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1. Introduction

There is an extensive literature on application of the Ritz method to
eigenvalue problems of the type

(1) Lxw = XL%w

where Lx, L2 are positive definite linear operators in a Hilbert space (see
for example [1]). The classical theory concerns the case in which there
exists a minimum (or maximum) eigenvalue, and subsequent eigenvalues
can be located by a well-known mini-max principle [2; p. 405]. This paper
considers the possibility of application of the Ritz method to eigenvalue
problems of the type (1) where the linear operators Llt L2 are not necessarily
positive definite and a minimum (or maximum) eigenvalue may not exist.
The special cases considered may be written with the eigenvalue occurring
in a non-linear manner.

This investigation was suggested by results [3] recently obtained when
the Ritz method was applied to a variational formulation by Chandrasekhar
[4] of the boundary value problem describing non-radial oscillations of
stars. This problem, which is described in section 2, does not have a minimum
(or maximum) eigenvalue and hence is not dealt with by the classical
theory. It is the aim of section 2 to indicate the use that has been made by
astrophysicists of the methods whose validity is examined in the succeeding
sections, to discuss the results they have obtained, and to examine the
mathematical properties of the eigenvalue problem they considered, so that
later the similarities between that problem and the one considered in section
4 may become apparent.

Some elementary results for quite general operators are established in
section 3. Section 4 considers a simpler problem for which an exact solution
may be obtained but which is in many ways similar to that studied in [3].
Like the problem considered in [3], this simpler problem has no minimum
or maximum eigenvalue, though its eigenvalues are bounded from below.
Some theorems, which it is hoped are also interesting in their own right,
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are proved concerning the results of formal application of the Ritz method
to this simpler problem. Section 5 reconsiders the astrophysical problem
in the light of the results of section 4 which are also extended slightly.

2. Non-radial oscillations of stars

The fourth order system of differential equations governing small
adiabatic non-radial oscillations of stars is derived and its properties
discussed in [5; p. 509]. This system, and the simpler second order system
obtained when, as in [3] and many other papers, the Eulerian perturbation
dcj> of gravitational potential is neglected, will be denoted here, as in [3],
by IA and IB respectively.

When d<f> is neglected, Chandrasekhar's variational principle for
oscillations corresponding to the spherical harmonic t may be written

where 1n\a is the period, R is the radius,

I dp I dp

p dr Fxp dr

and the components rp, %' of the vector-valued eigenfunction, which depend
on the radial and transverse components of displacement, are defined in
[4]. The density p, the total pressure p, and the adiabatic exponent J\ are
functions of the distance r from the centre. These functions depend on the
stellar model chosen. It is required that y>/rz and %'\r be bounded at r = 0
and r = R. If the stellar model satisfies certain conditions that are satisfied
by all the stellar models considered in this paper, Lebovitz has shown [6]
that if a2 /= 0, the eigenfunctions of IA must satisfy stronger conditions
(which are satisfied by (6)) at the centre. An identical proof establishes the
same result for IB.

The Euler-Lagrange equations obtained from (2) by considering varia-
tions in xp and % respectively are

(3a) o*py>lr*= ~F'f

(3b) <rSpZ'//(/+l) = -F(r

where F(r) = (p'y+^py'-Txpx')\r2. Equations (12), (31), (33) and (34)
of [4] show that equations (3a) and (3b) above are scalar multiples of the
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radial and transverse components of the basic equation (9) of [4] when
d<j> is neglected.

Equation (3) is of the form (1). Denote the linear operators Llt L2 in
this case by Ax, A2 respectively. In this case w corresponds to the vector
valued function {y>, %'}, the inner product is defined by

X = a2 and Ax and A2 are symmetric, but not positive definite. (That the
operators are symmetric, as is necessary for the variational formulation,
was proved in [4].) As A2 is given by A2{y>, %'} = {pip/r2, p^ ' / / ( /+l)},
the orthogonality relation satisfied by eigenfunctions {ylt %[}, {y>2, %'%}
corresponding to distinct eigenvalues is

w

X
\ J

=

( 1

r,p

[ r2

dp
dr

A

pa2 dr)

i

-A

o2pr2 -\

pt(f+l)

Since t > 0, and p > 0 for r < R in all models considered here (and all
physical models), the operator A2 is positive (that is for all non-zero w in
the domain of A2, (A2w,w) > 0). Hence (3) satisfies the conditions of
both Theorems 1 and 2.

