
Appendix

Background, conventions, and notation

This book aims to be as modular as possible, where each numbered chapter

and section can be read on its own—as such, specific notational definitions,

technical terms, and acronyms are redefined the first time they appear in each

numbered section.

Nevertheless, the mathematical presentation throughout this book does as-

sume familiarity with certain concepts, techniques, and conventions that are

ubiquitous within the field of theoretical quantum information science. This

book is targeting an interdisciplinary community of researchers; thus, the as-

sumed conventions and understanding of “common knowledge” will vary from

reader to reader, depending on one’s background and experience. In order to

make the material as widely accessible as possible, here we collect some of the

concepts and notational choices that are commonly used throughout this book.

For readers interested in a more complete introduction to the field and its

standard conventions, we recommend the following resources:

• The definitive reference in the field of quantum computation is the book by

Nielsen and Chuang [801]. Other classic textbooks include those by Kitaev,

Shen, and Vyalyi [627] and Kaye, Laflamme, and Mosca [606]. A similarly

general set of topics is covered in the lecture notes of Preskill [845].

• Several sets of more recent lecture notes have a specific focus on quantum

algorithms, for example, by de Wolf [1051], Childs [276], and Lin [687].

See also the review article on quantum algorithms by Montanaro [774].

• Some online resources include a website containing lecture notes on quan-

tum algorithms for data analysis and quantum machine learning by Luongo

[729], the Pennylane codebook [123], and the quantum algorithm zoo [586].
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A.1 Quantum systems and bra-ket notation 333

A.1 Quantum systems and bra-ket notation

Basic concepts from linear algebra are an essential prerequisite for understand-

ing quantum computation and thus for much of the technical discussion in this

book. We adopt bra-ket notation to denote quantum states and the linear al-

gebraic objects they correspond to. The state of a quantum system, such as a

collection of qubits, is labeled by a ket, such as |ψ⟩—this object corresponds

to a vector in a finite-dimensional vector space. For instance, the state of a

single qubit is an element of the 2D complex vector space C2, and can be rep-

resented by a length-2 column vector or by a superposition over orthonormal

basis states, denoted |0⟩ and |1⟩:

|ψ⟩ =
(
α0

α1

)
= α0|0⟩ + α1|1⟩, α0, α1 ∈ C .

The state of a system of n qubits is an element of the 2n-dimensional complex

vector space C2n

—the tensor product of the n individual 2D vector spaces—

and can be represented in any of the following equivalent ways:

|ψ⟩ =



α0

α1

...

α2n−1


=

2n−1∑

x=0

αx|x⟩ =
2n−1∑

x=0

αx|x0⟩ ⊗ |x1⟩ ⊗ · · · ⊗ |xn⟩, αx ∈ C ∀x ,

where xi ∈ {0, 1} denotes the i-th bit of the integer x when x is written in binary

(leading zeros are added such that x has n digits, and x0 corresponds to the

most significant bit). The orthonormal basis |0⟩, |1⟩, . . . , |2n − 1⟩ is called the

computational basis. An n-qubit quantum state is said to be a product state if

it can be written as a tensor product of 2D states on each of the n systems

|ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕn⟩, |ϕi⟩ ∈ C2 ∀i ,

and it is said to be entangled if it cannot be written as a product state.

For each quantum state |ψ⟩ corresponding to a column vector as above, we

denote its Hermitian adjoint (i.e., the complex conjugate of its transpose) by

the bra ⟨ψ|, which corresponds to the row vector

⟨ψ| =
(
α∗0 α∗1 · · · α∗2n−1

)
,

where α∗x denotes the complex conjugate of αx. A bra ⟨ϕ| = ∑
x β
∗
x⟨x| and ket

|ψ⟩ = ∑
x αx|x⟩ together form a braket

⟨ϕ|ψ⟩ =
2n−1∑

x=0

β∗xαx ∈ C ,
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334 A. Background, conventions, and notation

which is simply the standard Hermitian inner product between vectors |ϕ⟩ and

|ψ⟩. The norm of the state |ψ⟩ = ∑
x αx|x⟩ refers to the standard Euclidean

vector norm, or 2-norm of the vector, given by

∥ |ψ⟩ ∥ =
√
⟨ψ|ψ⟩ =

√√√
2n−1∑

x=0

|αx|2 .

