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LOCALIZATION, ALGEBRAIC LOOPS AND //-SPACES II 

ALBERT O. SHAR 

In a previous work [6] it was shown t h a t by imposing certain finiteness con
ditions on a ni lpotent loop certain algebraic results yielded properties abou t 
[X, Y] where X is finite CW and Y is an if-Space. In this sequel we further 
restrict the category of nilpotent loops to a full subcategory called i /- loops 
which still contains all loops of the form [X, Y], We prove t ha t on this category 
there is a unique and universal P-localization if P ^ 0 which corresponds to 
topological localization. We also show tha t if the H-\oop is a group then the 
two concepts of localization agree. 

The first section of this paper is devoted to the definition and basic proper
ties of HAoops. In the second section we develop the localization construction 
and prove uniqueness. Finally, in the third section we consider the topological 
and group theoretic situations. 

I would like to thank G. Mislin and U. S tammbach for their ideas and 
helpful comments . I would also like to thank A. K. Bousfield for his p rompt 
and helpful communication. 

S e c t i o n 1. A-loops, p r e - 7 7 - l o o p s a n d i 7 - l o o p s . Recall [6] t ha t a (centrally) 
ni lpotent loop G is an h-\oop if for any set of primes Q; TQ(G) — {x Ç G\ xn = e, 
some association, some n £ (Q)\ is a finite normal subloop, called the Ç-torsion 
of G. (By (Q) we mean the multiplicative set generated by Q. If Q is the set of 
all primes we will write T(G) for TQ(G)). 

Definition 1.1. An h-\oop G is a Pre-H-loop if it is residually /^-finite, i.e., there 
exist a collection of epimorphisms { fa: G —•» Ga\ a. £ /} with each Ga a finite 
h-\oop such tha t i) f = YL fa: G —* i l Ga is one to one and ii) if x i s a n element 
of G not in T(G) then for any set of primes, Q, there is an a G / such tha t 
e *fa(x) G TQ(Ga). 

We will call / : G —» YL Ga a defining system for G. 
Note tha t any finite h-\oop is trivially a pre-i7-loop under the ident i ty 

defining system. 

LEMMA 1.2. Let G be a pre-H-loop and let [G$\ /3 Ç I) be the collection of all 

finite h-loop quotients of G. Then g: G —> IT G$ is a defining system for G. 

Proof. L e t / : G —* I~[aç/ Ga be a defining system for G. Then / = (TL pa)g 
where I I pa: IT Gfy—> TL Ga is the product of the projection maps. Since / is 
one to one so is g and proper ty (i) of 1.1 holds. T h a t condition (ii) of 1.1 holds 
is obvious. 
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PROPOSITION 1.3. Let P be a non-empty set of primes and let f: G —>fj Ga 

be a defining system for the pre-H-loop G. Let ga: Ga —> Ga/TP> (Ga) be the quotient 
map. Then Ker (qf ) = TP> (G) where q — I I ga. (P' is the compliment of P.) 

Proof. By ([6], 3.5) TP> (Ga) is a normal subloop of Ga so t ha t Ga/TP> ( Ga) is 
a loop. If P ' , the compliment of P , is empty q is the identi ty and the proposition 
is trivially true. 

If x Ç TV (G) then for each a in I,fa(x) is in TV (Ga) and hence Ker (g/) Z) 
rP-(G). 

Conversely, if x G Ker (g/) then for all a: in I, fa(x) Ç TV(G«). Thus by 
(w) of 1.1 x Ç P(G) since P is not empty. 

Assume x is not in TP>{G). Then by ([6], 2.9) x = x'y with e ^ 3/ £ TP(G) 
for some p £ P and TP(G) is a loop of ^-power order. 

Let (3/) denote the loop generated by 3/. By ([2], 7 2.2) (y) has £-power 
order and the same holds for all the loops fa((y)), a ^ I. But by ([6], 2.3) 
the order of TP>(Ga) is prime to p. Since the order oi fa((y)) must divide 
the order of TP>(Ga) we get tha t f«(j) = e for all a in T so tha t / ( ;y ) = e. But 
this contradicts the fact t h a t / is one to one. 

Definition 1.4. Let G be a loop, N a subloop and Q a set of primes. Define 
the Q-isolator of Nin G, SQ(N} G) to be the set {x G G\ xm G N for some associ
ation, some m £ Q}. 

While if G is a nilpotent group the Q-isolator is a subgroup ([7], 3.25) the 
same is not true for nilpotent loops. 

Definition 1.5. Let G be a pre-TJ-loop. Then G is an TT-loop if there exists 
a defining system / : G —•> 11 Ga such tha t (i) if g$: G —» G/3 is epic with G/3 a 
finite M o o p then there exists g: Yl Ga—+G$ such tha t g$ = gf and (ii) for any 
set of primes Q, SQ(qf (G), I l Ga/TQ(Ga)) is a loop. 