Substituting for F(r) from (3b) in (3a) shows that when a2 ^ 0 equation
(3) may be written in standard matiix form as

(4)

This differs only in notation from the form given for IB in [5]. When
Schwarzschild's stability criterion A < 0 is satisfied throughout the star
(except perhaps on a set of measure zero) it is obvious from (2) that, as
dpjdr < 0 and F±p > 0, all eigenvalues are strictly positive so that the
above formulation is valid. Although (3) is written with <r2 occurring in a
linear manner, when that equation is written as the second order differential
equation (4) (instead of as a third order one), a2 occurs in a non-linear
manner. This property, which is also exhibited by the equation considered
in section 4, appears to be intimately related to the properties of the spec-
trum.

Numerical solutions of IA and IB have been obtained for a number of
stellar models. Generally these follow the pattern predicted by Cowling [7].
The spectrum is discrete, there being two families of modes — the ^-modes
with eigenvalues tending to + 00 and the g-modes with eigenvalues tending
to zero. In most cases the wth ^>-mode and the wth g-mode both have
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exactly n zeros in ip and n zeros in %'. In between these two families is a
single mode, the /-mode, with no zeros in ip or %''. Vaiiations in this pattern
have been noted for some models. (See for example [8], [9] and [5; p. 515].)

An exception relevant to what follows is the convective model, in which
A = 0. In this case it is obvious that a2 = 0 is an eigenvalue of (3)
of infinite multiplicity, with the corresponding space of eigenfunctions
given by %' = y>'-\-p'xpjF-^p, where xpjr2 is any bounded function sufficiently
differentiable on (0, R). In this case (3) may be written

where px(r) = exp (fo[p'irip)dr). The non-zero eigenvalues are given by
the equation obtained by dividing (5) by a2. With the boundary conditions
this is a singular Sturm-Liouville problem in %' [2; p. 324], since p, Fxp, px

and t are all strictly positive in [0, R). The singularities are regular (compare
[5; p. 461]) when, as is usual, pjrxp <~ (R — r)~x as r -> R. It seems likely,
as is generally accepted [5; p. 518], that with the convective model IB has
an /-mode and an infinite family of ^>-modes but that instead of the infinite
family of g-modes there is an infinite family of eigenfunctions with eigen-
value zero.

In [3] the Ritz method was applied to (2) by assuming y/r^1 and
%'jrl to be continuous and piecewise linear. Good results were obtained for
the /-mode and the ^>-modes but no trace of the g-modes was obtained.
Of the eigenvalues and eigenvectors of the matrix equation yielded by the
Ritz method, those which did not correspond to ^>-modes or the /-mode
seemed completely spurious.

The only model considered in [3] was one constructed by Van der
Borght [10]. It has a convective core and a radiative envelope with A = 0
for r < rf < R and A < 0 for rf 5S r ^ R. (The possible effect on the solu-
tion of IB, of the vanishing of A throughout a region, is considered in
section 5.) For this model, Wan and Van der Borght [11] have solved both
IA and IB by numerical integration and obtained both ^-modes and g-modes
in both cases.

The Ritz method, using similar continuous piecewise linear coordinate
functions, has been applied successfully to the problem of purely radial
oscillations of this model [12]. In that case however the associated differ-
ential operator is positive definite and the variational principle is of the
classical minimum type. The existence of the g-modes with eigenvalues
tending to zero ensures that the operator Ax associated with non-radial
oscillations is not positive definite. (A symmetric linear operator L is said
to be positive definite if there is a strictly positive constant k such that
(Lw, w) 5; k(w, w) for all w in the domain of L.) The variational principle
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(2) is not a classical minimum principle as there is no minimum eigen-
value.

A second application of the Ritz method to (2) in [3] assumed y> and
% to be given by

(6)
t = 0

where the Cit Cf are parameters. Coordinate functions of type (6) were
initially used in [13] where only the case n = 1 was considered and only the
/-mode determined. However those numerical results in [3] which used (6)
have subsequently been found to be incorrect. Amended results using values
of n up to n = 6 are given in a later paper [20]. These amended results show
that when (6) is used with this model crude approximations of g-modes may
be obtained for both IB and IA but that they are far less accurate than the
approximations obtained for /- and ^>-modes. These calculations, like those
in [3] and [11], consider only the spherical harmonic I = 2.