A state for which ∥ |ψ⟩ ∥ = 1 is said to be normalized; in this book, kets are

usually (but not always) normalized.

The above corresponds to the case for pure quantum states; in some in-

stances, we consider the more general case that the state of the quantum sys-

tem is mixed—that is, it is drawn from a probabilistic ensemble of multiple

pure quantum states. In this case, an n-qubit quantum state is represented by a

2n × 2n matrix called a density matrix, typically denoted by a lowercase Greek

letter such as ρ. A matrix ρ is a valid quantum state if it is Hermitian and pos-

itive semidefinite. Furthermore, it is a normalized quantum state if it satisfies

tr(ρ) = 1. In this language, a pure state |ψ⟩ corresponds to the rank-1 Hermitian

matrix |ψ⟩⟨ψ| given by the outer product of the vector with itself.

Linear transformations of an n-qubit quantum system correspond to 2n × 2n

matrices, called operators. Given an operator M, there is always a singular

value decomposition (SVD)

M =

2n−1∑

i=0

σi|wi⟩⟨vi| ,

where the singular values σi are non-negative real numbers, and each of the

sets {|wi⟩} and {|vi⟩} are orthonormal bases for the vector space. If M is Hermi-

tian, then we may call M an observable, and in this case, M is guaranteed to

have an eigenvalue decomposition

M =

2n−1∑

i=0

λi|ψi⟩⟨ψi|, M|ψi⟩ = λi|ψi⟩ ∀i

for which the eigenvalues λ0, λ1, . . . , λ2n−1 are real, and the eigenvectors (also

known as eigenstates) |ψ0⟩, |ψ1⟩, . . . , |ψ2n−1⟩ form an orthonormal set.

Many end-to-end problems solved by quantum algorithms boil down to esti-

mating the expectation value of an observable, which correspond to a physical

property of the system. Given an observable M and a mixed state ρ, the expec-

tation value of M is given by tr(Mρ). For a pure state ρ = |ψ⟩⟨ψ|, this reduces

to ⟨ψ|M|ψ⟩.
An important observable is the Hamiltonian, which corresponds to the en-

ergy of the physical system. The Hamiltonian generates time evolution of the

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.032
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.63, on 02 Aug 2025 at 18:32:40, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.032
https://www.cambridge.org/core


A.1 Quantum systems and bra-ket notation 335

state; that is, denoting the state at time t by |ψ(t)⟩ and the time-dependent

Hamiltonian by H(t), the state obeys the time-dependent Schrödinger equation

i
d|ψ(t)⟩

dt
= H(t)|ψ(t)⟩ .

Here we have set the physical constant ℏ to 1, which is the typical convention

in the literature that we cite. The specification of an initial state |ψ(0)⟩ uniquely

determines |ψ(t)⟩ for all other t. If H(t) = H is independent of t, this is given

exactly by the matrix exponential

|ψ(t)⟩ = e−iHt |ψ(0)⟩ , (A.1)

and if H(t) is time dependent, it is given by a time-ordered matrix exponential.

The eigenvalues of the Hamiltonian are often called the energies. The eigen-

state corresponding to the minimal eigenvalue is called the ground state, and its

eigenvalue is called the ground state energy; the eigenstates corresponding to

larger energies are called excited states. In actual quantum systems like atomic

nuclei, molecules, and materials, the system’s lower energies—and especially

its ground state and ground state energy—often determine its key properties;

the higher excited states are rarely populated due to energy exchange with

the environment favoring lower energy levels. As such, many of the relevant

end-to-end problems for which quantum computing may be helpful relate to

computing ground state energies and other properties of low-energy states.

One complication is that actual quantum systems in nature typically do not

directly correspond to a collection of two-level qubit systems. Instead, they

are modeled as discrete or continuous systems with a larger (possibly infinite)

number of levels. However, the states of these systems are still described by

vectors in a well-defined vector space. For example, the position of an elec-

tron in 3D space is given by an element of the vector space of square inte-

grable functions on R3—in this context, the state vector |ψ⟩ is often called the

wavefunction, a term that is sometimes also used in discrete situations as well.

