism of H-loops and let $P \neq \emptyset$ be a set of primes. Then there is a unique $f_P: G_P \to M_P$ such that $f_PL_G = L_M f$.

Proof. If K is a normal subloop of M of finite index then $f^{-1}(K)$ is normal in G of finite index. Thus given a defining system $g: M \to \prod_{\alpha \in I} M_{\alpha}$ extend $G \to \prod_{\alpha \in I} (G/f^{-1}(\ker g_{\alpha}))$ to a defining system $\tilde{g}: G \to \prod_{\beta \in J} G_{\beta}$ and define $\tilde{f}: \prod G_{\beta} \to \prod M_{\alpha}$ to be trivial if $\beta \in J - I$ and the obvious map if $\beta \in I$.

In this manner we get the following commutative diagram:

Let $x \in S_{P'}(q_G \tilde{g}(G), \prod G_{\beta}/T_{P'}(G_{\beta})) = G_P$ then $x^n = L_G(y)$ for some $y \in G$, $n \in \langle P' \rangle$. Thus

 $(f'(x))^n = f'(x^n) = q_M g f(y)$

and this implies that f'(x) lies in

 $S_{P'}(q_Mg(M), \prod M_{\alpha}/T_{P'}(M_{\alpha})) = M_P.$

Let f_P be the restriction of f' to G_P . Since f_P is unique on the image of G it is unique on its localization G_P .

COROLLARY 2.5. (Universality) Let $f: G \to H$ be a homomorphism of H-loops with M P-local $(P \neq \emptyset)$. Then there is a unique $\tilde{f}: G_P \to M$ such that $\tilde{f} L_G = f$.

COROLLARY 2.6. Let $K \xrightarrow{f} G \xrightarrow{g} N$ be a short exact sequence of H-loops. Then the sequence $K_P \xrightarrow{f_P} G_P \xrightarrow{g_P} N_P$ is short exact. Further if K is central then so is K_P .

Proof. By 2.4 we have the following commutative diagram

$$K \xrightarrow{f} G \xrightarrow{g} N$$

$$L_{K} \downarrow \qquad \downarrow L_{G} \qquad \downarrow L_{N}$$

$$K_{P} \xrightarrow{f_{P}} G_{P} \xrightarrow{g_{P}} N_{P}$$

with the top row short exact. By 2.2 the vertical maps are all P isomorphisms. The proof now follows by the same arguments as ([4]. I 1.10).

COROLLARY 2.7. On the category of H-loops the P-localization $(P \neq \emptyset)$ of G is characterized by any P-equivalence $f: G \rightarrow G'$ where G' is a P-local H-loop.

Proof. This is just a restatement of 2.2–2.5 combined with noting that G_P is an *H*-loop.

By combining the results of this section we get the following:

THEOREM 2.8. On the category of H-loops there exists a P-localization functor $(P \neq \emptyset)$ which is universal and exact. Furthermore the localization of an H-loop of nilpotency class $\leq n$ is also of class $\leq n$.

Section 3. Topological and group theoretic considerations.

THEOREM 3.1. Let G be a finitely generated nilpotent group. Then G is an H-loop and loop localization is equivalent to loop localization.

Proof. Trivially G is an h-loop. By combining the results of [5] and [3] we get that G is a pre-H-loop. By ([7], 3.25) G is an H-loop and the localization construction of ([7], 8.5) is easily seen to be equivalent to the construction in this paper.

THEOREM 3.2. Let X be a finite CW complex and Y be an H-Space with finitely generated homotopy groups in each dimension. Then [X, Y] is an H-loop and for every set of primes, $P \neq \emptyset$, $[X, Y_P] \cong [X, Y]_P$.

Proof. That [X, Y] is an *h*-loop was shown in ([6], 4.1). By ([1], *VI* 8.1) the map $[X, Y] \rightarrow \prod_{P} [X, (Z/p)_{\infty}Y)$ is an injection where $(Z/p)_{\infty}Y$ is the Z/p completion of *Y*. Furthermore ([1], 4.3) $(Z/p)_{\infty}Y = \lim_{N \to \infty} (Z/p)_{\circ}Y$ and all the

816

homotopy groups of $(Z/p)_s Y$ are finite when s is finite. Thus [X, Y] includes into $\prod_P \prod_s [X, (Z/p)_s Y]$ with all the sets $[X, (Z/p)_s Y]$ finite.

But a trivial modification of ([1], I 7.3) shows that all the $(Z/p)_s Y$ are H-spaces with compatible structures so that [X, Y] is residually finite. That [X, Y] is a pre-H-loop follows from ([1], VI 8.1).

Property (*ii*) of 1.5 follows from ([4], 6.2). To prove that [X, Y] satisfies (*i*) of 1.5 let K be normal in [X, Y] of finite index. Since $[X, Y] \to \varinjlim (X, \prod_P (Z/p)_s Y]$ is an inclusion there must exist an s such that ker $[X, Y] \to [X, \prod (Z/p)_s Y]$ is contained in K which is equivalent to 1.5 (*i*). That $[X, Y_P] \cong [X, Y]_P$ follows from the fact that $[X, Y_P]$ is P-local and $[X, Y] \to [X, Y_P]$ is a P isomorphism.

References

- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., 304 (Springer, 1972).
- 2. R. H. Bruck, A survey of binary systems (Springer-Verlag, 1958).
- K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. Lond. Math. Soc. (3) 7 (1957), 29-62.
- P. Hilton, G. Mislin and J. Roitberg, Localizations of nilpotent groups + spaces, Mathematics Studies 15 (North Holland, 1975).
- 5. K. A. Hirsch, On infinite soluble groups III, Proc. Lond. Math. Soc. (2) 49 (1946), 184-194.
- 6. A. O. Shar, Localization, algebraic loops and H-spaces I, Can. J. Math. 31 (1979), 427-435.
- 7. R. B. Warfield, Jr., Nilpotent groups, Lecture Notes in Math. 513 (Springer, 1976).

University of New Hampshire, Durham, New Hampshire