Robe and Brandt [14] have applied the Ritz method to both IA and IB
for several poly tropic models. For t = 2 they obtained both p- and g-modes
in both cases although, except for models of unrealistically low central
condensation, the values they obtained, especially for g-modes, differed
considerably from those obtained by numerical integration of the differ-
ential equation. They assumed y> and %' to be given by (6), using values of
n up to n = 2. Their relatively good results for models of low central
condensation may be explained by the fact that (6) is the form of the exact
eigenfunctions for the homogeneous (constant density) model. For a model
with p proportional to l—(rjR)2, which also has very low central condensa-
tion, Tassoul [15] obtained encouraging results for both p- and g-modes of
IA using the Ritz method, again with rp and %' given by (6). However in
[15] comparison of the results of the Ritz method with accurate results is
limited to the case of purely radial oscillations when, as already noted, the
Ritz method presents no difficulty. It cannot be assumed that the Ritz
method will be as successful for the more realistic model used in [3] as it
was for Tassoul's model or the low index polytropes. As well as having
higher central condensation, Van der Borght's model has ^ 4 = 0 throughout
an extensive core and Cowling's argument [7] is weakest when A vanishes
throughout some region.

No rigorous mathematical analysis has yet been undertaken for either
IA or IB except with some highly unrealistic models [5, p. 514] and the
numerical solutions obtained have not been rigorously justified. Accordingly
before considering in more detail the reason foi the partial failure of the
Ritz method in this incompletely understood case, it would seem useful
to consider a related problem which can be solved explicitly and shown
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to have cluster points of eigenvalues at +00 and zero. This is done in
section 4.

3. The general equation

First it would seem of interest to consider the general eigenvalue
problem (1) where Lx, L2 are symmetric linear operators in a Hilbert space.
This equation may be regarded as the Euler-Lagrange equation of the
variational problem (L-^w, w) = A(L2Z£>, w). Application of the Ritz method
to this yields the matrix equation

(7) Px = AQx

where the matrices P and Q are symmetric, and if the operators Lt and L2

are positive then P and Q are positive definite. The Ritz method has been
rigorously justified [1] when the variational principle is a true mini-max
principle, but this is not the case with the problems considered in sections 2
and 4 and is not assumed in this section.

Throughout the rest of this paper, eigenvalues and eigenfunctions
yielded by formal application of the Ritz method to some problem will be
termed Ritz approximate eigenvalues and eigenfunctions of that problem.

The following Theorem, which emphasises the importance of the choice
of coordinate functions, will be required for later work. The proof is straight-
forward and is omitted.

THEOREM 1. Let Lx be any symmetric linear operator and L2 any sym-
metric positive linear operator in a real Hilbert space of functions. Let
Xx, • • •, Xn be any distinct eigenvalues of (1) and wlt • • -,wn the corresponding
eigenfunctions {which are linearly independent since the k{ are distinct.) Let
Si, • • ", fn be any basis of the space spanned by wlt • • •, wn. Then when the
Ritz method is applied to (1) using the ft- as coordinate functions, the Ritz
approximate eigenvalues obtained are the exact Xt and the corresponding Ritz
approximate eigenfunctions are the corresponding exact wt.

A particular case of Theorem 1 is the result obtained by Robe [16] when
he applied the Ritz method to LA for the homogeneous stellar model using
as coordinate functions a basis of the space spanned by certain exact eigen-
functions, whose form in that very special (and non-physical) case is known
[5; p. 514]. However this gives little indication of the reliability of the Ritz
method when the solution is not known in advance.

In the theory of convergence of the Ritz method in the classical case,
an important fact is that the Ritz approximate eigenfunctions corresponding
to distinct eigenvalues satisfy the orthogonality relation of the true eigen-
functions. The method of proof normally used in that case is also valid more
generally.
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THEOREM 2. Let Llt L2 be symmetric linear operators in a real Hilbert
space of functions. Then if Ax, A2 are distinct Ritz approximate eigenvalues
of (1) and Wx, W2 are the corresponding Ritz approximate eigenfunctions,
(L1W1,W2) = (L2W1,W2) = O.

PROOF. For k = 1 and 2, Wk = 2*=i XM£} where the coordinate
functions £t are any linearly independent functions in the domains of L1 and
L2 and the scalars xkj satisfy (7) with A = Ak, x = xk = {xkl, • • •, xkn},
Pa = {Li%i, Zi)> and qu = (L2£t, | , ) . Now

(LiW1,Wi)= (ixuL&.jrxuS,)
n n

= 2 2 xux*i<iu
t = l 3=1

= x\ Qx± (where xT denotes the transpose of x)
= 0 since Ax ^ A2 and P and Q are symmetric.

Similarly ( L ^ , PF2) = 0.

4. A simpler equation

Let H be the Hilbert space of real square summable 2-vector valued
functions {«, v} defined on the interval [0, 1], in which the inner product is
defined by

(10) {{Ul, Vj), {U2, V2}) =

where in (10) and throughout this section the abbreviated notation J/ is used
for $f(x)dx.