The position of η particles in 3D space has 3η continuous degrees of freedom,

and states correspond to square integrable functions on R3η. However, particles

found in nature, such as electrons, are indistinguishable, and quantum mechan-

ics dictates that the corresponding wavefunctions must either be antisymmetric

(if the particles are fermions) or symmetric (if they are bosons) under particle

exchange, which restricts the accessible vector space. For generic multiqubit

systems, no such symmetry is naturally imposed. Fermionic and bosonic sys-

tems are the subjects of quantum algorithms for chemistry, condensed matter

physics, and nuclear and particle physics—to simulate these and other non-

qubit systems on a quantum computer, algorithmic choices must be made on
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336 A. Background, conventions, and notation

how to embed the relevant vector space into a tensor product of qubit systems.

It may also be required to truncate the (possibly infinite-dimensional) vector

space, incurring errors in the calculation.

A.2 The quantum circuit model

We follow standard convention and work in the quantum circuit model of

quantum computation. In this paradigm, quantum computations process the

information in quantum states by applying a sequence of unitary operators to

the state, known as gates, which generalize classical Boolean logic gates—

unitarity ensures that the norm of the state is preserved by the operator being

applied. A single-qubit gate is given by a 2× 2 unitary matrix. There are a few

essential examples that occur throughout the book.

• The Pauli matrices (which are both unitary and Hermitian):

σx = X =

(
0 1

1 0

)
, σy = Y =

(
0 −i

i 0

)
, σz = Z =

(
1 0

0 −1

)
,

• The Hadamard gate H and the phase gate S :

H =
1√
2

(
1 1

1 −1

)
, S =

√
Z =

(
1 0

0 i

)
,

• The T gate:

T =
√

S =

(
1 0

0 eiπ/4

)
.

A k-qubit gate is given by a 2k × 2k unitary matrix, and some of the essential

multiqubit gates include the 2-qubit controlled NOT (CNOT) gate and the 3-

qubit Toffoli gate

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


TOFFOLI =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



.

Given as input a 2-qubit state |x0x1⟩ with x0, x1 ∈ {0, 1}, the CNOT gate flips

the value of x1 conditioned on (“controlled on”) x0 being 1; the first qubit is
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A.2 The quantum circuit model 337

the control and the second is the target. The Toffoli gate is a doubly controlled

NOT gate in the sense that it flips the third qubit controlled on both the first

and second qubits being set to 1.

When a k-qubit gate described by the 2k × 2k matrix V acts on a subset

of qubits in an n-qubit system (with n > k), the gate enacted on the n-qubit

system is given by a tensor product of V with the identity matrix. For example,

if a single-qubit X gate acts on the second qubit of an n-qubit system, then the

full 2n × 2n unitary operator U for the gate may be decomposed as

U = I ⊗ X ⊗ I ⊗ I ⊗ · · · ⊗ I ,

where I is the 2 × 2 identity matrix.

Given a fixed discrete (i.e., finite) set of gates, we may consider the set of all

gates generated by the discrete gate set—that is, gates that can be formed by

multiplying a sequence of gates drawn from the discrete gate set. A gate set is

universal if it generates a dense subset of the set of all n-qubit unitary operators

on the system, or equivalently, if any n-qubit unitary may be approximated to

arbitrary precision by a product of gates drawn from the generating set.

For an n-qubit system, the discrete gate set formed from single-qubit gates

{X,Y,Z,H, S } on each of the n qubits combined with 2-qubit CNOT gates be-

tween any pair of qubits generates the Clifford group, which is a finite group

that is not universal. Importantly, quantum computations on n qubits involving

only Clifford gates can be efficiently simulated on a classical computer; thus,

significant quantum computational speedups cannot be achieved using only

Clifford gates. By adding either the T gate or the Toffoli gate to the generating

set, the gate set becomes universal. The Clifford + T gate set is the most com-

mon discrete gate set considered in compilations of quantum algorithms. The

Toffoli gate can be exactly decomposed into Clifford gates and T gates.