Note tha t any finite /r-loop is an TT-loop and tha t while for any pre-TT-loop 
there is always a defining system such tha t (i) holds, it is not clear if (ii) holds. 
We will call a defining system satisfying (i) and (ii) of 1.5 an H-defining 
system. 

Let P be a set of primes. Recall t ha t a loop G is P-local if the mapping defined 
by x —» xn is a bisection for any association, any n G (Pf ) and a homomorphism 
/ : M—* N is a P-equivalence if k e r / Ç TP>(M) (f is P-monic) and for any 
x £ N there is an r G ( P ; ) and an association such tha t xr Ç im / ( / is P-epic). 

LEMMA 1.6. Let G be a pre-H-loop with defining system f: G —» Yl Ga. Let P 
be a set of primes and let S be the subloop of Yl Ga/ TP> (Ga) generated by SP> (qf (G), 
H Ga/Tp' (Ga)). Then S is the P-local subloop of Yl Ga/TP' (Ga) generated by qf (G). 

Proof. By 3.4 of [6] I I Ga/TP> (Ga) is P-local and hence the mapping x —•> xn 

for n (z {P') is one to one on S. Fur the r \î x ^ S and yn = x, n G ( P r ) then by 
definition y G 5 so tha t x —» xn is onto on S. Thus 5 is P-local. 
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On the other hand any P-local subloop of YlGa/Tp>(Ga) which contains 
gf(G) must also contain SP> (qf(G), YL Ga/TP> (Ga)). The result follows. 

PROPOSITION 1.7. Let G be an H-loop. Then the defining system g: G —* 
ri/3€ J Gp of all finite h-loop quotients is an H-defining system. 

Proof. Trivially 1.5 (i) holds so that we need only demonstrate 1.5 (ii). 
Let / : G —> YY<*ei Ga be an //-defining system and note that I Q J. For any 
P £ J — I le t / : LI Ga —» Gp satisfy (i) of 1.5and define i: Y[<*ti Ga —^TYPZJGCX 
by the product of the projections Pp if fi £ / and by fp if fi Ç J — I. Then the 
following diagram commutes: 

G-
f + YLGa 

« € / 

Y 

•> I I Ga/TAGa) 

•> II Ge/TP.(G0) 
0£J 

where j is induced by i. 
It is easily seen that i and j are both monic. 
Thus by 1.6j(SP, {qff (G), IT Ga/TP , (Ga)) is aP-local subloop of IT G^/Pp, (G^) 

which contains qg(G). But it is clear that 

n«eiPa(SP-(qg(G), UGI>/TP'(G„))) çSP.(q'f(G), Y\GJTP,{Ga)) 

and that ( YY<*ei P<*)J ls t n e identity on I I Gp/TP> (Gp). Thus 

j(SP.(q'f(G)), UGa/TP.(Ga)) QSPr(qg(G), U G,/Tp,(G,)). 

Once again applying 1.6 yields the required result. 

THEOREM 1.8. Let G be an H-loop and letf: G —>YL Gabe any defining system. 
Then for any set of primes QPSQ(qf (G), I l Ga/TQ(Ga)) is a loop. 

Proof. By 1.7 the defining system of all finite h-\oop quotients, g: G —> I l Gp 
is an ^-defining system and we may factor / = (YL pa)g where pa is the 
product of the projections. The same technique as in 1.7 now yields the result. 

Section 2. Localization of i7-loops. Let G be an iPloop and let 
g: G —> n Gp be the defining system of all finite 77-loop quotients. Let P be a 
set of primes and g: YL Gp —> Gp/TP> (Gp) be the product of the quotient maps. 

Definition 2.1. If P ^ 0 the P-localization of an H-\oop G, L: G^>GP is 
SP>(qg{G),l\Gp/TP,(Gp)). 

Note that by 1.3 ker L = 7>(G), by 1.6 Gv is the P-local subloop of 
Y\.Gp/Tv>(Gp) generated by qg(G) and by definition x £ Gv implies that xn £ 
L(G) for some association, some n £ (P r). Thus we get: 
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THEOREM 2.2. If P is a non-empty set of primes and G is an H-loop then 
P-localization L: G —> GP is a P-equivalence and hence is a P-localization in the 
sense of ([6], 3.1). 

Let G be an U-loop and let/ : G —> I I Ga be any (not necessarily H) defining 
system. Let P ^ 0 and let 

k: G^G' = SP,(gf(G), Y\Ga/TP.(Ga)). 

PROPOSITION 2.3. There is a unique isomorphism k: GP —> G' such that k = kL. 
Thus up to canonical equivalence k: G —> G' is a P-localization. 

Proof. The product of the projections I I pa: I I G$ —>Jj[ Ga as defined in 1.8 
induces a map k: GP —> G' such that k = kL with the uniqueness of k a trivi
ality of the construction. 