Define the operators Bx, B2 on those sufficiently differentiable functions
in H satisfying

(11) w(0)=»(l) = 0

by
M _ laxu+a2v—a-^a^v' \

1 \vj \[ai(a1u + a2v—a1aiv')]'+a2u
J
ra3v — a2aiv'/

B2{u, v) = {asu, a6v}

where the af are continuously differentiable, non-vanishing, real-valued
functions defined on [0, 1]. It follows from (10) and (11) that

i 0' 0)=f0 b (Mi+ ai v^-aA
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and ( # 2 K . vi}> {«2. "2}) = f! K%«2+«6*W-
J 0

These equations show that 5X and B2 are symmetric and that if, almost
everywhere on (0, 1),

(12a) a3 > a\\ax > 0

then Bx is positive, while B2 is positive if, almost everywhere on (0, 1),

(12b) a5 > 0, a6 > 0.

In the rest of this section it is assumed that (12) is satisfied since in the
simplest case the operators Alt A2 of section 2 are positive and one purpose
of the present investigation is to shed further light on the problem con-
sidered there. Other cases are mentioned briefly in section 5.

In exactly the same manner in which (4) was derived from (3), the
eigenvalue problem

(13)

may be

<")

where

rewritten as

bj_ = a2/<

E

o'-
*i«4, b.

^{u, v} =

> = l / « 4 ,

AB2{«,

The non-linear occurrence of A in (14) and its linear occurrence in (13) are
reminiscent of (4) and (3).

If «1/«5 (= &2/64) is a constant, (14) shows that a.x\ah is an eigenvalue
of (13) with corresponding eigenf unction {u0, v0} where

u0 = c(a4a5)-1exp(— jb^, v0 = 0,

and c is a constant. Denote this eigenvalue by Ao. Substitution shows that
{u0, v0} is the only eigenfunction with u s O .

Application of the Ritz method to the solution of (13) involves extre-
mising X = {B^u, v}, {u, v})j(B2{u, v}, {u, v}) where {u, v} is restricted to a
finite dimensional subspace of H. The coordinate functions (basis of the
subspace) usually chosen are of the form {ft., 0}, {0, r)}) so that it is assumed
that

n ni

(15) w = 2 c i ^ > v = Xc*Vi
i=l 3 = 1

where the c(, cf are constants and the {^ir t]j} are in the domain of B± and
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hence in the domain of B2. The coordinate functions used in [3], [14], [15]
and [16] are of this type.

THEOREM 3. / / aja^ is constant, application of the Ritz method to (13)
using (15) with n > m will yield at least n—m linearly independent Ritz
approximate eigenfunctions in which v = 0. The Ritz approximate eigenvalue
corresponding to each of these will be a1ja5, the exact value of Ao.

PROOF. The matrix equation yielded by the Ritz method will be of the
form (7) where in this case it is easily shown that

where P1 is an n x n matrix, Ps and P 4 are mxm, P2 is n x m and 0mn, 0nm

are zero matrices. If A = aja5, then xT = {y, 0}, where y is a Ixn vector
and 0 the Ixm zero vector, will be a solution of (7) if and only if PT

2y
T = 0.

Since P\ is m x n and n> m this will have a solution space of dimension at
least n—m. The result follows. Alternatively the multiplicity of ?.o could be
established by noting that det (P—AQ) has a factor (a1—aiA)n~m.

The remainder of this paper will be concerned with the case when the
at are all constant. In this case (14) is very simple as b6 = 0 and the bi are
all constant. To distinguish this case, (13) with all the at constant will be
labelled (13a).

The exact solution of (13a) may easily be found. Let

GT' 3- o-CT15:)

Since aja5 is constant it has already been shown that 20 is an eigenvalue
with unique corresponding eigenfunction {u0, v0} and that no other eigen-
functions have v = 0. For any given X, the solutions of (13a), if any, may be
found by the usual methods for homogeneous linear differential equations
with constant coefficients. It is readily seen that there is no eigenvalue A
(except perhaps Ao) for which d(X) = 0 as (11) shows that this would require
v = 0. Hence all remaining eigenfunctions must be of the form

{u{x), v(x)} = {c1, c2} exp (y/(d(X))x)+{c3, c j exp (-

where the ct are constants. Boundary conditions (11) then show that the
only solutions with v not identically zero have v(x) = c sin (<\/(—d(X))x),
where c is a constant and that this requires d(X) = — n2n2 where n is a
positive integer, so that all eigenvalues except Ao must satisfy

(17) A 2 & A - ^ + M 5 + M 4 + ^ 2 ) + &2&3 = 0

so that
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X = (2bibi)^[b2
1+b2bi+b3

2

For each n, denote the values of X corresponding to the +sign and the —sign
above by Xn+ and Xn_ respectively. It follows from (12) that for all n

and

(18) 4+~w27r2(&4&6)-1^ oo, Xn_~b2ba{n2n2)-1^+0 as « -> oo.