In this language, a quantum computation consists of the initialization of a

quantum state (typically an n-qubit product state such as |0⟩⊗n), the application

of a prespecified sequence of gates, and finally, a measurement of the n qubits

in the computational basis. If the normalized n-qubit initial state is |ψ0⟩ and the

sequence of gates is U1, . . . ,Uℓ, then the quantum state prior to the measure-

ment is given by |ϕ⟩ = UℓUℓ−1 · · ·U1|ψ0⟩. The measurement then produces an

outcome x with probability equal to |⟨x|ϕ⟩|2. This procedure can be depicted in

a quantum circuit diagram, such as Fig. A.1.

When performing a resource estimate of a quantum algorithm in the Clifford

+ T gate set, the key quantities are the total number of qubits and gates that

appear in the associated quantum circuit diagram. Occasionally, one is also

interested in the circuit depth. For example, the circuit in Fig. A.1 acts on 3

qubits and has a total gate count equal to 12. The circuit depth is 6 since the
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338 A. Background, conventions, and notation

|0⟩ H • H T •

|0⟩ H T T

|0⟩ H T • H

Figure A.1 Example of a quantum circuit with gates drawn from the Clifford + T

gate set. Time flows from left to right. The two qubit gates are CNOT gates with

the control indicated by the symbol • and the target indicated by the symbol ⊕.

gates can be parallelized into 6 sequential layers. When working in the Clifford

+ T gate set, it is common to ignore the Clifford gates and only count the non-

Clifford gates, that is, the T gates (or the Toffoli gates). The main reason for

this is that non-Clifford gates are more difficult to implement than Clifford

gates in many (but not all) schemes for fault-tolerant quantum computing. The

circuit in Fig. A.1 has a T -count of 4 and a T -depth of 2, since only 2 of the 6

layers contain T gates.

A quantum algorithm for a certain computational problem is a procedure

that takes as input an instance of the computational problem and determines a

quantum circuit (or multiple quantum circuits), as well as a procedure to con-

vert the measurement result(s) into the answer to the computational problem.

Since measurement outcomes are random, the answer need only be correct

with high probability.

A.3 Noise in quantum gates and the NISQ era

The quantum circuit model is an idealized and abstract depiction of a quantum

computer. Actual quantum computers attempt to realize this model by using

physical 2-level quantum systems as qubits—several options can be consid-

ered including the electronic states of ions or neutral atoms, the spin states

of electrons, the polarization states of photons, and the number of excitations

in superconducting electrical circuits. Gates are applied by turning on and off

external fields. While experimental control of these quantum systems has im-

proved dramatically over time, one cannot expect gates to be performed per-

fectly. Much of the work in theoretical quantum information science deals with

how to characterize, detect, and correct the errors that occur in noisy quantum

computations.

Specifically, methods for fault-tolerant quantum computation have been de-

veloped, whereby a quantum computation can be accomplished correctly using
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A.4 Big-O notation 339

faulty components, provided that the noise in the system meets certain condi-

tions. The ideal quantum circuit is referred to as the logical circuit, composed

of logical gates and logical qubits. Each logical qubit is realized using a larger

number of noisy physical qubits, and each logical gate requires the action of

multiple faulty physical gates. A resource estimate for the ideal logical cir-

cuit can be converted into a resource estimate for the actual physical quantum

computer, a calculation that depends on the specifics of the hardware and the

fault-tolerance scheme being utilized.

Due to the resource overhead required by fault-tolerant quantum computa-

tion, researchers have also investigated the question of whether noisy quan-

tum computers can solve interesting problems without correcting the errors.

The era of quantum computing where quantum devices of tens or hundreds

of qubits exist, but large-scale fault-tolerant quantum computation is not yet

possible, has been referred to as the noisy intermediate-scale quantum (NISQ)

era. Generally speaking, algorithms for NISQ-era quantum computers should

possess a certain resilience to the inevitable occurrence of errors in the compu-

tation, often by restricting to quantum circuits with a limited gate count or gate

depth. While the focus of this book is on quantum algorithms for fault-tolerant

quantum computers and logical resource estimates, we comment in passing on

NISQ algorithms for many of the tasks.

A.4 Big-O notation

Analyses of (classical or quantum) algorithms often focus on how the compu-

tational cost, also referred to as the complexity, scales with the size of the input.