By 1.6 and 1.8 both L and K are P-equivalences. A trivial modification of 
([4], / 1.4) to loops shows that k is a P-equivalence. But both GP and G' are 
P-local loops and by ([4], / 1.5) a P-equivalence between P-local loops is an 
isomorphism. 

THEOREM 2.4. Let f: G —> M be a homomorphism of H-loops and let P ^ 0 be 
a set of primes. Then there is a unique fP: GP —> MP such thatfPLG = LMf. 

Proof. If K is a normal subloop of M of finite index then / - 1 ( i £ ) is normal in 
G of finite index. Thus given a defining system g: M—>Yl<*ei Ma extend 
G —» rX*€/ (£ / / - 1 (ke r go)) to a defining system g: G —> IXse j ^ an<^ define 
/ : I I G,3 —> I I M« to be trivial if fi G / — / and the obvious map if / 

In this manner we get the following commutative diagram: 

/ 
G >M 

€ / . 

UGs 

Ç.G 

•+IlMa 

r 
qM 

TlGp/Tp.iGt) > T\Ma/TP,{Ma) 

Let x G SP>(qGg(G), U Gp/TP>(Gp)) = GP then xn = LG(y) for some y G G, 
n G (P')- Thus 

and this implies tha t / r (x) lies in 

SP>(qMg(M), E[ Ma/TP.(Ma)) = MP . 

Le t /p be the restriction of/7 to GP. Since fP is unique on the image of G it is 
unique on its localization GP. 
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COROLLARY 2.5. (Universality) Let f: G —> H be a homomorphism of H-loops 
with MP-local (P ^ 0) . Then there is a unique/: GP —> M such thatfLG = f. 

i g 
COROLLARY 2.6. Let K >—> G -» N be a short exact sequence of H-loops. Then 

fp £p . 
the sequence KP >-> GP -» NP is short exact. Further if K is central then so is KP. 

Proof. By 2.4 we have the following commuta t ive diagram 

K>-
f 

•> G -> - • N 

LK 

KF 
u 

LG 

+ Gf 
gp 

LN 

> NP 

with the top row short exact. By 2.2 the vertical maps are all P isomorphisms. 

T h e proof now follows by the same arguments as ([4]. I 1.10). 

COROLLARY 2.7. On the category of H-loops the P-localization (P ^ 0) of G 
is characterized by any P-equivalence f : G —> G' where G' is a P-local H-loop. 

Proof. This is jus t a res ta tement of 2.2-2.5 combined with noting tha t GP is 
an iJ-loop. 

By combining the results of this section we get the following: 

T H E O R E M 2.8. On the category of H-loops there exists a P-localization functor 
( P ^ 0) which is universal and exact. Furthermore the localization of an H-loop 
of nilpotency class ^ n is also of class ^ n. 

S e c t i o n 3. Topo log ica l a n d g r o u p t h e o r e t i c c o n s i d e r a t i o n s . 

T H E O R E M 3.1. Let G be a finitely generated nilpotent group. Then G is an 
H-loop and loop localization is equivalent to loop localization. 

Proof. Trivially G is an h-\oop. By combining the results of [5] and [3] we 
get t ha t G is a pre-77-loop. By ([7], 3.25) G is an H-\oop and the localization 
construction of ([7], 8.5) is easily seen to be equivalent to the construction in 
this paper. 

T H E O R E M 3.2. Let X be a finite CW complex and Y be an H-Space with finitely 
generated homotopy groups in each dimension. Then [X, Y] is an H-loop and for 
every set of primes, P ^ 0, [X, YP] ^ [X, Y]P. 

Proof. T h a t [X, Y] is an A-loop was shown in ([6], 4.1). By ([1], VI 8.1) the 
map [X, Y] - * n ^ lx> (z/P)œY) is an injection where (Z/p)mY is the Z/p 
completion of Y. Fur thermore ([1], 4.3) (Z/p)œY = lim (Z/p), Y and all the 
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homotopy groups of (Z/p)s Y are finite when s is finite. Thus [Xy Y] includes 
into l\P f[s [X, (Z/p)s Y] with all the sets [X, (Z/p)s Y] finite. 

But a trivial modification of ([1], / 7.3) shows that all the (Z/p)s F'are 
i7-spaces with compatible structures so that [X, Y] is residually finite. That 
[X, F] is a pre-77-loop follows from ([1], VI 8.1). 

Property (ii) of 1.5 follows from ([4], 6.2). To prove that [X, F] satisfies (i) 
of 1.5 let K be normal in [X, Y] of finite index. Since [X, Y] —> lim (X, 
Y[p (Z/p)sY] is an inclusion there must exist an 5 such that ker [X, F] —» 
[X} I I (Z/p)sY] is contained in K which is equivalent to 1.5 (i). That 
[X, YP] ^ [X, Y]P follows from the fact that [X, YP] is P-local and [X, Y] -> 
[X, YP] is a P isomorphism. 
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