Substitution in (13a) shows that all Xn± thus defined are eigenvalues of
(13a) and that the eigenfunctions corresponding to Xn+ and AM_ are
{un+, vn+} and {un_, vn_} respectively where vn±(x) = c sin nnx and

{h-^iK±)un±{x) =v'n±{x)-b1vn±{x)

— c(nn cos nnx—b1 sin

The above expressions and (17) show that

(20) K+K- = hhlhh = («l«S-«S)/«5«6.

Since (12) implies

(&2+&255+63&4+w27r2)

and bibb > 0, it follows that

Although (12a) ensures that Bx is positive, putting a5 = ae = 1 in (18)
shows that it is not positive definite. The + and —families of eigenvalues
and eigenfunctions and the single eigenvalue and eigenfunction in between
them are in many ways similar to Cowling's />-modes, g-modes and /-mode
mentioned in Section 2. While v0 = 0, u0 has no zero in [0, 1]. Both un+

and un_ have exactly n zeros in (0, 1) and do not vanish at either 0 or 1
while vn+ and i>B_ have exactly n—1 zeros in (0, 1) but also vanish at both
0 and 1. The positions of the zeros of un± depend on bx but they are separated
by those of vn± (which is independent of the bt).

Direct calculation shows that if the Ritz method is applied to (13a) with
the space of allowable functions given by

(22) u{x) = c1 sin n7ix-\-c2 cos nnx, v(x) = c3 sin nnx

where the c,- are the variational parameters, then the Ritz approximate
eigenvalues will be exactly An_, Xn+ and Xo, and that the Ritz approximate
eigenfunction corresponding to Xn± will be exactly {un±, vn±}. The boundary
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conditions and the fact that the ai are constant make (22) quite a logical
choice. However it can hardly be expected that the results yielded by this
choice will be representative of the accuracy obtainable by the Ritz method
in general. (See Theorems 1 and 3.)

Polynomials are a favourite choice of coordinate functions with the
Ritz method and were one of the types of coordinate functions used in [3].
Since the eigenfunctions of (13a) are not polynomials, solutions of (13a)
obtained using polynomial coordinate functions should give a truer picture
of the reliability of the Ritz method for this problem than (22). It would then
seem useful to consider the application of the Ritz method to (13a) using
polynomial coordinate functions. The simplest choice of polynomial coor-
dinate functions satisfying (11) is given by (15) where in this case

(23) £i(x)=x<-\ r]i{x)=xi{\-x).

THEOREM 4. If n—m ^ 2 when the Ritz method is applied to (13a) using
(15) and (23) then, apart from the multiplicity of Ao, the Ritz approximate
eigenvalues and eigenfunctions will be independent of n, depending on m only.
In this case the Ritz approximate eigenvalues other than Ao will occur in pairs
satisfying (20) and the corresponding Ritz approximate eigenfunctions will
satisfy (21).

PROOF. With this choice of coordinate functions, direct calculation
shows that P and Q in the matrix equation (7) obtained by the Ritz method
are of the form (16) where on this occasion Pk = (pkij), k = 1, • • •, 4 and

1
Pin = -

i+j-l

P2ii~ i+j-l + i+j
c

Piii = = / • , • TV

2a3

Pin —Ui (i+/+1) (,•+/+2) (t+/+3)
Clearly

P21S = ~alaiiPlii+{alai{i+^)+a2)Pl,i,)+l~a2pl,i,i+2

so that, it A ^ a1/a5, column operations on (P—AQ) can reduce the first n
elements of the last m columns to zero. These column operations are equiv-
alent to post multiplication by the matrix R{A) given by
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where (ax—a^R^A) = R2 = (rtj) and, for 1 ̂  i ^ m, rH = iaxait
ri+i.i = ~(i+l)a1ai—a2, ri+2>i = a2, and r(i = 0 for \i—j—l\ > 1. Now

where K-a5/ l)P5(^) = P6(/t) = (ptii{A)) and

(,•+/_ !)(»+/) (»+/+!)

(*+/+!)(*+/+2) (*+/+3)
Since Px is the Gram matrix of a linearly independent set of functions

it is non-singular (in fact positive definite) and hence the characteristic
equation det (P—AQ) = 0, which determines the Ritz approximate eigen-
values, may be written

(25) (a1—a5A)n~m det Pa(A) = 0.