Inputs to a computational problem are assigned an integer size n—for example,

the number of digits in a number one wishes to factor—and resource metrics

such as the qubit count, gate count, and circuit depth are expressed as functions

of n. Often, of primary interest is the asymptotic scaling of these complexities

with n. To facilitate this, we adopt big-O notation. Given two positive-valued

real functions f (n) and g(n), we use the following definitions:

• f (n) = O(g(n)) if there exist n0, c, such that f (n) ≤ cg(n) whenever n ≥ n0.

• f (n) = Ω(g(n)) if there exist n0, c, such that f (n) ≥ cg(n) whenever n ≥ n0.

• f (n) = Θ(g(n)) if f (n) = Ω(g(n)) and f (n) = O(g(n)).

• f (n) = Õ(g(n)) if there exists c such that f (n) = O(g(n) · logc(g(n))).

• f (n) = poly(n) if there exists c such that f (n) = O(nc).

• f (n) = polylog(n) if there exists c such that f (n) = O(log(n)c).
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340 A. Background, conventions, and notation

Above, n0 and c are always constants, independent of n. Intuitively, O, Ω, and

Θ are used to indicate that the asymptotic growth rate of f (n) is upper bounded,

lower bounded, and exactly equal to that of g(n), respectively. Tildes are added

to suppress logarithmic factors and simplify the expressions.

We also occasionally utilize little-o notation, which has the following defi-

nitions:

• f (n) = o(g(n)) if for any constant c there exists n0 for which f (n) ≤ cg(n)

whenever n ≥ n0.

• f (n) = ω(g(n)) if for any constant c there exists n0 for which f (n) ≥ cg(n)

whenever n ≥ n0.

Thus, little-o and little-ω communicate instances where the growth rate of f (n)

is strictly smaller than g(n) and larger than g(n), respectively.

While big-O and little-o notation carries the formal mathematical definitions

above, in some contexts this notation is utilized in a less mathematically pre-

cise fashion. For example, big-O is occasionally used simply to indicate that

constant prefactors have been omitted or that a certain quantity is roughly of

the same order as another. The expression O(1) is often used as a placeholder

for an unspecified constant, even when there is not a well-defined growing

parameter n. Meanwhile, the expression o(1) is used for functions f (n) that

approach 0 as n → ∞. The usage of Ω is often chosen to add emphasis to the

fact that a certain quantity is a lower bound for another, even when Θ would

also have been mathematically appropriate.

We also employ big-O notation for functions of multiple independent param-

eters. For example, if the input is an m × n matrix, we might be interested in

the complexity dependence on both m and n. Another common scaling param-

eter is the target precision ϵ to which a certain quantity should be estimated by

the quantum algorithm. Smaller ϵ typically incurs greater resources, and thus

we wish to compute how the complexity scales with growing 1/ϵ. When two

multivariate functions f and g are monotonically nondecreasing in all of the

scaling parameters, there is little ambiguity about how to extend the definitions.

For example:

• f (n,m) = O(g(n,m)) if there exist n0, c, such that f (n,m) ≤ cg(n,m) when-

ever n,m ≥ n0.

• f (n,m) = poly(n,m) if there exists c such that f (n,m) = O((nm)c).

Ambiguity may arise if it is possible for the function to decrease when cer-

tain scaling parameters are increased; in this case, the limiting behavior of the

function can depend on the rates at which the parameters grow relative to one
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A.5 Complexity theory background 341

another. Additional context about the range or relationship of the scaling pa-

rameters may be required to understand what is being communicated by the

big-O notation.

Big-O notation enables a determination of the magnitude of a quantum

speedup. Suppose the complexity of the quantum algorithm is Q(n) and the

complexity of the classical algorithm is C(n).

• We say that the quantum algorithm has an exponential speedup if Q(n) =

O(log(C(n))).

• We say that the quantum algorithm has a polynomial speedup of degree d

if Q(n) = O(C(n)1/d). If Q(n) = Õ(C(n)1/d), we say that the speedup is

essentially (or nearly) degree-d, and often we drop these qualifiers for ease

of discussion.

• If Q(n) and C(n) meet the criterion for a polynomial speedup for all d ≥ 1

but not the criterion for an exponential speedup, then we say the speedup is

superpolynomial.

Here are some examples:

• If Q(n) = 3n and C(n) = 2n3, there is a degree-3, or cubic, polynomial

speedup.

• If Q(n) = n2n/4 and C(n) = 2n, there is a nearly degree-4, or quartic, poly-

nomial speedup.

• If Q(n) = n2 and C(n) = en1/3

, then there is a superpolynomial speedup.

• If Q(n) = 10n and C(n) = 2n/1000, then there is an exponential speedup.

End-to-end analyses should ideally also assess the constant prefactors that

are omitted when using big-O notation (and polylogarithmic prefactors when

using big-Õ), as these can still contribute significantly to the outlook of a cer-

tain application if they are especially large.

A.5 Complexity theory background

Occasionally, we make reference to concepts and results from complexity

theory. Complexity theory aims to classify different computational problems

based on the quantity of computational resources required to solve them. These

computational complexities are often categorized solely based on whether

they scale polynomially or superpolynomially with the size of the input. If the

complexity of an algorithm is polynomial in the relevant parameter, it is called

efficient.
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Let x be an instance of a computational problem, which is associated with

an integer length n. The desired output of the problem on input x is denoted by

M(x). If M(x) ∈ {0, 1} is a single bit, the problem is called a decision problem.

This enables a definition of the following important complexity classes:

• The set P contains decision problems where M(x) can be computed by a

deterministic classical algorithm with time complexity poly(n).

• The set BPP contains decision problems where M(x) can be computed with

high probability by a randomized classical algorithm (i.e., an algorithm that

can make coin flips) with time complexity poly(n).

• The set BQP contains decision problems where M(x) can be computed with

high probability by a quantum algorithm with gate complexity poly(n).

To arrive at a precise form for the time or gate complexity, one must specify a

particular computational model; in the case of the quantum circuit model, one

also needs to specify a gate set, such as Clifford + T . However, for the purpose

of these complexity classes, these details are generally unimportant, as they do

not change which problems are in P and BQP.

Complexity theory also defines classes of problems for which the solutions

are efficient to verify, even if they are not efficient to compute. Specifically, we

may fix a verification algorithm with time complexity poly(n) that computes

a function M′(x, y) of two inputs, where x has size n and y has size poly(n).

We say that y is a witness for x if M′(x, y) = 1. The verification algorithm can

also be a quantum algorithm, in which case y can be a quantum state |y⟩, which

acts as the initial state for a quantum circuit in the quantum circuit model. A

state |y⟩ is a witness for x if the quantum verification algorithm produces output

M′(x, |y⟩) = 1 with high probability.

• The set NP contains decision problems for which there exists a deterministic

classical verification algorithm where, on input x, there exists a witness y if

and only if M(x) = 1.

• The set QMA contains decision problems for which there exists a quantum

verification algorithm where, on input x, there exists a witness |y⟩ if and only

if M(x) = 1.

The most famous outstanding open question in complexity theory is whether

P = NP, that is, whether or not there exist problems that cannot be solved ef-

ficiently, but for which solutions can be verified efficiently given a witness. It

is widely believed that P , NP. The prototypical example of a problem in NP

that is believed not to be in P is the Boolean satisfiability problem. Here, the

input is a Boolean formula φ (referred to as x above, and specified by a de-

scription of length n). The formula φ maps an input string z consisting of m
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bits to an output bit φ(z) ∈ {0, 1}, where n = poly(m). Given z, the output bit

φ(z) can be evaluated in time complexity poly(n), and the question is whether

there exists a z for which φ(z) = 1, in which case we call φ satisfiable. This

problem is efficient to verify since whenever φ(z) = 1, the string z acts as a wit-

ness to the fact that φ is satisfiable. However, there are 2m possible inputs z, so

without a witness, it naively requires trying all possible inputs to determine if

φ is satisfiable, a procedure which has superpolynomial-in-n time complexity.

In fact, it has been shown that the Boolean satisfiability problem is NP-hard,

a term that means it is as hard as any other problem in NP. Specifically, we can

make the following (slightly informal) definitions:

• A problem is NP-hard if the existence of an efficient deterministic classical

algorithm for the problem would imply that P = NP.