The left hand side of (25) is identically equal to (det (P—AQ))/det Px for
A =£ a1/a5 and hence, by continuity, for all A. The factor (a1—a5A)n~m

gives the roots predicted by Theorem 3 and det P6(A), a polynomial of degree
2m and independent of n, gives the others. Clearly Pe((«1«3—al)jAasat)
is a scalar multiple of P6(A), so that (a1a3—al)IAa5a6 is a zero of det P6

if and only if A is also. Hence the Ritz approximate eigenvalues occur in
pairs satisfying (20).

The equation (P—AQ)x = 0 may be thought of as

(26) (P-AQ)R(A){R-i(A)x)=0.

Let xx, x2 be column vectors representing the first n and the last m elements
respectively of x and let x3, x4 be the corresponding parts of R~1(A)x. Then,
for A =£ aja^, (26) may be written

(27) P x = 0 PTx -+-P (A)x = 0.

For each eigenvalue A of (25) this has a non-zero solution and since Px is
nonsingular, this solution must have x3 = 0. From the form of R it is
obvious that

so that x2 = xt and

(28) x1-R1{A)xt = x9 = 0.
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If n—m > 2 the n—m—2 bottom rows of R1, and hence the last n—m — 2
elements of xx are zero. Also ar4 and the first m-\-2 rows of Rlt and hence
the first m+2 elements of xlt are independent of n. Hence the Ritz approx-
imate eigenfunctions depend only on m. Since R2 = (ax—aaA)R1(A) is
constant, and since (24) and (27) show that the same xA is obtained by the
eigenvalues A and [a1az —a\)lAaba§ it follows from (15), (23), (28) and the
definition of x1 and x2 that the corresponding Ritz approximate eigen-
functions satisfy (21). This completes the proof.

Theorem 4 shows that for each m, the Ritz approximate eigenvalues
in this case will consist of n—m eigenvalues equal to 1Q together with m
eigenvalues greater than or equal to Ao = {b^Jb^^i a n d m ^ess than or
equal to Ao. That is the Ritz approximate eigenvalues obtained in this case
may be labelled Xo {n—m times), A1±(m), A2±(m), • • •, Am±{m) where

Am_(m) £ • • • ^ A2_(m) ^ Ax_{m) ^ Ao ^ A1+(m) ^ • • • ^ Am+(m).

Denote the Ritz approximate eigenfunction corresponding to Ak±{m) by
{Uu±{m),Vk±{m)}.

Theorem 4 shows that Ak_{m) and {Uk_(m), Vk_(m)} will be good
approximations of Xk_ and {%_, vk_} if and only if Ak+{m) and
{Uk+(m), Vk+(m)} are good approximations of Xk+ and {uk+, vk+j. This case
contrasts with those results in [3] where ^-modes were detected but not
g-modes. However Theorem 4 gives no indication of whether Ak±(m) and
{Uk±(m), Vk±(m)} will in fact be approximations of lk± and {uk±, vk±} in
any meaningful sense, or whether they will be spurious like some of the
modes discovered in [3]. To settle this question it is necessary to consider
whether limm_faQAk±(m) and l i m ^ ^ {Uk±(m), Vk±(m)} exist, and if so
whether these limits are equal, or nearly equal, to Xk± and {uk±, vk±}, and
how rapidly the limits are approached.

The methods normally used to discuss the convergence of the Ritz
method (as in [1]) are not immediately applicable here as they use the fact
that in standard problems the Ath eigenvalue of (1) is the minimum of
(Lxw, w)l(L2w, w) when w is subject to the restriction that it is orthogonal
to the eigenfunctions corresponding to the k—1 lowest eigenvalues. In the
present problem not only is there no minimum (or maximum) eigenvalue
but also there are functions (not eigenfunctions) which are orthogonal to
{u0, v0} and yet give the same value of the ratio

{Bx{u, v}, {u, v})l(B2{u, v}, {u, v})

as {u0, v0}. An example is

{u(x), v(x)} = {cos (27cnx-{-c) exp bxx, 0}

where c is a constant and n an integer.
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It is planned to consider the question of convergence in this and related
problems in a later paper. In the meantime it may be noted that
{Uk±(m), Vk±(m)} resembles {uk±, vk±} in several important ways (Theorem 5
and corollaries) and that for small m, Ak±(m) and {Uk±(m), Vk±(m)} are
in fact good approximations of Xk± and {uk±, vk±} (Theorem 6 and the
succeeding paragraphs).

Define Ukm+, Ukm_ and Vkm to be the extensions of Uk+(m), Uk_(m)
and Vk+(m) ( = Vk_(m)) to the whole real line.