• A problem is QMA-hard if the existence of an efficient quantum algorithm

for the problem would imply that BQP = QMA.

• A problem is BQP-hard if the existence of an efficient randomized classical

algorithm for the problem would imply that BPP = BQP.1

A problem that is both NP-hard and in NP is called NP-complete. The Boolean

satisfiability problem is one example of an NP-complete problem. Similar def-

initions follow for the terms QMA-complete and BQP-complete.

The conjecture that P , NP entails that all NP-hard problems do not admit

efficient classical algorithms. Thus, one way to give evidence that a problem

cannot be solved in polynomial time is to prove that it is NP-hard. Since it is

also widely believed that BQP , QMA and that NP 1 BQP, showing that a

problem is NP-hard or QMA-hard is strong evidence that it does not admit an

efficient quantum algorithm. In the search for good quantum algorithms, these

hardness results establish limits on what we expect to be possible.

On the other hand, if one can show that a problem is BQP-complete, then

this is evidence that the problem exhibits a superpolynomial quantum speedup

over the best possible classical algorithm. If it did not, then this would imply

that BPP = BQP, which is widely believed to be false.

These complexity-theoretic results are useful guides for navigating quantum

algorithms, but it is worth emphasizing that they typically deal with worst-case

hardness and may not always be relevant for real-world instances of a prob-

lem. For example, preparing the ground state of a Hamiltonian consisting of

local terms—which is in a sense a quantum analog of the Boolean satisfiability

problem—is well known to be QMA-complete; thus, it is not expected to admit

an efficient quantum algorithm in all instances. Nevertheless, for many specific

1 Technically, due to their probabilistic nature, BPP and BQP should be defined as classes of
promise problems to correctly formalize the notion of BQP-hard; see [418].
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Hamiltonians that arise in nature, we do expect efficient ground state prepara-

tion to be possible, and this forms the basis for many proposed applications of

quantum computing.

We conclude with a discussion of the concept of oracles. A (classical or

quantum) algorithm is said to have access to an oracle g if it can query the

oracle in a black-box fashion, by fixing an n-bit input string z and receiving the

corresponding m-bit output string g(z). The query complexity of an algorithm

is the number of times it requests an output from the oracle. In quantum al-

gorithms, one typically allows the oracle to be queried in superposition, in the

sense of performing the unitary map Ug, defined by

Ug


2n−1∑

z=0

2m−1∑

w=0

αz,w|z⟩|w⟩
 =

2n−1∑

z=0

2m−1∑

w=0

αz,w|z⟩|w ⊕ g(z)⟩ ,

where ⊕ denotes bitwise addition modulo 2, and the coefficients αz,w are ar-

bitrary complex numbers. The ability to query in superposition may give a

quantum algorithm an advantage over classical algorithms that cannot do so.

Oracles play multiple conceptual roles. For one, they enable modular ac-

counting of the costs of an algorithm. For example, in algorithms where oracle

calls represent the dominant computational burden, one may count the number

of oracle queries made by the algorithm and multiply this by the computational

cost (e.g., time complexity or gate complexity) required to implement a single

oracle query. In end-to-end analyses, it is important to instantiate all oracles

using elementary operations and account for the costs of implementing them

in final resource expressions.

In complexity theory, oracles also provide a mechanism for establishing

more definitive separations between different models of computation. Oracles

are black-box objects, and algorithms may only interact with oracles by query-

ing them on different inputs—this makes it easier to prove a lower bound on

the query complexity of an algorithm than to prove a lower bound on the time

complexity or gate complexity. For example, there exists an oracle g for which

it can be shown that P , NP relative to g, even though P = NP remains possi-

ble in the non-oracle setting (in fact, there also exist oracles relative to which

P = NP).

Similarly, there are specific computational problems involving oracles, such

as Simon’s problem, where one can show an unconditional exponential separa-

tion between the quantum and classical query complexity required to solve the

problem. Relative to this oracle, it holds that BPP , BQP. Such separations

do not alone constitute a definitive quantum advantage in end-to-end complex-
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ity, but they may capture the core mechanism by which an end-to-end analysis

aims to achieve an advantage.
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