THEOREM 5. (i) (62-S4/l4±(w))C/fcm± = V'km-bxVkm.
(ii) / / Ai+{m) > Aj+{m), then

PROOF, (i) If
TO-l

Vkn(x)=x(l-x)2cix
i,

(28) shows that

^) = f [*Vi*'-1-(fti+*

(ii) Since bi^= 0 and Ai+(m) > Aj+(m) ^ Aj_(m) > A^m) it follows
that b2—b4Ai+(m) ^ b2—biAi_(m). By Theorem 2,

\l (^Uim+Uim++a6VimVjm) = 0 = J* (a5Uim_Ujm_+a6VimVjm).

Combining these relations, using

{h-KAi+{m))Uim+ = ( i r M ( - ( « ) ) ^ - .
gives the result.

COROLLARY 1. / / the zeros of Vkm are all real, then between each pair of
consecutive distinct zeros of Vkm there is exactly one real zero of Ukm±.

PROOF. Since Vkm is a polynomial with only real zeros there is exactly
one real zero of Vkm between each pair of consecutive distinct zeros of Vkm.
Hence by (i) the sign of Ukm± immediately after a zero of Vkm is opposite
to its sign immediately before the next zero of Vkm. Hence there is an odd
number of real zeros of Ukm± between any two consecutive distinct zeros of
Vkm. Moreover at a zero of multiplicity r of Vkm, Ukm± has a zero of multi-
plicity exactly r— 1. Since Ukm± has the same number of zeros as Vkm and
the zeros of Vkm are all real the result follows.

COROLLARY 2. / / Ai+(m) > Aj+(m) then l\V'imV'jm — 0.
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PROOF. Since $l{V'imVjm-\-VimV'im) = 0, the result follows by combining
results (i) and (ii) of the Theorem.

THEOREM 6. For all non-zero constants at satisfying (12),

A1+ < A1+(Z) < A1+{2) = A1+(l) < 1.014^+,

A2+ < A+ (3) = A2+ (2) < 1.064 A2+)

A3+ < A3+{Z) < 1.15A3+ and A1+{3) < 1.000015A1+.

PROOF. Define f(X) by

f(X) = {a1a3—a\~{a1a6+a3a&)X^ra5a6X
2)la1a\a5.

Equation (17), which determines the eigenvalues Xh± may be written
f{Xk±) = k2ji2kk±. Direct calculation shows that the equation det P6(A) = 0,
which determines the Ak±(m), may be written as /(A) —101 = 0 when
m = 1, as (/(A)-10A) (/(A)-42A) = 0 when w = 2, and as

(/(l)-(56-V(133))l)(/(A)-42A)(/(A)-(56+V(133))A) = 0

when m = 3. Since

0 < 7i2 < 56—4^(133) < 10 < 1.014 TT2,
4JI2 < 42 < 1.064(4JI2),

9JT2 < 56+4^/(133) < 1.15(9?r2)
and 56—4i/(133) < 1.000015 n2,

the result follows from the following lemma.

LEMMA. If the at are non-zero and satisfy (12), and K > 0 the roots of
/(A) = KX are real, distinct and positive. If K2> K±> 0, then

where X*{K) is the greater root of /(A) = KX.

PROOF. If the constants clt c2, cs, ci, cl—4c1ci are all strictly positive,
the roots of c^y2— (c2+c3)y+c4 = 0 are real distinct and positive. Let y(c3)
be the greater of these roots. Direct solution shows that if d > 0, then

> y{c3)- Also
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Since

a5a6, axa6-[-aza&, a^ah> «!%—a\ and (a1a6+asa5)
2—4!a&a6(a1a3—al)

are all strictly positive, the result follows.
The bounds given by Theorem 6 are uniform bounds. Finer bounds

can be found for specific values of the a{. Since, by Theorem 4,

A+{m)Ah_{m) = K+K-,

bounds for the Ak_(m) follow immediately from Theorem 6. These initial
results exhibit a convergence similar to that encountered in standard
problems. Note that for m ^ 3, Ak_(m) < Xk_ < Xk+ < Ak+(m). This is
similar to the result in [14].

Since the value of f(X) \X at the zeros of det P6(A) in Theorem 4 is
independent of the ait it follows that the eigenvectors z4 of P6(A), and hence
the Vk±(m), are also independent of the ait as are also the vk±. Direct
calculation shows that x4 corresponding to A2±(S) is {1, — 2, 0}. Hence
F2±(3), like v2±, has a zero at \ and no other zeros in (0, 1). Moreover
^2±(2) = ^2±(3)- Also with m = 3, xi corresponding to the eigenvalue given
b y fW = (56±4V(133))A is {5±3v

/(133)/7, -23+2^/(133), 23±2V(133)}. .
This shows that F3±(3) and F1±(3) have the same number of zeros in (0, 1)
as v3± and v1± respectively. The zeros of F3±(3) in (0, 1) are the roots of
(23+2-^(133)) (y2—2/) + 5+3v

/(133)/7 = 0, which have the approximate
values 0.32 and 0.68. The zeros of v3± in (0, 1) are -|, f. Similarly direct
calculation shows that F1±(l) = V1±(2) and that these functions, like v1±

and F1±(3), have no zeros in (0, 1).
It follows from Theorem 5 and Corollary 1 that for m ^ 3, the zeros of

Uk±(m) follow a pattern similar to those of uk±. Another point of resem-
blance between the two sets of vectors easily shown by direct calculation
for m ^ 3 is that \Ukm±(0)\ = \Ukm±(l)\.

5. Concluding remarks

The results of the last section indicate that there exist cases not covered
by the classical theory in which useful results may be obtained by the Ritz
method. It remains to find general criteria of the reliability of the method in
particular circumstances. Although, as noted in section 3, the results of
[16] will not be representative of the effectiveness of application of the
Ritz method to (2) for general models, and as noted in section 2, even [14]
and [15] leave the efficacy of the method in doubt, it does seem that the
results of [3] may not be typical.

Rounding errors, which affect all computer calculations such as those
in [3], [14] and [15], were not considered in sections 3 and 4. The matrix
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P, arising in Theorem 4 is the ill-conditioned Hilbert matrix [17] and some
moderately ill-conditioned matrices were obtained in the calculations
described in [3], as will always happen if the coordinate functions are not
strongly minimal [18]. It is possible that the effect of rounding errors on
the solution of (2) could be different when different stellar models are used,
especially as (6) will approximate the true eigenfunctions of (2) more closely
for some stellar models than for others. It is planned to consider the question
of rounding errors in a later paper.

In section 2 it was suggested that the fact that the model used in [3],
unlike those used in [14], [15] and [16], contains a core throughout which
A = 0, might be partly responsible for the difference in results. Comparison
of equations (2) and (13a) shows that the condition as > a\\ax in (12) may
be regarded as analogous to the condition Adpjdr > 0 with (2), while the
conditions a± > 0, a5 > 0, a6 > 0 correspond to the conditions Ftp > 0 and
p > 0. Since Fxp, p and —dp\dr (unlike —A) are strictly positive, except
perhaps at the boundaries, in all the stellar models considered here (and
indeed in any realistic stellar model), it would seem of interest to see how
many of the results of the last section continue to hold when the requirement
«3 > a\\ax is relaxed, while the requirement that ax, ah and a6 be positive
and all the at non-zero is still imposed.

If a3 < a\\ax, (14) and (17) still hold and in this case the Xn_ eigenvalues
of (13a) are all negative. (Very similar results have been obtained for IA
and IB, considered in section 2, for stellar models with A > 0 throughout
[5, p. 514]. More complicated results have been obtained [8] when A changes
sign.) Theorems 3, 4 and 5 also still hold, and provided a1a6

J
ra3ab > 0,

Theorem 6 will hold also.
When axa3 = a\, all functions {u, v} in the domain of Bt, satisfying

u — aiv'—(a2la1)v are eigenfunctions of (13a). The corresponding eigen-
value, which has infinite multiplicity, is zero. For the non-zero eigen-
values, many of the results of section 4, including equations (14), (17), (19),
(25) and (28) and Theorems 3, 5(i) and 6, still hold.

The analogy between (13a) with ata3 = a\ and 75 with the convective
model discussed in section 2 is manifest. With the stellar model used [3],
all sufficiently differentiable functions satisfying the boundary conditions
with f vanishing throughout the envelope (where A ^ 0) but not through-
out the core, and with %' = tp''-f- (p'/Fxp)ip throughout the star, are eigen-
functions of (2) and hence of IB. The corresponding eigenvalue is zero,
and again has infinite multiplicity. Results of Lebovitz [19] show that
these functions are also eigenfunctions oil A for this model. Results of [11]
(where the zero eigenvalues are not mentioned) show that with this model
IB has, as well as the zero eigenvalues, the normal p-m.od.es, /-mode and
g-modes, although the eigenvalues obtained there for g-modes were small
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compared with those obtained by others for models where A < 0 throughout.
The relatively complicated spectrum when A vanishes in parts of the

star could help explain why the method was less successful in [3] than in [14]
and [15], although in practice rounding errors have introduced some (very
small) non-zero values of A into the core of the model used in [3]. This
should make the model resemble a real star still more closely [8]. However
the spurious eigenfunctions bear no resemblance to the true eigenfunctions
corresponding to zero eigenvalues.
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